杭州市西湖区2012-2013学年七年级第二学期期末教学质量调研
- 格式:docx
- 大小:459.31 KB
- 文档页数:5
浙江省杭州市西湖区2024年七年级下册科学期末教学质量检测卷温馨提示:1.本科目试卷分试题卷和答题卡两部分。
满分100分,考试时间90分钟。
2.所有答案都必须做在答题卡标定的位置上,务必注意试题序号和答题序号相对应。
3.本卷计算中g 取10N/kg一、选择题(共15题,每小题2分,共30分,每小题只有一个选项正确,不选、多选、错选均不给分) 1.“奋斗者”号在印度洋蒂阿曼蒂那深渊 5500 米深度发现飞象章鱼(如图),雄飞象章鱼借其触手将精子注入雄性外套膜内,雌章魚在卵细胞成熟前可以暂时保存精子,等卵细胞成熟时再将精子注入卵子受精,然后将受精卵产在岩石或其他坚硬物体的表面。
你认为飞象章鱼的生殖方式为( )A .无性生殖B .卵生C .胎生 D.卵胎生2.黑色水笔是常用的考试用笔,写出的字能显黑色的原因是黑字 A.透过所有的光B.吸收所有的光C.反射黑色的光D.发出黑色的光3.在足球场上,优秀运动员的脚踢在球的恰当的位置,球会划过一道弧线绕过守门员而使球进入球门,这就是所谓的“香蕉球”。
这里的“恰当的位置”,从力的三要素分析是指力的 A.大小B.方向C.作用点D.以上都是4.2022年10月9日,“夸父一号”在酒泉卫星发射中心顺利发射升空,其科学目标为“一磁两暴”:即同时观测太阳磁场和太阳上两类最剧烈的爆发现象——耀斑和日冕物质抛射,研究它们的形成、演化、相互作用和彼此关联,同时为空间天气预报提供支持。
“夸父一号”迄今已观测到200多个太阳耀斑,耀斑发生在太阳的 A.日核B.光球层C.色球层D.日冕层5.2023年春节戏曲晚会上,温州市永嘉昆剧团将我国最古老的舞蹈“泰顺仕水碇步桥”搬上舞台,让碇步的韵律与美感带到了大众眼前,如同置身在江南水境中。
为了避免现场声音的干扰,舞蹈演员往往需要戴着耳机听清歌曲的伴奏,听觉形成的部位在A.鼓膜B.大脑C.耳蜗D.前庭6.爱动脑筋的小明学了有关生命科学的知识后,觉得李商隐《无题》中的“春蚕到死丝方尽”不符合家蚕的发育过程,他试着将诗句做了修改,你认为下列哪句应该是小明想要表达的内容 A.春蚕化蛹丝方尽B.春蚕产卵丝方尽C.春蚕交尾丝方尽D.春蚕蜕皮丝方尽7.今年 3 月 24 日我国南部地区出现了罕见的“月掩金星”天象:金星的光芒被月亮掩盖,如同日食一般。
2019-2020学年浙江省杭州市西湖区七年级(下)期末数学试卷 选择题(本大题共10小题,共30.0分) 计算:(计+1 = ()AT已知某新型感冒病毒的直径约为0.000 000 823米,将0.000 000 823用科学记数法表示为()A. 82.3 × 10^6B. 8.23 × 10^7C. 8.23 × 10~6D. 0.823 × IO 7把/ — 0+1)2分解因式,结果正确的是() A. (% + y + I)(X - y - 1)B. (% + y - I)(X 一 y — 1)C. (χ + y - I)(X + y+ 1)D ・(χ-y+ I)(X + y+ 1) 下列调查中适宜采用抽样方式的是()A. 了解某班每个学生家庭用电数量B. 调査你所在学校数学教师的年龄状况C. 调査神舟飞船各零件的质量D. 调査一批显像管的使用寿命如图,AB∕∕CD. AE 交 CD 于点 C, DE 丄 AE 于点 E,若ZJl = 42°,则 ZD = ()A. 42°B. 58°C. 52°D. 48° 化简分式二:+二的结果是()如图,将边长为5cm 的等边△力3C 沿边BC 向右平移4cm 得到△ DEF, 则四边形ABFD 的周长为()A. 22CmB. 23CmC. 24CmD. 25Cm讣算1052 -952的结果为()A. 1000B. 1980 如图,直线力B∕∕CD ∙ ∆BAE = 28°. A. 68°B. 78°1. 2.3. 4. 5. 6. 7. 8.9.10. B.- A. a + b B. a — b现定义一种新运算:庞b= b 2- Ub 9 A. —9 B. —6 C — D — • a-b ∙ α+b如:102 = 22-1x2 = 2,贝∣J(-102)O3等于() C. 6 D.9 C. 2(X)0 乙ECD = 50。
2019-2020学年浙江省杭州市西湖区七年级第二学期期末数学试卷一、选择题1.计算2﹣2的结果是()A.2B.﹣2C.﹣4D.2.某种感冒病毒的直径是0.00000012米,数0.00000012用科学记数法表示为()A.1.2×10﹣6B.1.2×10﹣7C.1.2×10﹣8D.12×10﹣83.将a2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a+1)C.(a+1)(a﹣1)D.(a﹣1)24.下列调查:①日光灯管厂要检测一批灯管的使用寿命;②了解居民对废电池的处理情况;③了解初中生的主要娱乐方式;④某公司对退休职工进行健康检查,应作抽样调查的是()A.①②③B.①②④C.①③④D.②③④5.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°6.已知分式A=,B=+,其中x≠±2,则A与B的关系是()A.A=B B.A=﹣B C.A>B D.A<B7.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xy C.x2﹣y2﹣4xy D.x2﹣y2+4xy8.如图,将边长为5cm的等边三角形ABC沿边BC向右平移3cm,得到△DEF,则四边形ADFB的周长为()cm.A.20B.21C.22D.239.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A.﹣16B.﹣14C.﹣12D.﹣1010.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EFA=25°,∠FGH =90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°二、填空题:本大题有6个小题,每小题4分,共24分.11.若2x﹣y=12,用含有x的代数式表示y,则y=.12.如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是.13.已知a x=2,a y=3,则a x+y=;a3x﹣2y=.14.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.15.已知x﹣2=,则代数式(x+1)2﹣6(x+1)+9的值为.16.一列数a1,a2,a3,…,a n,其中a1=﹣1,a2=,a3=,…,a n=,则a2=;a1+a2+a3+…+a2020=;a1×a2×a3×…×a2020=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.计算或化简(1)(14a3﹣7a2)÷(7a);(2)(a+b)(a2﹣ab+b2).18.解方程或解方程组(1);(2)﹣2=.19.为了了解学生最喜欢的趣味运动项目类型:A:跳长绳,B:踢毽子,C:打篮球,D:拔河,共四类,随机抽查了部分学生,并将统计结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,求D部分所占扇形的圆心角的度数.(2)将图②补充完整.(3)若全校共有学生1200名,估计该校最喜欢踢毽子的学生有多少.20.已知a2﹣3a+1=0.(1)判断a=0是否成立?请说明理由.(2)求6a﹣2a2的值.