2012高考总复习《走向清华北大》精品41
- 格式:doc
- 大小:143.50 KB
- 文档页数:9
第四十二讲 抛物线班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4 B .y 2=±8x C .y 2=4xD .y 2=8x解析:y 2=ax 的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0.过焦点且斜率为2的直线方程为y =2⎝ ⎛⎭⎪⎫x -a4,令x=0得:y =-a2.∴12×|a |4·|a |2=4, ∴a 2=64, ∴a =±8,故选B. 答案:B2.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.3716解析:如图所示,动点P 到l 2:x =-1的距离可转化为P 到F 的距离,由图可知,距离和的最小值即F 到直线l 1的距离d =|4+6|32+42=2,故选A.答案:A3.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8解析:抛物线y 2=4x 的焦点为F (1,0),准线为l :x =-1,经过F 且斜率为3的直线y =3(x -1)与抛物线在x 轴上方的部分相交于点A (3,23),AK ⊥l ,垂足为K (-1,23),∴△AKF 的面积是4 3.故选C.答案:C4.若抛物线y 2=4x 的焦点是F ,准线是l ,则经过点F 、M (4,4)且与l 相切的圆共有( ) A .0个 B .1个 C .2个D .4个解析:经过F 、M 的圆的圆心在线段FM 的垂直平分线上,设圆心为C ,则|CF |=|CM |,又圆C 与l 相切,所以C 到l 距离等于|CF |,从而C 在抛物线y 2=4x 上.故圆心为FM 的垂直平分线与抛物线的交点,显然有两个交点,所以共有两个圆,故选C.答案:C5.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FA FB FC ++=0,则||||||FA FB FC ++等于( )A .9B .6C .4D .3解析:设A 、B 、C 三点的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),F (1,0). ∵FA FB FC ++=0,∴x 1+x 2+x 3=3.又由抛物线定义知||||||FA FB FC ++=x 1+1+x 2+1+x 3+1=6,故选B. 答案:B6.设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCFS △ACF等于( ) A.45B.23C.47D.12解析:由|BF |=2小于点M 到准线的距离⎝ ⎛⎭⎪⎫3+12知点B 在A 、C 之间,由抛物线的定义知点B 的横坐标为32,代入得y 2=3,则B ⎝ ⎛⎭⎪⎫32,-3,另一种可能是⎝ ⎛⎭⎪⎫32,3,那么此时直线AC 的方程为y -0-3-0=x -332-3,即y =2(x -3)2-3,把y =2(x -3)2-3代入y 2=2x ,可得2x2-7x +6=0,可得x =2,则有y =2,即A (2,2),那么S △BCFS △ACF =|BC ||AC |=⎝ ⎛⎭⎪⎫32+12⎝ ⎛⎭⎪⎫2+12=45,故选A.答案:A二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.) 7.已知抛物线型拱的顶点距离水面2米时,测量水面宽为8米,当水面上升12米后,水面的宽度是________.解析:设抛物线方程为x 2=-2py ,将(4,-2)代入方程得16=-2p ·(-2),解得2p =8,故方程为x 2=-8y ,水面上升12米,则y =-32,代入方程,得x 2=-8×⎝ ⎛⎭⎪⎫-32=12,x=±2 3.故水面宽43米.答案:43米8.点P 到A (1,0)和直线x =-1的距离相等,且点P 到直线l :y =x 的距离等于22,则这样的点P 的个数为________.解析:由抛物线定义,知点P 的轨迹为抛物线,其方程为y 2=4x ,设点P 的坐标为⎝ ⎛⎭⎪⎫y 204,y 0,由点到直线的距离公式,知⎪⎪⎪⎪⎪⎪y 204-y 02=22,即y 20-4y 0±4=0,易知y 0有三个解,故点P 个数有三个.答案:39.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|FA |>|FB |,则|FA |与|FB |的比值等于________.解析:抛物线C :y 2=4x 的焦点F (1,0),准线方程:x =-1,如图, 则直线AB 的方程为y =x -1,由21,4,y x y x =-⎧⎨=⎩得 x 2-6x +1=0,①设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程①的两根, ∴x 1x 2=1,x 1=3+2 2.根据抛物线定义,得|FA |=x 1+1, |FB |=x 2+1(x 1>x 2),∴|FA ||FB |=x 1+1x 2+1=x 1+11x 1+1=x 1(x 1+1)x 1+1=x 1=3+2 2. 答案:3+2 210.设x 1、x 2∈R,常数a >0,定义运算“*”:x 1]x *a ))的轨迹方程是________. 解析:由y =x *a ,得y 2=x *a =(x +a )2-(x -a )2=4ax (y ≥0). 答案:y 2=4ax (y ≥0)三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.A 、B 是抛物线y 2=2px (p >0)上的两点,且OA ⊥OB . (1)求A 、B 两点的横坐标之积和纵坐标之积; (2)求证:直线AB 过定点; (3)求弦AB 中点P 的轨迹方程; (4)求△AOB 面积的最小值.解:设A (x 1,y 1),B (x 2,y 2),中点P (x 0,y 0). (1)k OA =y 1x 1,k OB =y 2x 2.∵OA ⊥OB ,∴k OA ·k OB =-1,∴x 1x 2+y 1y 2=0.∵y 21=2px 1,y 22=2px 2,∴y 212p ·y 222p+y 1y 2=0.∵y 1≠0,y 2≠0,∴y 1y 2=-4p 2,∴x 1x 2=4p 2. (2)∵y 21=2px 1,y 22=2px 2, ∴(y 1-y 2)(y 1+y 2)=2p (x 1-x 2). ∴y 1-y 2x 1-x 2=2p y 1+y 2,∴k AB =2py 1+y 2. ∴直线AB :y -y 1=2py 1+y 2(x -x 1). ∴y =2px y 1+y 2+y 1-2px 1y 1+y 2.∴y =2px y 1+y 2+y 21-2px 1+y 1y 2y 1+y 2.∵y 21=2px 1,y 1y 2=-4p 2,∴y =2px y 1+y 2+-4p 2y 1+y 2.∴y =2py 1+y 2(x -2p ). ∴AB 过定点(2p,0).(3)如图,设OA :y =kx ,代入y 2=2px 得:x =0或x =2p k2,∴A ⎝ ⎛⎭⎪⎫2p k2,2p k . 同理,以-1k代k 得B (2pk 2,-2pk ).