(3)求a+的值.21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由.22.已知m=a2b,n=3a2﹣2ab(a≠0,a≠b).(1)当a=3,b=﹣2时,分别求m,n的值.(2)比较n+与2a2的大小.(3)当m=12,n=18时,求﹣的值.23.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A =30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.参考答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有-项是符合题目要求的.1.计算2﹣2的结果是()A.2B.﹣2C.﹣4D.【分析】直接利用负整数指数幂的性质化简得出答案.解:2﹣2=.故选:D.2.某种感冒病毒的直径是0.00000012米,数0.00000012用科学记数法表示为()A.1.2×10﹣6B.1.2×10﹣7C.1.2×10﹣8D.12×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000012=1.2×10﹣7.故选:B.3.将a2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a+1)C.(a+1)(a﹣1)D.(a﹣1)2【分析】利用平方差公式进行分解即可.解:a2﹣1=(a+1)(a﹣1),故选:C.4.下列调查:①日光灯管厂要检测一批灯管的使用寿命;②了解居民对废电池的处理情况;③了解初中生的主要娱乐方式;④某公司对退休职工进行健康检查,应作抽样调查的是()A.①②③B.①②④C.①③④D.②③④【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:①日光灯管厂要检测一批灯管的使用寿命,调查有破坏性,应采用抽样调查;②了解居民对废电池的处理情况,人数众多,应采用抽样调查;③了解初中生的主要娱乐方式,人数众多,应采用抽样调查;④某公司对退休职工进行健康检查,人数不多,应采用全面调查;应作抽样调查的是①②③,故选:A.5.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°【分析】利用垂直定义和三角形内角和定理计算出∠ADC的度数,再利用平行线的性质可得∠3的度数,再根据邻补角的性质可得答案.解:∵AC⊥AB,∴∠A=90°,∵∠1=15°,∴∠ADC=180°﹣90°﹣15°=75°,∵l1∥l2,∴∠3=∠ADC=75°,∴∠2=180°﹣75°=105°,故选:B.6.已知分式A=,B=+,其中x≠±2,则A与B的关系是()A.A=B B.A=﹣B C.A>B D.A<B【分析】先把B式进行化简,再判断出A和B的关系即可.解:∵B==,∴A和B互为相反数,即A=﹣B.故选:B.7.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xy C.x2﹣y2﹣4xy D.x2﹣y2+4xy【分析】原式利用题中的新定义化简,计算即可得到结果.解:根据题中的新定义得:原式=(x+y)(x﹣y)+(x+y)2﹣(x﹣y)2=x2﹣y2+(x+y+x﹣y)(x+y﹣x+y)=x2﹣y2+4xy.故选:D.8.如图,将边长为5cm的等边三角形ABC沿边BC向右平移3cm,得到△DEF,则四边形ADFB的周长为()cm.A.20B.21C.22D.23【分析】根据平移的性质可得DF=AC=5cm,AD=CF=3cm,然后求出四边形ADFB 的周长=AB+BC+CF+DF+AD,最后代入数据计算即可得解.解:∵△ABC沿边BC向右平移3cm得到△DEF,∴DF=AC=5cm,AD=CF=3cm,∴四边形ADFB的周长=AB+BC+CF+DF+AD,=5+5+3+5+3,=21(cm),故选:B.9.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A.﹣16B.﹣14C.﹣12D.﹣10【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.解:2n是乘积二倍项时,2n+212+1=212+2•26+1=(26+1)2,此时n=6+1=7,212是乘积二倍项时,2n+212+1=2n+2•211+1=(211+1)2,此时n=2×11=22,1是乘积二倍项时,2n+212+1=(26)2+2•26•2﹣7+(2﹣7)2=(26+2﹣7)2,此时n=﹣14,综上所述,n可以取到的数是7、22、﹣14.故选:B.10.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EFA=25°,∠FGH =90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°【分析】延长HG交直线AB于点K,延长PM交直线AB于点S.利用平行线的性质求出∠KSM,利用邻补角求出∠SMH,利用三角形的外角与内角的关系,求出∠SKG,再利用四边形的内角和求出∠GHM.解:延长HG交直线AB于点K,延长PM交直线AB于点S.∵AB∥CD,∴∠KSM=∠CNP=30°.∵∠EFA=∠KFG=25°,∠KGF=180°﹣∠FGH=90°,∠SMH=180°﹣∠HMN=155°,∴∠SKH=∠KFG+∠KGF=25°+90°=115°.∵∠SKH+∠GHM+∠SMH+∠KSM=360°,∴∠GHM=360°﹣115°﹣155°﹣30°故选:D.二、填空题:本大题有6个小题,每小题4分,共24分.11.若2x﹣y=12,用含有x的代数式表示y,则y=2x﹣12.【分析】将x看做已知数求出y即可.解:∵2x﹣y=12,∴y=2x﹣12,故答案为:2x﹣12.12.如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是①②.【分析】根据同位角、内错角、同旁内角的定义判断.解:①能与∠DEF构成内错角的角的个数有2个,即∠EFA和∠EDC,故正确;②能与∠EFB构成同位角的角的个数只有1个:即∠FAE,故正确;③能与∠C构成同旁内角的角的个数有5个:即∠CDE,∠B,∠CED,∠CEF,∠A,故错误;所以结论正确的是①②.故答案为:①②.13.已知a x=2,a y=3,则a x+y=6;a3x﹣2y=.【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则以及同底数幂的除法法则计解:∵a x=2,a y=3,∴a x+y=a x•a y=2×3=6;a3x﹣2y=.故答案为:6;.14.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.【分析】根据题意,得出等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙,得出方程组即可.解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故答案为:.15.已知x﹣2=,则代数式(x+1)2﹣6(x+1)+9的值为2.【分析】利用完全平方公式得到原式=(x﹣2)2,然后利用整体代入的方法计算.解:(x+1)2﹣6(x+1)+9=[(x+1)﹣3]2=(x﹣2)2,因为x﹣2=,所以原式=()2=2.故答案为2.16.一列数a1,a2,a3,…,a n,其中a1=﹣1,a2=,a3=,…,a n=,则a2=;a1+a2+a3+…+a2020=;a1×a2×a3×…×a2020=1.【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.解:由题意可得,当a1=﹣1时,a2===,a3===2,a4=﹣1,…,∵2020÷3=673…1,∴a1+a2+a3+…+a2020=(﹣1++2)×673+(﹣1)=×673+(﹣1)=﹣=,a1×a2×a3×…×a2020=[(﹣1)××2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1,故答案为:,,1.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.计算或化简(1)(14a3﹣7a2)÷(7a);(2)(a+b)(a2﹣ab+b2).【分析】(1)多项式除以一个单项式,等于用这个多项式的每一项分别除以这个单项式,结果能合并的再合并,据此可解;(2)多项式乘以多项式,等于用一个多项式的每一项分别乘以另一个多项式的每一项,并将结合合并即可.解:(1)(14a3﹣7a2)÷(7a)=14a3÷7a﹣7a2÷7a=2a2﹣a;(2)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+ba2﹣ab2+b3=a3+b3.18.解方程或解方程组(1);(2)﹣2=.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1),①+②得:6x=18,解得:x=3,①﹣②得:4y=8,解得:y=2,则方程组的解为;(2)分式方程整理得:﹣2=,去分母得:x﹣2(x﹣3)=3,去括号得:x﹣2x+6=3,移项合并得:﹣x=﹣3,解得:x=3,检验:把x=3代入得:x﹣3=0,∴x=3是增根,则分式方程无解.19.为了了解学生最喜欢的趣味运动项目类型:A:跳长绳,B:踢毽子,C:打篮球,D:拔河,共四类,随机抽查了部分学生,并将统计结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,求D部分所占扇形的圆心角的度数.(2)将图②补充完整.(3)若全校共有学生1200名,估计该校最喜欢踢毽子的学生有多少.【分析】(1)从统计图可知,“B踢毽子”的有14人,占调查人数的35%,可求出调查人数,进而求出“D拔河”的人数和所占的百分比,进而求出相应的圆心角的度数;(2)补全条形统计图;(3)样本估计总体,样本中“B踢毽子”占35%,因此根估计总体1200人的35%是喜欢“B踢毽子”的.解:(1)调查人数:14÷35%=40(人),D组的人数:40﹣12﹣14﹣8=6(人),D组所占的圆心角为:360°×=54°,答:D部分所占扇形的圆心角的度数为54°;(2)补全条形统计图如图所示:(3)1200×35%=420(人),答:全校1200名学生中最喜欢踢毽子的有420人.20.已知a2﹣3a+1=0.(1)判断a=0是否成立?请说明理由.(2)求6a﹣2a2的值.(3)求a+的值.【分析】(1)将a=0代入方程即可求出答案.(2)将a2﹣3a=﹣1整体代入原式即可求出答案.(3)将等式两边同时除以a即可求出答案.解:(1)将a=0代入a2﹣3a+1=0,∴左边=1≠0=右边,故a=0不成立.(2)∵a2﹣3a=﹣1,∴原式=﹣2(a2﹣3a)=2.(3)∵a2﹣3a=﹣1,a≠0,∴a+=3.21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由.【分析】如果从节约时间角度来考虑,我们可以列出方程组求出甲乙单独做所用的时间即可,如果从节约经费考虑,求出他们各自单独做的周费用,再乘以他们所需时间即可.解:(1)设工作总量为1,设甲公司单独做需x周,乙公司单独做需y周,可列出方程组,解得,经检验,它们是原方程的根;∵10<15,可见甲公司用时少,所以从时间上考虑选择甲公司.(2)设甲公司每周费用为a万元,乙公司每周费用为b万元,可列出方程组,解之得;∴可以得到用甲公司共需×10==6万元,乙公司共需×15=4万元,4万元<6万元,∴从节约开支上考虑选择乙公司.22.已知m=a2b,n=3a2﹣2ab(a≠0,a≠b).(1)当a=3,b=﹣2时,分别求m,n的值.(2)比较n+与2a2的大小.(3)当m=12,n=18时,求﹣的值.【分析】(1)将a、b的代入m、n中,即可得到m、n的值;(2)两式作差,然后和0比较大小,即可判断n+与2a2的大小;(3)先对所求式子变形,再根据m、n的值即可解答本题.解:(1)∵m=a2b,n=3a2﹣2ab,a=3,b=﹣2,∴m=32×(﹣2)=﹣18,n=3×32﹣2×3×(﹣2)=39,即m、n的值分别为﹣18,39;(2)∵m=a2b,n=3a2﹣2ab(a≠0,a≠b),∴n+﹣2a2=3a2﹣2ab+﹣2a2=3a2﹣2ab+b2﹣2a2=a2﹣2ab+b2=(a﹣b)2>0,即n+>2a2;(3)﹣==,∵m=a2b,n=3a2﹣2ab,m=12,n=18,∴原式==.23.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A =30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.【分析】(1)首先证明∠BCE=∠ACD=25°,∠BCD=∠BCE+∠ECD=115°;(2)有两种情形,画出图形即可解决问题;(3)有四种情形,画出图形即可解决问题.解:(1)如图2中,∵∠ACB=∠ECD=90°,∴∠ECB=∠ACD,∵∠ACE=65°,∴∠BCE=∠ACD=25°,∴∠BCD=∠BCE+∠ECD=25°+90°=115°,故答案为115°;(2)如图2中,当DE∥AB时,延长BC交DE于M,∴∠B=∠DMC=60°,∵∠DMC=∠E+∠MCE,∴∠ECM=15°,∴∠BCE=165°,当D′E′∥AB时,∠E′CB=∠ECM=15°,∴当ED∥AB时,∠BCE的度数为165°或15°;(3)存在.如图,①CD∥AB时,∠BCE=30°,②DE∥BC时,∠BCE=45°,③CE∥AB时,∠BCE=120°,④DE∥AB时,∠BCE=165°,⑤当AC∥DE时,∠BCE=135°综上所述,当∠BCE<180°且点E在直线BC的上方时,这两块三角尺存在一组边互相平行,∠BCE的值为30°或45°或120°或165°或135°.。
西湖区2012学年第二学期期末教学质量调研七年级数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟;2. 答题时,应该在答题卷指定位置内写明学校,班级,姓名和座位号;3. 所有答案都做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应;4. 不能使用计算器,考试结束后,上交试题卷和答题卷.一、仔细选一选 (本题有10个小题, 每小题3分, 共30分 )下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应格子内. 1.化简62a a ¸的结果是( )A . 3aB . 4aC . 5aD . 2a2.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000000 7 (平方毫米),这个数用科学记数法表示为( )A .7×10-6B . 7×10-7C .0.7×10-6D .70×10-8 3.下列运算正确的是( )A .()23524aa -=B .()222a b a b -=- C .12316+=+a a D .11b b a a +---=4.