设中点坐标P (x 0,y 0), ∴⎩⎪⎨⎪⎧x 0=p ⎝ ⎛⎭⎪⎫k 2+1k 2y 0=p ⎝ ⎛⎭⎪⎫1k -k .∵k 2+1k2=⎝ ⎛⎭⎪⎫1k -k 2+2,∴x 0p=⎝ ⎛⎭⎪⎫y 0p 2+2,即y 20=px 0-2p 2.∴中点P 的轨迹方程为y 2=px -2p 2.(4)设M (2p,0),S △AOB =S △AOM +S △BOM =12|OM |(|y 1|+|y 2|)=p (|y 1|+|y 2|)≥2p |y 1y 2|=4p 2,当且仅当|y 1|=|y 2|=2p 时,等号成立.评析:解决直线与抛物线的有关问题时要注意以下几点:①设抛物线上的点为(x 1,y 1),(x 2,y 2);②因为(x 1,y 1),(x 2,y 2)都在抛物线上,故满足y 21=2px 1,y 22=2px 2;③利用y 21y 22=4p 2x 1x 2可以整体得到y 1y 2或x 1x 2.12.是否存在同时满足下列条件的抛物线:①准线是y 轴;②顶点在x 轴上;③点A (3,0)到该抛物线上的动点P 的距离的最小值为2?如果存在,求出抛物线方程;如果不存在,说明理由.解:设满足条件的抛物线存在,顶点B 在x 轴上. 设B (a,0),以y 轴为准线的抛物线方程为y 2=4a (x -a ),由条件知a >0.设P 是抛物线上的点,其坐标为⎝ ⎛⎭⎪⎫m 24a +a ,m .则|AP |2=⎝ ⎛⎭⎪⎫m 24a +a -32+m 2=116a[m 2-12(a -a 2)]2+12a -8a 2, ∴当a -a 2≥0,即0<a ≤1,且m 2=12(a -a 2)时,|AP |min =12a -8a 2. ∴12a -8a 2=2,解得a =1或a =12.此时抛物线方程为y 2=4(x -1)或y 2=2⎝ ⎛⎭⎪⎫x -12.当a -a 2<0,即a >1,且m =0时, |AP |min =|a -3|=2.∴a =5,此时抛物线方程为y 2=20(x -5), ∴存在满足条件的抛物线,其方程为y 2=4(x -1)或y 2=2⎝⎛⎭⎪⎫x -12或y 2=20(x -5).13.(精选考题·福建)已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求直线l 的方程;若不存在,说明理由. 解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1,所以p =2. 故所求抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t ,由224y x t y x=-+⎧⎨=⎩得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12.由直线OA 与l 的距离d =55可得|t |5=15,解得t =±1. 因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞,所以符合题意的直线l 存在,其方程为2x +y -1=0.。
第二十五讲平面向量的数量积班级________姓名________考号________日期________得分________一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a -b),则实数m的值为()A.-2B.2C.-12D.不存在解析:由题设知:a=(m+1,-3),b=(1,m-1),∴a+b=(m+2,m-4),a-b=(m,-m-2).∵(a+b)⊥(a-b),∴(a+b)·(a-b)=0,∴m(m+2)+(m-4)(-m-2)=0,解之得m=-2.故应选A.答案:A2.设a,b是非零向量,若函数f(x)=(xa+b)·(a-xb)的图象是一条直线,则必有() A.a⊥b B.a∥bC.|a|=|b| D.|a|≠|b|解析:f(x)=(xa+b)·(a-xb)的图象是一条直线,即f(x)的表达式是关于x的一次函数.而(xa+b)·(a-xb)=x|a|2-x2a·b+a·b-x|b|2,故a·b=0,又∵a,b为非零向量,∴a⊥b,故应选A.答案:A3.向量a=(-1,1),且a与a+2b方向相同,则a·b的范围是()A.(1,+∞) B.(-1,1)C.(-1,+∞) D.(-∞,1)解析:∵a与a+2b同向,∴可设a+2b=λa(λ>0),则有b=λ-12a,又∵|a|=12+12=2,∴a ·b =λ-12·|a |2=λ-12×2=λ-1>-1, ∴a ·b 的范围是(-1,+∞),故应选C.答案:C4.已知△ABC 中,,,AB a AC b == a ·b <0,S △ABC =154, |a |=3,|b |=5,则∠BAC 等于( )A .30°B .-150°C .150°D .30°或150°解析:∵S △ABC =12|a ||b |sin ∠BAC =154, ∴sin ∠BAC =12, 又a ·b <0,∴∠BAC 为钝角,∴∠BAC =150°.答案:C5.(精选考题·辽宁)平面上O ,A ,B 三点不共线,设,,OA a OB b == 则△OAB 的面积等于( ) A.|a |2|b |2-(a ·b )2 B.|a |2|b |2+(a ·b )2 C.12|a |2|b |2-(a ·b )2 D.12|a |2|b |2+(a ·b )2 解析:cos 〈a ,b 〉=a ·b |a |·|b |, sin ∠AOB =1-cos 2〈a ,b 〉=1-⎝⎛⎭⎫a ·b |a |·|b |2, 所以S △OAB =12|a ||b | sin ∠AOB =12|a |2|b |2-(a ·b )2. 答案:C 6.(精选考题·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB AC 等于( )A .-16B .-8C .8D .16解析:解法一:因为cos A =AC AB ,故||||AB AC AB AC = cos A =AC 2=16,故选D.解法二:AB 在AC 上的投影为|AB |cos A =|AC |,故||||AB AC AC AB = cos A =AC 2=16,故选D.答案:D二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.(精选考题·江西)已知向量a ,b 满足|b |=2,a 与b 的夹角为60°,则b 在a 上的投影是________.解析:b 在a 上的投影是|b |cos 〈a ,b 〉=2cos60°=1.答案:18.(精选考题·浙江)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.解析:由于α⊥(α-2β),所以α·(α-2β)=|α|2-2α·β=0,故2α·β=1,所以|2α+β|=4|α|2+4α·β+|β|2=4+2+4=10. 答案:109.已知|a |=2,|b |=2,a 与b 的夹角为45°,要使λb -a 与a 垂直,则λ=________. 解析:由λb -a 与a 垂直,(λb -a )·a =λa ·b -a 2=0,所以λ=2.答案:210.在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则(OA OB OC + )的最小值是________.解析:令|OM |=x 且0≤x ≤2,则|OA |=2-x .()2OA OB OC OA OM += =-2(2-x )x =2(x 2-2x )=2(x -1)2-2≥-2.∴()OA OB OC + 的最小值为-2.答案:-2三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知|a |=2,|b |=1,a 与b 的夹角为45°,求使向量(2a +λb )与(λa -3b )的夹角是锐角的λ的取值范围.解:由|a |=2,|b |=1,a 与b 的夹角为45°,则a ·b =|a ||b |cos45°=2×1×22=1. 而(2a +λb )·(λa -3b )=2λa 2-6a ·b +λ2a ·b -3λb 2=λ2+λ-6.设向量(2a +λb )与(λa -3b )的夹角为θ,则cos θ=(2a +λb )·(λa -3b )|2a +λb ||λa -3b |>0,且cos θ≠1, ∴(2a +λb )·(λa -3b )>0,∴λ2+λ-6>0,∴λ>2或λ<-3.假设cos θ=1,则2a +λb =k (λa -3b )(k >0),∴⎩⎪⎨⎪⎧2=kλ,λ=-3k ,解得k 2=-23. 故使向量2a +λb 和λa -3b 夹角为0°的λ不存在.所以当λ>2或λ<-3时,向量(2a +λb )与(λa -3b )的夹角是锐角.评析:由于两个非零向量a ,b 的夹角θ满足0°≤θ≤180°,所以用cos θ=a ·b |a ||b |去判断θ分五种情况:cos θ=1,θ=0°;cos θ=0,θ=90°;cos θ=-1,θ=180°;cos θ<0且cos θ≠-1,θ为钝角;cos θ>0且cos θ≠1,θ为锐角.12.设在平面上有两个向量a =(cos α,sin α)(0°≤α<360°),b =⎝⎛⎭⎫-12,32.(1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.解:(1)证明:因为(a +b )·(a -b )=|a |2-|b |2=(cos 2α+sin 2α)-⎝⎛⎭⎫14+34=0,故a +b 与a-b 垂直.(2)由|3a +b |=|a -3b |,两边平方得3|a |2+23a ·b +|b |2=|a |2-23a ·b +3|b |2,所以2(|a |2-|b |2)+43a ·b =0,而|a |=|b |,所以a ·b =0,则⎝⎛⎭⎫-12·cos α+32·sin α=0, 即cos(α+60°)=0,∴α+60°=k ·180°+90°,即α=k ·180°+30°,k ∈Z ,又0°≤α<360°,则α=30°或α=210°.13.已知向量a =(cos(-θ),sin(-θ)),b =⎝⎛⎭⎫cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ, (1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-ka +tb 满足x ⊥y ,试求此时k +t 2t的最小值. 解:(1)证明:∵a ·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+ sin(-θ)·sin ⎝⎛⎭⎫π2-θ=sin θcos θ-sin θcos θ=0.∴a ⊥b .(2)由x ⊥y ,得x ·y =0,即[a +(t 2+3)b ]·(-ka +tb )=0,∴-ka 2+(t 3+3t )b 2+[t -k (t 2+3)]a ·b =0, ∴-k |a |2+(t 3+3t )|b |2=0.又|a |2=1,|b |2=1,∴-k +t 3+3t =0, ∴k =t 3+3t ,∴k +t 2t =t 3+t 2+3t t =t 2+t +3=⎝⎛⎭⎫t +122+114.故当t =-12时,k +t 2t 有最小值114.。
第9章 第7节一、选择题1.(2010·安徽理)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫52,0 C.⎝⎛⎭⎫62,0 D .(3,0)[答案] C[解析] 将方程化为标准方程x 2-y 212=1 ∴c 2=1+12=32,∴c =62,故选C. 2.(2010·全国卷Ⅰ文)已知F 1、F 2为双曲线C x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=( )A .2B .4C .6D .8[答案] B[解析] 该题考查双曲线的定义和余弦定理,考查计算能力.在△F 1PF 2中,由余弦定理cos60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|-|PF 2|)2-|F 1F 2|2+2|PF 1|·|PF 2|2|PF 1|·|PF 2|=4a 2-4c 22|PF 1||PF 2|+1=-2b 2|PF 1|·|PF 2|+1, 故|PF 1|·|PF 2|=4.3.设F 1、F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|等于( )A.10 B .210 C. 5 D .2 5[答案] B[解析] 由题意知:F 1(-10,0),F 2(10,0),2c =210,2a =2.∵PF 1→·PF 2→=0,∴|PF 1→|2+|PF 2→|2=|F 1F 2|2=4c 2=40∴(PF 1→+PF 2→)2=|PF 1|→2+|PF 2→|2+2PF 1→·PF 2→=40∴|PF 1→+PF 2→|=210.4.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .-14B .-4C .4D.14[答案] A[解析] ∵曲线mx 2+y 2=1是双曲线,∴m <0,排除C 、D ;将m =-14代入已知方程,变为y 2-x 24=1, 虚轴长为4,而实轴长为2,满足题意,故选A.5.设F 1、F 2分别是双曲线x 2a 2-y 2b 2=1的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,则双曲线的离心率为( ) A.52 B.102 C.152 D. 5[答案] B[解析] ∵|AF 1|-|AF 2|=2a ,|AF 1|=3|AF 2|,∴|AF |1=3a ,|AF 2|=a ,且|F 1F 2|=2c .∴Rt △AF 1F 2中(3a )2+a 2=(2c )2∴5a 2=2c 2,∴e =c a =102. 6.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >0,b >0)有相同的焦点F 1、F 2,点P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值为( )A .m -aB.12(m -a ) C .m 2-a 2D.m -a[答案] A[解析] 由题意|PF 1|+|PF 2|=2m ,||PF 1|-|PF 2||=2a ,两式平方后相减,得|PF 1|·|PF 2|=m -a .7.