方程102x x +=-的根是( ) A .1- B .2 C .1-或2 D .1或2 5.如图,已知12? ,则下列结论一定成立的是( )A .AB//CDB . AD//BC C .ÐB=ÐD D . Ð3=Ð46. 已知2,2m n mn +==-,则)1)(1(n m --的值为( ) A .3- B . 4- C . 3 D . 4 7.分解因式2221a a b -+-正确的是( )A .()221a b -- B . ()()()211a a b b --+-C .()()11a b a b +---D . ()()21a ba b a +--+8.某校运动员按规定组数进行分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则可列出的方程组为( )A .7385y x y x ì=+ïí=-ïîB .7385y x y x ì=+ïí=+ïîC .7385y x y x ì=-ïí=-ïîD .7385y x y x ì=-ïí=+ïî9.若关于x ,y 的方程组2318517ax y x by ì+=ïí-+=ïî(其中a ,b 是常数)的解为34x y ì=ïí=ïî,(第5题)4321DCBA则方程组 ()()()()2318517a x y x y x yb x y ì++-=ïí-++-=ïî的解为( )A .34x y ì=ïí=ïîB .71x y ì=ïí=-ïîC . 3.50.5x y ì=ïí=-ïîD . 3.50.5x y ì=ïí=ïî10.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格中的两个格点(即网格中横、纵线的交点).在这个55´的方格纸中,格点C 使△ABC 的面积为2个平方单位,则图中这样的点C 有( )个.A .3B .4C .5D .6二、认真填一填 (本题有6个小题, 每小题4分, 共24分)11.分解因式:221x x -+=___________, 32s st - =____________. 12.计算:()2(3)32-+-=____________;122231-⎛⎫-+ ⎪-⎝⎭=____________.13.若分式22943x x x --+=0,则x =____________;若分式22943x x x --+有意义,则x 应满足的条件是_____________.14.若2225x y +=,且7x y +=,则x y -的值是________. 15.如图,已知AB//DE ,ÐABC=75°,ÐCDE=150°,则ÐBCD 的度数为____________.16.若等式()()2738810A B x A B x -+-=+对一切实数x 都成立,则A =________,B =_________.三、全面答一答 (本题有7个小题, 共66分)解答应写出必要的文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么写出一部分解答也可以. 17.(本小题满分6分)如图,由3×3组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行、每一列以及每一条对角线上的三个代数式的和均相等.求打上“a ”的方格内的数.. 18.(本小题满分8分) (1)计算:①11(5)(5)22a b a b -+②)5()201015(23234453y x y x y x y x -÷--(2)先化简,再求值:22212212x x x x x x x --+ -+-,其中241x =. 19.(本小题满分8分)(第15题)EDC B A 5 4 a-5x -3x3yy BA某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元.若要求每种广告播放不止1次,问两种广告的播放次数有哪几种安排方式?2分钟广告总收费多少万元? 20.(本小题满分10分)(1)如图1,P 是ÐABC 内一点,请过点P 画.射线PD ,使PD//BC ;过点P 画.射线PE ,使PE//BA .通过观察思考后你发现ÐABC 与ÐDPE 的大小关系是_________,并说明理由..... (2)如图2,直线a ,b 所成的角跑到画板外面去了,为了测量这两条直线所成的角的度数,请画图..并简单地写出..你的方法.(图1) (图2) 21.(本小题满分10分)某区从参加数学质量检测的8000名学生中,随机抽取了部分学生的成绩作为样本.为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到表一;随后汇总整个样本数据,得到部分结果,如表二.表一甲组 乙组 人数(人) 100 80 平均分(分)9490表二 分数段 [0,60) [60,72) [72,84) [84,96) [96,108) [108,120) 120 频数 3 36 50 13 0 频率40%等级CBA注:[60,72)表示成绩在60分和72分之间(包含60分,但不含72分),以此类推.请根据表一、表二所提供的信息完成下列问题:(1)求出样本中,学生数学成绩的平均分为多少?(结果精确到0.1)(2)分别求出样本中,数学成绩在分数段[84,96)的频数和等级为B 的人数占抽样学生人数的百分比.(3)请你估计这8000名学生数学成绩在C 等级的有多少人? 22.(本小题满分12分)我市在一项市政工程招标时,接到甲、乙工程队的投标书:每施工一天,需付甲工程队工程款为1.5万元,付乙工程队1.1万元.工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案1:甲队单独施工完成此项工程刚好如期完工;方案2:乙队单独施工完成此项工程要比规定工期多用5天;方案3:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工. (1)你认为哪一种施工方案最节省工程款?请说明理由.(2)如果工程领导小组希望能够提前4天完成此项工程,请问该如何设计施工方案,需要(第b a (第21题图1)PCBA (第21题图2)b a工程款多少万元?(要求用二元一次方程组解答,天数必须为整数) 23.(本小题满分12分) 阅读理解并填空:(1)为了求代数式223x x ++的值,我们必须知道x 的值.若1x =,则这个代数式的值为_______;若2x =,则这个代数式的值为_______,……,可见,这个代数式的值因x 的取值不同而_______(填“变化”或“不变”).尽管如此,我们还是有办法来考虑这个代数式的值的范围.(2)数学课本第105页这样写“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”.在运用完全平方公式进行因式分解时,关键是...判断这个多项式是不是一个完全平方式.同样地,把一个多项式进行部分因式分解可以来解决代数式值的最大(或............................最.小)值问题......例如:22223(21)2(1)2x x x x x ++=+++=++,因为2(1)x +是非负数,所以,这个代数式223x x ++的最小值是_______,这时相应的x 的值是__________. 尝试探究并解答:(3)求代数式21410x x -++的最大(或最小)值,并写出相应的x 的值.(4)求代数式22121x x -+的最大(或最小)值,并写出相应的x 的值. (5)已知213322y x x =--,且x 的值在数1~4(包含1和4)之间变化,求这时y 的变化范围.。
浙江省杭州市西湖区七年级(下)期末试卷数学一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应格子内.注意可以用多种不同的方法来选取正确答案.1.下列计算正确的是()A.(a3)3=a9B.a2+a2=a4C.(a+1)2=a2+1 D.1+=2.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各50名学生3.下列代数式变形中,是因式分解的是()A. ab(b﹣2)=ab2﹣ab B.3x﹣6y+3=3(x﹣2y)C.x2﹣3x+1=x(x﹣3)+1 D.﹣x2+2x﹣1=﹣(x﹣1)24.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE5.化简的结果是()A.﹣x﹣y B.y﹣x C.x﹣y D.x+y6.803﹣80能被()整除.A.76 B.78 C.79 D.827.与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1 B.3x+2y=﹣8 C.3x﹣4y=﹣8 D.5x+4y=﹣38.计算(a﹣b)(a+b)(a2﹣b2)的结果是()A.a4﹣2a2b2+b4B.a4+2a2b2+b4C.a4+b4 D.a4﹣b49.如图,将边长为5cm的等边△ABC沿边BC向右平移4cm得到△A′B′C′,则四边形AA′B′C′的周长为()A.22cm B.23cm C.24cm D.25cm10.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2B.135mm2C.108mm2D.96mm2二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(1)用科学记数法表示0.000061为;(2)计算:(π﹣2)0﹣2﹣1= .12.已知某组数据的频数为56,频率为0.7,则样本容量为.13.因式分解:(1)x3﹣4x= ;(2)x2﹣18x+81= .14.如图,直线AB∥CD∥EF,如果∠A+∠ADF=218°,那么∠F=.15.已知x=+1,则代数式(x+1)2﹣4(x+1)+4的值是.16.给定下面一列分式:,﹣,,﹣…,根据这列分式的规律,请写出第7个分式,第n个分式.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.化简:(1)(2a2)4÷3a2(2)(1+a)(1﹣a)+a(a﹣3)18.(1)解方程:﹣1=;(2)已知x2+x﹣1=0,求÷﹣的值.19.今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道,去敬老院服务和到社区文艺演出三项.从七年级参加活动的同学中抽取了部分同学,对打扫街道,去敬老院服务和到社区文艺演出的人数进行了统计,并绘制了如下直方图和扇形统计图.请解决以下问题:(1)求抽取的部分同学的人数;(2)补全直方图的空缺部分;(3)若七年级有200名学生,估计该年级去敬老院的人数.20.甲、乙两人同时分别从相距30千米的A,B两地匀速相向而行,经过三小时后相距3千米,在经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,设甲、乙两人的速度分别为x千米/小时、y千米/小时,请列方程组求甲、乙两人的速度.21.已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.(1)有一条纸带如图甲所示,怎样检验纸带的两条边线是否平行?说明你的方法和理由.(2)如图乙,将一条上下两边互相平行的纸带折叠,设∠1为x度,请用x的代数式表示∠α的度数.23.已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.浙江省杭州市西湖区七年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应格子内.注意可以用多种不同的方法来选取正确答案.1.下列计算正确的是()A.(a3)3=a9B.a2+a2=a4C.(a+1)2=a2+1 D.1+=【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;分式的加减法.【专题】计算题.【分析】A、原式利用幂的乘方运算法则计算得到结果,即可做出判断;B、原式合并同类项得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断.【解答】解:A、(a3)3=a9,故选项正确;B、a2+a2=2a2,故选项错误;C、(a+1)2=a2+2a+1,故选项错误;D、1+=,故选项错误.故选A.【点评】此题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,以及分式的加减法,熟练掌握公式及法则是解本题的关键.2.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各50名学生【考点】抽样调查的可靠性.【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、调查全体女生,B、调查全体男生,C、调查九年级全体学生都不具有代表性,D、调查七、八、九年级各50名学生具有代表性.故选D.【点评】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.3.下列代数式变形中,是因式分解的是()A. ab(b﹣2)=ab2﹣ab B.3x﹣6y+3=3(x﹣2y)C.x2﹣3x+1=x(x﹣3)+1 D.﹣x2+2x﹣1=﹣(x﹣1)2【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【解答】解:A、是整式的乘法,故A错误;B、左边不等于右边,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,把一个多项式转化成几个整式乘积的形式是解题关键.4.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.化简的结果是()A.﹣x﹣y B.y﹣x C.x﹣y D.x+y【考点】分式的加减法.【专题】计算题.【分析】因为分母相同,则分子直接相减,即x2﹣y2=(x+y)(x﹣y)=﹣(x+y)(y﹣x),然后进行化简.【解答】解:.故选A.【点评】在分式的化简过程中应注意符号的转变.6.803﹣80能被()整除.A.76 B.78 C.79 D.82【考点】提公因式法与公式法的综合运用.【分析】先提取公因式80,再根据平方查公式进行二次分解,即可得803﹣80=80×81×79,继而求得答案.【解答】解:∵803﹣80=80×(802﹣1)=80×(80+1)×(80﹣1)=80×81×79.∴803﹣80能被79整除.故选C.【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后,利用平方差公式进行二次分解是关键.7.与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1 B.3x+2y=﹣8 C.3x﹣4y=﹣8 D.5x+4y=﹣3【考点】二元一次方程组的解.【分析】将分别代入四个方程进行检验即可得到结果.