(2010·辽宁理)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A. 2B. 3C.3+12D.5+12[答案] D[解析] 如图,设双曲线方程为x 2a 2-y 2b2=1, ∴F 点坐标为(a 2+b 2,0),B 点坐标为(0,b ),渐近线方程为y =±b ax , ∴k BF ·⎝⎛⎭⎫b a =-1, 即-ba 2+b 2·b a =-1, ∴a a 2+b 2=b 2,即ac =c 2-a 2,⎝⎛⎭⎫c a 2-c a-1=0, 即e 2-e -1=0,∴e =1+52或e =1-52(舍去). ∴e =1+52,故选D. 8.点P 是双曲线x 24-y 2=1的右支上一点,M 、N 分别是(x +5)2+y 2=1和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值是( )A .2B .4C .6D .8 [答案] C[解析] 如图,当点P 、M 、N 在如图所示位置时,|PM |-|PN |可取得最大值,注意到两圆圆心为双曲线两焦点,故|PM |-|PN |=(|PF 1|+|F 1M |)-(|PF 2|-|F 2N |)=|PF 1|-|PF 2|+|F 1M |+|F 2N |=2a +2=6.二、填空题9.双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,线段F 1F 2被点(b 2,0)分成两段,则此双曲线的离心率为________.[答案] 52121[解析] ∵(b 2+c c -b 2)=∴c =52b ,a =c 2-b 2=212b ,e =c a =521=52121. 10.(2010·江西理)点A (x 0,y 0)在双曲线x 24-y 232=1的右支上,若点A 到右焦点的距离等于2x 0,则x 0=________.[答案] 2[解析] 由x 24-y 232=1知a 2=4,b 2=32, ∴c 2=a 2+b 2=36,∴c =6.∴右焦点为(6,0),则由题意得 ⎩⎪⎨⎪⎧ x 024-y 0232=1,(x 0-6)2+y 02=2x 0,解得x 0=25或x 0=2. ∵点A 在双曲线的右支上,∴x 0≥2,∴x 0=2.11.在△ABC 中,BC =2AB ,∠ABC =120°,则以A ,B 为焦点且过点C 的双曲线的离心率是________.[分析] 先根据余弦定理用AB 、BC 表示AC ,再根据双曲线的定义和离心率的概念求解.[答案] 2+73[解析]设AB =2c (c >0),则BC =4c ,根据余弦定理AC =(2c )2+(4c )2-2×2c ×4c ×cos120°=27c ,根据双曲线定义,2a =AC -BC =27c -4c ,故该双曲线的离心率为c a =2c 2a =2c 27c -4c =17-2=2+73. 三、解答题 12.求下列双曲线方程(1)虚轴长为12,离心率为54. (2)与双曲线x 29-y 216=1有共同的渐近线,且过点(-3,23). [解析] (1)当焦点在x 轴上时,设所求双曲线的方程为x 2a 2-y 2b2=1,(a >0,b >0). 由题意,得⎩⎪⎨⎪⎧2b =12,c a =54,解得b =6,c =54a ,∴b 2=c 2-a 2=916a 2=36,a =8. ∴焦点在x 轴上的双曲线的方程为x 264-y 236=1. 同理,可求焦点在y 轴上的双曲线的方程为y 264-x 236=1. 因此,双曲线的方程为x 264-y 236=1和y 264-x 236=1. (2)设所求双曲线方程为x 29-y 216=λ(λ≠0), 将点(-3,23)代入得λ=14, 所以双曲线方程为x 29-y 216=14. 即:x 294-y 24=1. 13.已知点A (-3,0)和点B (3,0),动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线y =x -2交于D 、E 两点,求线段DE 的长.[分析] 求双曲线方程,联立方程组,结合根与系数的关系求弦长.[解析] 设点C (x ,y ),则|CA |-|CB |=±2,根据双曲线的定义,可知点C 的轨迹是双曲线x 2a 2-y 2b 2=1.(a >0,b >0) 由2a =2,2c =|AB |=23,得a 2=1,b 2=2,故点C 的轨迹方程是x 2-y 22=1, 由⎩⎪⎨⎪⎧x 2-y 22=1y =x -2,消去y 并整理得x 2+4x -6=0. 因为Δ>0,所以直线与双曲线有两个交点.设D (x 1,y 1),E (x 2,y 2),则x 1+x 2=-4,x 1x 2=-6,故|DE |=(x 1-x 2)2+(y 1-y 2)2 =2·(x 1+x 2)2-4x 1x 2=4 5.[点评] (1)当弦的两端点的坐标易求时,可直接求出交点坐标,再用两点间距离公式求弦长.(2)当弦的两端点的坐标不易求时,可用弦长公式.(3)如果直线方程涉及斜率,要注意斜率不存在的情况.14.设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A ,B . (1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,若P A →=512PB →,求a 的值. [解析] (1)将y =-x +1代入双曲线x 2a 2-y 2=1中得(1-a 2)x 2+2a 2x -2a 2=0① 由题设条件知,⎩⎪⎨⎪⎧1-a 2≠04a 4+8a 2(1-a 2)>0, 解得0<a <2且a ≠1,又双曲线的离心率e =1+a 2a =1a 2+1, ∵0<a <2且a ≠1,∴e >62且e ≠ 2. (2)设A (x 1,y 1),B (x 2,y 2),P (0,1).∵P A →=512PB →, ∴(x 1,y 1-1)=512(x 2,y 2-1). ∴x 1=512x 2, ∵x 1、x 2是方程①的两根,且1-a 2≠0,∴1712x 2=-2a 21-a 2,512x 22=-2a 21-a 2, 消去x 2得,-2a 21-a 2=28960, ∵a >0,∴a =1713. 15.(文)已知椭圆x 2a 12+y 2b 12=1(a 1>b 1>0)与双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)有公共焦点F 1、F 2,设P 是它们的一个交点.(1)试用b 1,b 2表示△F 1PF 2的面积;(2)当b 1+b 2=m (m >0)是常数时,求△F 1PF 2的面积的最大值.[解析] (1)如图所示,令∠F 1PF 2=θ.因|F 1F 2|=2c ,则a 12-b 12=a 22+b 22=c 2.即a 12-a 22=b 12+b 22由椭圆、双曲线定义,得|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2(令|PF 1|>|PF 2|),所以|PF 1|=a 1+a 2,|PF 2|=a 1-a 2cos θ=|PF 1|2+|PF 2|2-4c 22|PF 1|·|PF 2|=(a 1+a 2)2+(a 1-a 2)2-2(a 12-b 12)-2(a 22+b 22)2(a 12-a 22)=b 12-b 22a 12-a 22=b 12-b 22b 12+b 22. 