【解答】解:A、将代入x+2y=1,得左边=﹣2+1=﹣1,右边=1,左边≠右边,所以本选项错误;B、将代入3x+2y=﹣8,得左边=﹣6+1=﹣5,右边=﹣8,左边≠右边,所以本选项错误;C、将代入3x﹣4y=﹣8,得左边=﹣6﹣2=﹣8,右边=﹣8,左边=右边,所以本选项正确;D、将代入5x+4y=﹣3,得左边=﹣10+2=﹣8,右边=﹣3,左边≠右边,所以本选项错误;故选:C.【点评】本题考查了二元一次方程组的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.8.计算(a﹣b)(a+b)(a2﹣b2)的结果是()A.a4﹣2a2b2+b4B.a4+2a2b2+b4C.a4+b4 D.a4﹣b4【考点】平方差公式;完全平方公式.【分析】利用平方差公式计算即可.【解答】解:(a﹣b)(a+b)(a2﹣b2)=a4﹣2a2b2+b4,故选A.【点评】本题考查了平方差公式的应用,利用平方差公式计算可以使运算更加简便.9.如图,将边长为5cm的等边△ABC沿边BC向右平移4cm得到△A′B′C′,则四边形AA′B′C′的周长为()A.22cm B.23cm C.24cm D.25cm【考点】平移的性质.【分析】根据平移的性质,对应点的距离等于平移距离求出AA′、BB′,然后求出BC′,再根据周长的定义解答即可.【解答】解:∵平移距离是4个单位,∴AA′=BB′=4,∵等边△ABC的边长为5,∴B′C′=BC=5,∴BC′=BB′+B′C′=4+5=9,∵四边形AA′C′B的周长=4+5+9+5=23.故选B【点评】本题考查了平移的性质,主要利用了对应点的距离等于平移距离,需熟记.10.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2B.135mm2C.108mm2D.96mm2【考点】二元一次方程组的应用.【专题】几何图形问题.【分析】设每个小长方形的长为xmm,宽为 ymm,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个宽﹣一个长=3,于是得方程组,解出即可.【解答】解:设每个长方形的长为xmm,宽为 ymm,由题意,得,解得:.9×15=135(mm2).故选:B.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(1)用科学记数法表示0.000061为 6.1×10﹣5;(2)计算:(π﹣2)0﹣2﹣1= .【考点】科学记数法—表示较小的数;零指数幂;负整数指数幂.【分析】(1)绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.(2)首先计算零次幂和负整数指数幂,再计算有理数的加减即可.【解答】解:(1)0.000061=6.1×10﹣5,故答案为:6.1×10﹣5.(2)原式=1﹣=,故答案为:.【点评】本题考查用科学记数法表示较小的数,以及零次幂和负整数指数幂,科学记数法一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.零指数幂:a0=1(a≠0),负整数指数幂:a﹣p=(a≠0,p为正整数).12.已知某组数据的频数为56,频率为0.7,则样本容量为80 .【考点】频数与频率.【分析】根据:频率=即可求解.【解答】解:样本容量为56÷0.7=80.故答案是:80.【点评】本题考查了频率的计算公式,理解公式是关键.13.因式分解:(1)x3﹣4x= x(x+2)(x﹣2);(2)x2﹣18x+81= (x﹣9)2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先取公因式x,再根据平方查公式进行二次分解.(2)直接利用完全平方公式进行因式分解,即可求得答案.【解答】解:(1)x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2);(2)x2﹣18x+81=(x﹣9)2.故答案为:(1)x(x+2)(x﹣2);(2)(x﹣9)2.【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.14.如图,直线AB∥CD∥EF,如果∠A+∠ADF=218°,那么∠F=38°.【考点】平行线的性质.【分析】延长AC,由平行线的性质得出∠A+∠ADH=180°,故可得出∠HDF的度数,再由CD∥EF即可得出结论.【解答】解:延长AC,∵AB∥CD,∴∠A+∠ADH=180°.∵∠A+∠ADF=218°,∴∠HDF=218°﹣180°=38°.∵CD∥EF,∴∠F=∠HDF=38°.故答案为:38°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等,同旁内角互补.15.已知x=+1,则代数式(x+1)2﹣4(x+1)+4的值是 3 .【考点】因式分解的应用.【分析】首先利用完全平方公式把代数式(x+1)2﹣4(x+1)+4,再进一步代入求得数值即可.【解答】解:(x+1)2﹣4(x+1)+4=(x+1﹣2)2=(x﹣1)2,当x=+1时,原式=(+1﹣1)2=3.故答案为:3.【点评】此题考查因式分解的实际运用,掌握完全平方公式是解决问题的关键.16.给定下面一列分式:,﹣,,﹣…,根据这列分式的规律,请写出第7个分式,第n个分式(﹣1)n+1.【考点】分式的定义.【专题】规律型.【分析】分子中x的次数是分式的序次的2倍,分母中y的次数是x的次数减1,分式的序次为奇数时,分式的符合为正,分式的序次为偶数时,分式的符合为负,于是这列分式中的第7个分式为,第n个分式为(﹣1)n+1.【解答】解:这列分式中的第7个分式为,第n个分式为(﹣1)n+1.故答案为:,(﹣1)n+1.【点评】本题考查了分式的定义:叫分式,其中A、B都是整式,并且B中含有字母.也考查了从特殊到一般的规律的探究.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.化简:(1)(2a2)4÷3a2(2)(1+a)(1﹣a)+a(a﹣3)【考点】整式的混合运算.【分析】(1)根据单项式的幂的乘方法则和除法法则进行计算.(2)根据多项式的乘法法则以及单项式乘多项式的法则进行计算.【解答】解:(1)原式=24a8÷3a2=.(2)原式=1﹣a2+a2﹣3a=1﹣3a.【点评】本题考查单项式的乘方法则、单项式除以单项式的法则、乘法公式等知识,正确运用法则是解题的关键.18.(1)解方程:﹣1=;(2)已知x2+x﹣1=0,求÷﹣的值.【考点】分式的化简求值;解分式方程.【分析】(1)观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解;(2)首先把等式变为x﹣1=﹣x2,然后把所求分式化简变为﹣,由此即可求解.【解答】解:(1)方程的两边同乘(x﹣2),得1﹣(x﹣2)=x,解得x=.检验:把x=代入(x﹣2)≠0.所以原方程的解为:x=.(2)÷﹣=•﹣=﹣=﹣.由x2+x﹣1=0得x﹣1=﹣x2,所以,原式=1.【点评】此题主要考查了分式的化简求值和解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,并注意要验根.19.今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道,去敬老院服务和到社区文艺演出三项.从七年级参加活动的同学中抽取了部分同学,对打扫街道,去敬老院服务和到社区文艺演出的人数进行了统计,并绘制了如下直方图和扇形统计图.请解决以下问题:(1)求抽取的部分同学的人数;(2)补全直方图的空缺部分;(3)若七年级有200名学生,估计该年级去敬老院的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)先根据条形图知到社区文艺演出的人数为15人,再由扇形统计图知占抽取总人数的,两者相除即可求解;(2)求出去敬老院服务的学生有多少人,即可补全条形统计图;(3)用总人数乘以该年级去敬老院的人数所占的百分比即可.【解答】解:(Ⅰ)由题意,可得抽取的部分同学的人数为:15÷=50(人);(2)去敬老院服务的学生有:50﹣25﹣15=10(人).条形统计图补充如下:(3)根据题意得:200×=40(人),答:该年级去敬老院的人数是80人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.20.甲、乙两人同时分别从相距30千米的A,B两地匀速相向而行,经过三小时后相距3千米,在经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,设甲、乙两人的速度分别为x千米/小时、y千米/小时,请列方程组求甲、乙两人的速度.【考点】二元一次方程组的应用.【分析】设甲的速度为xkm/h,乙的速度为ykm/h,那么可以分两种情况:①当甲和乙还没有相遇相距3千米时,根据经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍可以列出方程组解决问题;②当甲和乙相遇了相距3千米时,根据经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍可以列出方程组解决问题.【解答】解:设甲的速度为xkm/h,乙的速度为ykm/h,则有两种情况:(1)当甲和乙还没有相遇相距3千米时,依题意得,解得;(2)当甲和乙相遇了相距3千米时,依题意得,解得.答:甲乙两人的速度分别为4km/h、5km/h或km/h, km/h.【点评】此题考查了二元一次方程组的应用,该题是一个行程问题,主要考查了相遇问题中的数量关系,但解题要注意分相遇和没有相遇两种情况解题.21.已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.【考点】因式分解-提公因式法;完全平方公式.【分析】(1)直接提取公因式ab,进而分解因式得出答案;(2)直接利用完全平方公式进而求出答案;(3)直接利用(2)中所求,结合完全平方公式求出答案.【解答】解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴(a﹣b)2=49,∴a2+b2﹣2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25﹣24=1,∴a+b=±1.【点评】此题主要考查了完全平方公式以及提取公因式法分解因式,正确应用完全平方公式是解题关键.22.(1)有一条纸带如图甲所示,怎样检验纸带的两条边线是否平行?说明你的方法和理由.(2)如图乙,将一条上下两边互相平行的纸带折叠,设∠1为x度,请用x的代数式表示∠α的度数.【考点】平行线的判定与性质.【分析】(1)根据平行线的判定定理,进行分析,即可解答;(2)如图乙,根据平行线的性质得到∠2=∠1=x,∠3=∠α,根据折叠的性质得到∠3=∠4=(180°﹣∠2)=90°﹣2=90°﹣x,等量代换即可得到结论.【解答】解:(1)如图甲,将纸条如图折叠,测的∠1=∠2,于是得到纸带的两条边线是平行的;(2)如图乙,∵AB∥CD,∴∠2=∠1=x,∠3=∠α,∵将一条上下两边互相平行的纸带折叠,∴∠3=∠4=(180°﹣∠2)=90°﹣2=90°﹣x,∴∠α=∠3=90°﹣x.【点评】本题考查了平行线的判定和性质,解决本题的关键是熟记平行线的判定定理.23.已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.【考点】二元一次方程组的解.【分析】①将a=1代入方程组,求出方程组的解,即可做出判断;②将x=y代入方程组,求出a的值,即可做出判断;③将a看做已知数求出2x+y的值即可;④将a看做已知数求出x与y的值代入z=﹣xy,即可做出判断.【解答】解:关于x、y的方程组,解得:.①将a=1代入,得:,将x=4,y=﹣4代入方程左边得:x+y=0,右边=2,左边≠右边,本选项错误;②将x=y代入,得:,即当x=y时,a=﹣,本选项正确;③将原方程组中第一个方程×3,加第二个方程得:4x+2y=8,即2x+y=4,不论a取什么实数,2x+y的值始终不变,本选项正确;④z=﹣xy=﹣(a+3)(﹣2a﹣2)=a2+4a+3=(a+2)2﹣1≥﹣1,即若z=﹣xy,则z的最小值为﹣1,此选项正确.故正确的选项有:②、③、④.【点评】本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.。
2020-2021学年浙江省杭州市西湖区七年级(下)期末数学试卷一、选择题:本大题有10个小题,每小题3公共30分,在每小题给出的四个选项中,只有一项是符合题目要求的1.计算:(﹣2021)0=()A.1B.0C.2021D.﹣20212.在研制新冠肺炎疫苗中,某细菌的直径大小为0.000000072毫米,用科学记数法表示这一数字为()A.7.2×10﹣7B.7.2×10﹣8C.7.2×10﹣9D.0.72×10﹣9 3.下列计算中,正确的是()A.m2•m3=m6B.(m3)2=m5C.m+m2=2m3D.﹣m3+3m3=2m34.如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=60°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转()A.60°B.40°C.30°D.20°5.已知x,y满足方程组,则无论m取何值,x,y恒有关系式()A.x+y=3B.x+y=﹣3C.x+y=9D.x+y=﹣96.人类的血型可分为A,B,AB,O型四样,如图是某校七年级两个班学生参加体检后的血型结果,对两个班“A型”人数占班级总数的百分比做出判断,正确的是()A.1班比2班大B.1班比2班小C.1班和2班一样大D.无法判断7.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x张制作盒身,y张制作盒底,恰好配套制成糖果盒.则下列方程组中符合题意的是()A.B.C.D.8.如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后得到的图形,小佳将阴影部分通过剪拼,拼成了图①、图②、图③三种新的图形,其中能够验证平方差公式的是()A.①②B.①③C.②③D.①②③9.多项式x3﹣5x2﹣3x﹣y中,有一个因式为(x﹣5),则y的值为()A.﹣15B.15C.﹣3D.310.如图,AB∥DE,BC⊥CD,则以下说法中正确的是()A.α,β的角度数之和为定值B.α随β增大而增大C.α,β的角度数之积为定值D.α随β增大而减小二、填空题:本大题有6个小题,每小题4分,共24分11.(4分)因式分解:16x2﹣1=.12.(4分)某校200名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,结合表的信息,可得测试分数在79.5~89.5分数段的学生有名.分数段59.5~69.569.5~79.579.5~89.589.5~99.5频率0.20.30.2 13.(4分)若x+y=3,且xy=1,则代数式(5﹣x)(5﹣y)=.14.(4分)当x=时,=0.15.(4分)若2x﹣2=a,则2x=(用含a的代数式表示).16.