所以sin θ=2b 1b 2b 12+b 22. 所以S △F 1PF 2=12|PF 1|·|PF 2|sin θ =12(a 12-a 22)·2b 1b 2b 12+b 22=b 1b 2(2)当b 1+b 2=m (m >0)为常数时S △F 1PF 2=b 1b 2≤(b 1+b 22)2=m 24, 所以△F 1PF 2面积的最大值为m 24. (理)(2010·四川理)已知定点A (-1,0),F (2,0),定直线l :x =12,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交l 于点M 、N .(1)求E 的方程;(2)试判断以线段MN 为直径的圆是否过点F ,并说明理由.[解析] (1)由距离公式及距离列式并化简可得.(2)写出MN 所在直线方程,并判断K是否存在,然后运用韦达定理及MF →·FN →作出判断.解:(1)设P (x ,y ),则(x -2)2+y 2=2|x -12|, 化简得x 2-y 23=1(y ≠0). (2)①当直线BC 与x 轴不垂直时,设BC 的方程为y =k (x -2)(k ≠0).与双曲线方程x 2-y 23=1联立消去y 得 (3-k 2)x 2+4k 2x -(4k 2+3)=0.由题意知,3-k 2≠0且Δ>0.设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3, y 1y 2=k 2(x 1-2)(x 2-2)=k 2[x 1x 2-2(x 1+x 2)+4]=k 2(4k 2+3k 2-3-8k 2k 2-3+4)=-9k 2k 2-3. 因为x 1,x 2≠-1,所以直线AB 的方程为y =y 1x 1+1(x +1), 因此M 点的坐标为(12,3y 12(x 1+1)),FM →=(-32,3y 12(x 1+1))同理可得FN →=(-32,3y 22(x 1+1)) 因此FM →·FN →=(-32)×(-32)+9y 1y 24(x 1+1)(x 2+1)=94+-81k 2k 2-34(4k 2+3k 2-3+4k 2k 2-3+1)=0 ②当直线BC 与x 轴垂直时,其方程为x =2, 则B (2,3),C (2,-3),AB 的方程为y =x +1,因此M 点的坐标为(12,32),FM →=(-32,32). 同理可得FN →=(-32,-32). 因此FM →·FN →=(-32)×(-32)+(-32)×32=0. 综上,FM →·FN →=0,即FM ⊥FN .故以线段MN 为直径的圆过点F .。
第二讲命题及其关系、充分条件与必要条件班级________ 姓名________ 考号________ 日期________ 得分________一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.“红豆生南国,春来发几枝.愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这4句诗中,哪句可作为命题( )A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思解析:因为命题是能判断真假的语句,它必须是陈述句,所以首先我们要凭借语文知识判断这4句诗哪句是陈述句,然后再看能否判定其真假.“红豆生南国”是陈述,意思是“红豆生长在中国南方”,这在唐代是事实,故本语句是命题;“春来发几枝”中的“几”是概数,无法判断其真假,故不是命题;“愿君多采撷”是祈使句,所以不是命题;“此物最相思”是感叹句,故不是命题.答案:A2.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:由|x-1|<2得-1<x<3.由x(x-3)<0得0<x<3.因为“-1<x<3成立”⇒“0<x<3成立”,但“0<x<3成立”⇒“-1<x<3成立”.故选B.答案:B评析:如果p⇒q,q⇒p,则p是q的必要不充分条件.3.“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:当a=1时,直线x+y=0和直线x-ay=0互相垂直;当直线x+y=0和直线x-ay=0互相垂直时,有a=1.故选C.答案:C评析:如果p⇒q,q⇒p,则p是q的充要条件.4.x2<4的必要不充分条件是( )A.-2≤x≤2B.-2<x<0C.0<x≤2D.1<x<3解析:x2<4即为-2<x<2,因为-2<x<2⇒-2≤x≤2,而-2≤x≤2不能推出-2<x<2,所以x2<4的必要不充分条件是-2≤x≤2.选A.答案:A5.(精选考题·天津)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:否命题是既否定题设又否定结论.因此否命题应为“若函数f(x)不是奇函数,则f(-x)不是奇函数.”答案:B6.设p:x<-精选考题或x>精选考题;q:x<-2011或x>精选考题,则¬p是¬q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:∵p:x<-精选考题或x>精选考题;q:x<-2011或x>精选考题,∴¬p:-精选考题≤x≤精选考题,¬q:-2011≤x≤精选考题.∵∀x∈[-精选考题,精选考题],都有x∈[-2011,精选考题],∴¬p⇒¬q,而∃x0∈[-2011,精选考题],且x0 ∉ [-精选考题,精选考题],如x0=-精选考题.5,∴¬p是¬q的充分不必要条件.故选A.答案:A二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.(2011·江苏金陵中学三模)若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是____________________________.解析:x∉[2,5]且x∉{x|x<1或x>4}是真命题.由x5,1x42,x>⎧⎨⎩<或≤≤得1≤x<2,故x∈[1,2).答案:[1,2)8.设p、r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么p是t的________条件,r是t的________条件.(用充分、必要、充要填空)解析:由题意可画出图形:由图形可看出p是t的充分条件,r是t的充要条件.答案:充分充要9.令P(x):ax2+3x+2>0,若对任意x∈R,P(x)是真命题,则实数a的取值范围是__________.解析:对任意x∈R,P(x)是真命题,就是不等式ax2+3x+2>0对一切x∈R恒成立.(1)若a=0,不等式仅为3x+2>0不能恒成立.(2)若980aa>-∆⎧⎨=<⎩,解得a>98.(3)若a<0,不等式显然不能恒成立.综上所述,实数a>98.答案:a>9 810.已知p:log (|x|-3)>0,q:x2- x+16>0,则p是q的________条件.解析:由log (|x|-3)>0可得0<|x|-3<1,解得3<x<4或-4<x<-3. 所以p:3<x<4或-4<x<-3.由x2- x+16>0可得x<13或x> ,所以q:x<13或x> .故p是q的充分不必要条件.答案:充分不必要三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.主人邀请张三、李四、王五三个人吃饭聊天,时间到了,只有张三、李四准时赴约,王五打电话说:“临时有急事,不能来了.”主人听了随口说了句:“你看看,该来的没有来.”张三听了,脸色一沉,起来一声不吭地走了,主人愣了片刻,又道了句:“哎哟,不该走的又走了.”李四听了大怒,拂袖而去.请你用逻辑学原理解释二人的离去原因.解:张三走的原因是:“该来的没有来”的逆否命题是“来了不该来的”,张三觉得自己是不该来的.李四走的原因:“不该走的又走了”的逆否命题是“该走的没有走”,李四觉得自己是应该走的.评析:利用原命题与逆否命题同真同假解题非常方便,要注意用心体会!12.已知p:113x--≤2,q:x2-2x+1-m2≤0(m>0).若¬p是¬q的充分不必要条件,求实数m的取值范围.解:由113x--≤2,得-2≤x≤10.“¬p”:A={x|x>10或x<-2}.由x2-2x+1-m2≤0,得1-m≤x≤1+m(m>0).∴“¬q”:B={x|x>1+m或x<1-m,m>0}. ∵¬p是¬q的充分而不必要条件,∴A B.结合数轴有0,110,12,m m m >⎧⎪+⎨⎪--⎩≤≥解得0<m≤3.评析:将充要条件问题用集合的关系来进行转化是解此类题目的关键.13.(精选考题·潍坊质检)设p:实数x 满足x 2-4ax+3a 2<0,其中a>0,命题q:实数x 满足2260,280.x x x x ⎧--⎪⎨+->⎪⎩≤ (1)若a=1,且p∧q 为真,求实数x 的取值范围;(2)若¬p 是¬q 的充分不必要条件,求实数a 的取值范围.解:先解不等式,把命题p,q 具体化,第(1)问利用真值表求x;第(2)问由互为逆否命题等价确定p 、q 之间的关系,确定关于a 的不等式,问题可解.(1)由x 2-4ax+3a 2<0得(x-3a)(x-a)<0,又a>0,所以a<x<3a.当a=1时,1<x<3,即p 为真时,实数x 的取值范围是1<x<3.由2260280x x x x --+->⎧⎪⎨⎪⎩≤.得2<x≤3, 当q 为真时,实数x 的取值范围是2<x≤3.若p∧q 为真,则p 真且q 真,所以实数x 的取值范围是2<x<3.(2)¬p 是¬q 的充分不必要条件,即¬p ⇒¬q,且¬q ⇒¬p,设A={x|¬p},B={x|¬q},则A B,又A={x|¬p}={x|x≤a 或x≥3a},B={x|¬q}={x|x≤2或x>3},则0<a≤2,且3a>3,所以实数a 的取值范围是1<a≤2.评析:本题中,¬p 是¬q 的充分不必要条件,从而推出集合A 与B 的关系,确定关于a 的不等式组,使问题获得解决.。
第四十八讲随机抽样、用样本估计总体、变量间的相互关系、统计案例班级________姓名________考号________日期________得分________一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的收入情况,要从中抽取一个容量为20的样本,如何去抽取?解法一:将160人从1至160编号,然后将用白纸做成有1~160号的160个号签放入箱内搅匀,最后从中取20个签,与签号相同的20个人被选出.解法二:将160人从1至160编号,按编号顺序分成20组,每组8人,令1~8号为第一组,9~16号为第二组,…,153~160号为第20组.从第一组中用抽签方式抽到一个为k号(1≤k≤8),其余组是(k+8n)号(n=1,2,3,…,19),如此抽到20人.解法三:按=的比例,从业务员中抽取12人,从管理人员中抽取5人,从后勤人员中抽取3人,都用简单随机抽样法从各类人员中抽取所需人数,他们合在一起恰好抽到20人.以上的抽样方法,依次是简单随机抽样、分层抽样、系统抽样的顺序是()A.解法一、解法二、解法三B.解法二、解法一、解法三C.解法一、解法三、解法二D.解法三、解法一、解法二解析:解法二为简单随机抽样,解法二为系统抽样,解法三为分层抽样,故选C.答案:C2.一个样本a,3,5,7的平均数是b,且a、b是方程x2-5x+4=0的两根,则这个样本的方差是()A.3B.4C.5 D.6解析:x2-5x+4=0的两根是1,4.当a=1时,a,3,5,7的平均数是4,当a=4时,a,3,5,7的平均数不是1.∴a=1,b=4.则方差s2=14×[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5,故选C.答案:C3.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力从4.6到5.0之间的学生数为b,则a,b的值分别为()A.0.27,78 B.0.27,83C.2.7,78 D.2.7,83解析:由图知共有9组,故后6组的频率是以2.7×0.1=0.27为首项,d为公差的等差数列,又各组频率之和为0.01+0.03+0.09+0.27×6+15d=1,故d=-0.05.所以各组的频率依次为0.01,0.03,0.09,0.27,0.22,0.17,0.12,0.07,0.02,故a=0.27,b=(0.27+0.22+0.17+0.12)×100=78,故选A.答案:A4.下列有关线性回归的说法,不正确的是()A.相关关系的两个变量不是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归方程解析:根据两个变量属相关关系的概念,可知A正确;散点图能直观地描述呈相关关系的两个变量的离散程度,且回归直线最能代表它们之间的相关关系,所以B、C正确;只有线性相关的数据才有回归直线,所以D不正确.答案:D5.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断信“X和Y有关系”的可信度.如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为()C.2.5% D.97.5%解析:∵k>5.024时,“X和Y无关系”的可信度0.025,所以“X和Y有关系”百分比97.5%.答案:D6.下面是一个2×2列联表则表中a ,b A .94,96 B .52,50 C .52,54 D .54,52解析:∵a +21=73,∴a =52. 又∵a +2=b 知b =54,故选C. 答案:C二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.) 7.某企业三月中旬生产A 、B 、C 三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A 产品的样本容量比C 产品的样本容量多10.根据以上信息,可得C 产品的数量是________件.解析:设样品的容量为x ,则x 3000×1300=130,所以x =300.所以A 产品和C 产品在样本中共有300-130=170(件).设C 产品的样本容量为y ,则y +(y +10)=170,所以y =80.所以C 产品的数量为3000300×80=800(件).答案:8008.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a ,b 的取值是________和________.解析:由题意a +b =21,故平均数x -=10. 欲使方差最小,只需使(a -10)2+(b -10)2最小,又∵(a -10)2+(b -10)2=a 2+b 2-20(a +b )+200=a 2+b 2-220=(a +b )2-2ab -220=221-2ab ≥221-2⎝⎛⎭⎪⎫a +b 22,当且仅当a =10.5,b =10.5时最小,故a =10.5,b =10.5时,s 2最小.答案:10.5 10.59.某地教育部门为了调查学生在数学答卷中的有关信息,从上次考试的10000名考生的数学试卷中用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图),则10000人的数学成绩在[140,150]段的约是________人.解析:设500人的数学成绩在[140,150]段的人数为x,10000人的数学成绩在[140,150]段的人数为n .由样本频率分布直方图知数学成绩在[140,150]段的频率最小矩形的面积,即为0.008×10=0.08=x 500,∴x =40.又样本的个数占总个数的120,即每组的抽样比为120,∴120=40n,∴n =800. ∴10000人的数学成绩在[140,150]段的约是800人. 答案:80010.某肉食鸡养殖小区某种病的发病鸡只数呈上升趋势,统计近4个月这种病的新发病鸡只数的线性回归分析如下表所示:如果不加控制,仍按这个趋势发展下去,请预测从9月初到12月底的4个月时间里,该养殖小区这种病的新发病鸡总只数约为________.解析:由上表可得:y ^=94.7x +1924.7,当x 分别取9,10,11,12时,得估计值分别为:2777,2871.7,2966.4,3061.1,则总只数约为2777+2871.7+2966.4+3061.1≈11676.答案:11676三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.一个地区共有5个乡镇30000人,其中人口比例为,要从这30000人中抽取300个人进行某种传染病分析,因考虑该传染病与不同地理位置及水土有关,问应采取什么样的抽样方法?写出抽样过程.解:应采用分层抽样的方法. 具体抽样过程如下:(1)计算抽样比:30030000=1100;(2)计算各乡镇人口数分别为:315×30000=6000,215×30000=4000,515×30000=10000,115×30000=2000,415×30000=8000; (3)计算各乡镇抽取的人口数分别为:6000×1100=60,4000×1100=40,10000×1100=100,2000×1100=20,8000×1100=80;(4)用系统抽样的方法依次从五个乡镇中抽出60人,40人,100人,20人,80人; (5)将抽取的个体合在一起,就构成所要抽取的一个样本. 12.据报道,某公司的33名职工的月工资(以元为单位)如下:(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.解:(1)平均数是x -=1500+4000+3500+2000×2+1500+1000×5+500×3+0×2033≈1500+591=2091(元).中位数是1500元,众数是1500元. (2)平均数是x -′=1500+28500+18500+2000×2+1500+1000×5+500×3+0×2033≈1500+1788=3288(元).中位数是1500元,众数是1500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差数大,所以平均数不能反映这个公司员工的工资水平.13.要分析学生初中升学的数学成绩对高一年级数学学习有什么影响,在高一年级学生中随机抽选10名学生,分析他们入学的数学成绩和高一年级期末数学考试成绩,如下表所示:(1)画出散点图; (2)求回归直线方程;(3)若某学生王明亮的入学数学成绩为80分,试预测他在高一年级期末考试中的数学成绩为多少?解:(1)作出散点图如图所示,从散点图可以看出,这两个变量具有线性相关关系.(2)可求得x -=110(63+67+…+76)=70,y -=110(65+78+…+75)=75.b =54284-10×70×7551474-10×702≈0.721,∴a =75-0.721×70≈24.53. 所求的线性回归方程为 y -=0.721x +24.53.(3)若王明亮入学数学成绩为80分,代入上面的线性回归方程 y -=0.721x +24.53可得y -≈82分.。
第四十一讲 双曲线班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( )A.3B.62C.63D.33解析:由图易知:cb=tan60°=3,不妨设c =3,b =1,则a = 2. ∴e =c a =32=62.故选B.答案:B2.已知双曲线9y 2-m 2x 2=1(m >0)的一个顶点到它的一条渐近线的距离为15,则m 等于( )A .1B .2C .3D .4解析:9y 2-m 2x 2=1(m >0)⇒a =13,b =1m,取顶点⎝⎛⎭⎫0,13,一条渐近线为mx -3y =0,∵15=|-3×13|m 2+9⇒m 2+9=25, ∴m =4,故选D. 答案:D3.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,M F M F M F M F ==则该双曲线的方程是( )A.x 29-y 2=1B .x 2-y 29=1C.x 23-y 27=1D.x 27-y 23=1 解析:设双曲线方程为x 2a 2-y2b 2=1,且M 为右支上一点,由已知|MF 1|-|MF 2|=2a ,∴221212||||2||||M F M F M F M F +-=4a 2. 又∵12120,.M F M F M F M F =∴⊥∴4c 2-4=4a 2,即b 2=1. 又∵c =10,∴a 2=9.∴双曲线方程为x29y 2=1,故选A.答案:A4.我们把离心率为e =5+12的双曲线x 2a 2-y 2b 2=1(a >0,b >0)称为黄金双曲线.给出以下几个说法:①双曲线x2-2y25+1=1是黄金双曲线;②若b2=ac,则该双曲线是黄金双曲线;③若∠F1B1A2=90°,则该双曲线是黄金双曲线;④若∠MON=90°,则该双曲线是黄金双曲线.其中正确的是()A.①②B.①③C.①③④D.①②③④解析:①e=1+b2a2=1+5+12=5+32=5+12,双曲线是黄金双曲线.②由b2=ac,可得c2-a2=ac,两边同除以a2,即e2-e-1=0,从而e=5+12,双曲线是黄金双曲线.③|F1B1|2=b2+c2,|A2B1|2=b2+a2,|F1A2|2=(a+c)2,注意到∠F1B1A2=90°,所以b2+c2+b2+a2=(a+c)2,即b2=ac,由②可知双曲线为黄金双曲线.④∵|MN|=2b2a,由射影定理知|OF2|2=|MF2|·|F2N|,即c2=b4a2,从而b2=ac,由②可知双曲线为黄金双曲线.答案:D5.过双曲线x2-y2=8的左焦点F1有一条弦PQ在左支上,若|PQ|=7,F2是双曲线的右焦点,则△PF2Q的周长是()A.28B.14-8 2C.14+8 2 D.8 2解析:|PF2|+|PQ|+|QF2|=|PF2|-|PF1|+|QF2|-|QF1|+2·|PQ|=14+8 2.答案:C6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[1,2]B .(1,2)C .[2,+∞)D .(2,+∞)解析:依题意,应有b a tan60°,又ba =e 2-1,∴e 2-1≥3,解得e ≥2. 答案:C二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.) 7.已知点P 是双曲线x 2a 2-y2b 2=1上除顶点外的任意一点,F 1、F 2分别为左、右焦点,c为半焦距,△PF 1F 2的内切圆与F 1F 2切于点M ,则|F 1M |·|F 2M |=________.解析:根据从圆外一点向圆所引的两条切线长相等, |F 1M |-|F 2M |=|PF 1|-|PF 2|=2a , 又|F 1M |+|F 2M |=2c ,解得|F 1M |=a +c ,|F 2M |=c -a ,从而|F 1M |·|F 2M |=c 2-a 2=b 2. 答案:b 28.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0).若双曲线上存在点P ,使sin ∠PF 1F 2sin ∠PF 2F 1=ac,则该双曲线的离心率的取值范围是________.解析:∵e =c a =sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=2a +|PF 2||PF 2|=1+2a|PF 2|, ∵|PF 2|>c -a ,即e <1+2e -1,∴e 2-2e -1<0.又∵e >1,∴1<e <2+1. 答案:(1,2+1)9.以双曲线的实轴为虚轴,虚轴为实轴的双曲线叫做原双曲线的共轭双曲线,若一条双曲线与它的共轭双曲线的离心率分别为e 1,e 2,则当它们的实、虚轴都在变化时,e 21+e 22的最小值是________.解析:∵e 21=a 2+b 2a 2,e 22=a 2+b 2b2,∴e 21+e 22=a 2+b 2a 2+a 2+b 2b2=2+b 2a 2+a2b2≥2+2=4(当且仅当a =b 时等号成立). 答案:410.设F 1和F 2为双曲线x 24-y 2=1的两个焦点,点P 在双曲线上且满足∠F 1PF 2=60°,则△F 1PF 2的面积是______.解析:在△F 1PF 2中,由余弦定理,得 |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos60°, ∴|F 1F 2|2=(|PF 1|-|PF 2|)2+|PF 1||PF 2|. 又|F 1F 2|2=20,||PF 1|-|PF 2||=4. ∴|PF 1||PF 2|=4,∴S △F 1PF 2=12|PF 1||PF 2|sin60°= 3.答案: 3三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.如图所示,双曲线的中心在坐标原点,焦点在x 轴上,F 1,F 2分别为左、右焦点,双曲线的左支上有一点P ,∠F 1PF 2=π3,且△PF 1F 2的面积为23,又双曲线的离心率为2,求该双曲线的方程.解:设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0).F 1(-c,0),F 2(c,0),P (x 0,y 0). 在△PF 1F 2中,由余弦定理,得:|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos π3=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|.即4c 2=4a 2+|PF 1|·|PF 2|. 又∵S △PF 1F 2=2 3. ∴12|PF 1|·|PF 2|·sin π32 3. ∴|PF 1|·|PF 2|=8.∴4c 2=4a 2+8,即b 2=2. 又∵e =c a =2,∴a 2=23.∴双曲线的方程为:3x 22-y 22=1.12.已知曲线C :y2λ+x 2=1.(1)由曲线C 上任一点E 向x 轴作垂线,垂足为F ,动点P 满足3FP EP,求点P 的轨迹.P 的轨迹可能是圆吗?请说明理由;(2)如果直线l 的斜率为2,且过点M (0,-2),直线l 交曲线C 于A 、B 两点,又92M A M B =- ,求曲线C 的方程.解:(1)设E (x 0,y 0),P (x ,y ), 则F (x 0,0),∵3,F P E P =, ∴(x -x 0,y )=3(x -x 0,y -y 0).∴00,2.3x x y y =⎧⎪⎨=⎪⎩代入y 20λ+x 20=1中,得4y 29λx 2=1为P 点的轨迹方程.当λ=49时,轨迹是圆.(2)由题设知直线l 的方程为y =2x -2, 设A (x 1,y 1),B (x 2,y 2),联立方程组22,2 1.y y x λ⎧=-⎪⎨+=⎪⎩消去y 得:(λ+2)x 2-42x +4-λ=0. ∵方程组有两解,∴λ+2≠0且Δ>0, ∴λ>2或λ<0且λ≠-2,x 1·x 2=4-λλ+2,而M A M B =x 1x 2+(y 1+2)·(y 2+2)=x 1x 2+2x 1·2x 2=3x 1x 2=3(4-λ)λ+2,∴4-λλ+2=-32,解得λ=-14. ∴曲线C 的方程是x 2-y214=1.13.(精选考题·南昌调研试题)如图,P 是以F 1、F 2为焦点的双曲线C :x 2a 2-y 2b 2=1上的一点,已知12120,||2||.PF PF PF PF ==且(1)求双曲线的离心率e ;(2)过点P 作直线分别与双曲线的两渐近线相交于P 1、P 2两点,若121227,20.4O P O P P P P P =-+= .求双曲线C 的方程.解:(1)利用向量的垂直及双曲线的定义建立等式即可确定,(2)运用向量的坐标运算,利用待定系数法建立方程组即可解得.(1)由120,PF PF = 得12PF PF ⊥ ,即△F 1PF 2为直角三角形.设21||,||PF r PF == =2r ,于是有(2r )2+r 2=4c 2和2r -r =2a ,也就是5×(2a )2=4c 2,所以e = 5.(2)b a=e 2-1=2,可设P 1(x 1,2x 1),P 2(x 2,-2x 2),P (x ,y ),则12O P O P =x 1x 2-4x 1x 2=-274, 所以x 1x 2=94.①由22112212()2,22(2)0x x x x PP PP x y x y -=--⎧+=⎨--=--⎩ 得即x =2x 1+x 23,y =2(2x 1-x 2)3;又因为点P 在双曲线x 2a 2-y 2b 2=1上,所以(2x 1+x 2)29a 2-4(2x 1-x 2)29b 2=1,又b 2=4a 2,代入上式整理得x 1x 2=98a 2②,由①②得a 2=2,b 2=8,故所求双曲线方程为x 22-y28=1.评析:平面向量与平面解析几何的综合考查是近几年高考考查的热点问题,往往通过向量的运算及其几何意义来解决解析几何问题.在解析几何中当直线与曲线相交时,对于交点坐标,若直接求解有时非常复杂,故往往设而不求,即设出点的坐标,利用点在曲线上或其满足的性质求解.本题借助直线与双曲线相交,利用设而不求的思想,结合向量的坐标运算及韦达定理简捷求出.。