(4分)如图①,将长方形纸带沿EF折叠,∠AEF=70°,再沿GH折叠成图②,则图②中∠EHB'=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤17.(6分)计算:(1)4a2b3÷(﹣2ab2);(2)(5+2a)2﹣5(5+2a).18.(8分)解方程:(1);(2)=﹣2.19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对6月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.6月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0aB 5.0≤x<5.1480C 5.1≤x<5.2660D x≥5.230(1)求表中a的值及图中B组扇形的圆心角的度数;(2)这些抽样检验的羽毛球中,合格率是多少?如果购得6月份生产的羽毛球15筒(每简12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?20.(10分)一列数a1,a2,a3,…,a n,其中a1=﹣1,a2=,a3=,…,a n =.(1)求a2,a3的值;(2)求a1+a2+a3+…+a2021的值.21.(10分)如图,∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(点A、B、C不与点O重合),且AB∥ON,连接AC交射线OE于点D.(1)求∠ABO的度数;(2)当△ADB中有两个相等的角时,求∠OAC的度数.22.(12分)化学实验室一容器内的a克盐水中含盐b克(盐水的浓度=×100%).(1)若加入4克盐,食盐水的浓度怎么变化,为什么?(用数学的方法书写过程)(2)若a=50,b=5,加多少克盐可使该容器内的盐水浓度提高到原来的2倍?(3)若a=50,b=5,则需要蒸发多少克水,使该容器内的盐水浓度提高到原来的2倍.23.(12分)已知点C在射线OA上.(1)如图①,CD∥OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示);(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.2020-2021学年浙江省杭州市西湖区七年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3公共30分,在每小题给出的四个选项中,只有一项是符合题目要求的1.计算:(﹣2021)0=()A.1B.0C.2021D.﹣2021【分析】根据任何为0的零次幂都等于1,可得答案.【解答】解:∵a0=1 (a≠0),∴(﹣2021)0=1,故选:A.2.在研制新冠肺炎疫苗中,某细菌的直径大小为0.000000072毫米,用科学记数法表示这一数字为()A.7.2×10﹣7B.7.2×10﹣8C.7.2×10﹣9D.0.72×10﹣9【分析】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000072=7.2×10﹣8.故选:B.3.下列计算中,正确的是()A.m2•m3=m6B.(m3)2=m5C.m+m2=2m3D.﹣m3+3m3=2m3【分析】先根据同底数幂的乘法,幂的乘方和合并同类项法则进行计算,再根据求出的结果得出选项即可.【解答】解:A.m2•m3=m5,故本选项不符合题意;B.(m3)2=m6,故本选项不符合题意;C.m和m2不能合并,故本选项不符合题意;D.﹣m3+3m3=2m3,故本选项符合题意;故选:D.4.如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=60°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转()A.60°B.40°C.30°D.20°【分析】先根据b⊥c得出∠2的度数,再由平行线的判定定理即可得出结论.【解答】解:∵b⊥c,∴∠2=90°.∵∠1=60°,a∥b,∴直线b绕着点A顺时针旋转的度数为:90°﹣60°=30°.故选:C.5.已知x,y满足方程组,则无论m取何值,x,y恒有关系式()A.x+y=3B.x+y=﹣3C.x+y=9D.x+y=﹣9【分析】求x与y的关系,使关于x,y的方程组与m的取值无关,就是利用消元的思想,消去m即可,【解答】解:将y﹣3=m代入x+m=﹣6得,x+y﹣3=﹣6,即x+y=﹣3,故选:B.6.人类的血型可分为A,B,AB,O型四样,如图是某校七年级两个班学生参加体检后的血型结果,对两个班“A型”人数占班级总数的百分比做出判断,正确的是()A.1班比2班大B.1班比2班小C.1班和2班一样大D.无法判断【分析】根据两个班的人数不确定,所以两个班“A型”人数占班级总数的百分比是无法判断的.【解答】解:七二班“A型”人数所占的百分比是:×100%=40%,∵七一班的学生总人数不确定,虽然都占40%,但不进行比较,∴对两个班“A型”人数占班级总数的百分比无法判断.故选:D.7.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x张制作盒身,y张制作盒底,恰好配套制成糖果盒.则下列方程组中符合题意的是()A.B.C.D.【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的铁皮张数+制作盒底的铁皮张数=35,再列出方程组即可.【解答】解:设用x张制作盒身,y张制作盒底,恰好配套制成糖果盒,根据题意可列方程组:,故选:C.8.如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后得到的图形,小佳将阴影部分通过剪拼,拼成了图①、图②、图③三种新的图形,其中能够验证平方差公式的是()A.①②B.①③C.②③D.①②③【分析】按照不同的裁剪方式,拼接成不同的图形,用不同的方法表示拼接前、后阴影部分的面积,即可得出答案.【解答】解:(1)如图①,左图的阴影部分的面积为a2﹣b2,裁剪后拼接成右图的长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),因此有a2﹣b2=(a+b)(a﹣b),所以①符合题意;(2)如图②,左图的阴影部分的面积为a2﹣b2,裁剪后拼接成右图的底为(a+b),高为(a﹣b)的平行四边形,因此面积为(a+b)(a﹣b),因此有a2﹣b2=(a+b)(a﹣b),所以②符合题意;(3)如图③,左图的阴影部分的面积为a2﹣b2,裁剪后拼接成右图的上底为2b,下底为2a,,高为(a﹣b)的梯形,因此面积为(2a+2b)(a﹣b)=(a+b)(a﹣b),因此有a2﹣b2=(a+b)(a﹣b),所以③符合题意;综上所述,①②③都符合题意,故选:D.9.多项式x3﹣5x2﹣3x﹣y中,有一个因式为(x﹣5),则y的值为()A.﹣15B.15C.﹣3D.3【分析】方法一、把x=5代入方程x3﹣5x2﹣3x﹣y=0,再求出y即可;方法二、设另一个因式是x2+bx+c,求出(x﹣5)(x2+bx+c)=x3+(﹣5+b)x2+(﹣5b+c)x﹣5c,求出﹣5+b=﹣5,﹣5b+c=﹣3,﹣y=﹣5c,再求出y即可.【解答】解:方法一、∵多项式x3﹣5x2﹣3x﹣y中,有一个因式为(x﹣5),∴把x=5代入x3﹣5x2﹣3x﹣y=0得:125﹣125﹣15﹣y=0,解得:y=﹣15;方法二、设另一个因式是x2+bx+c,(x﹣5)(x2+bx+c)=x3﹣5x2+bx2﹣5bx+cx﹣5c=x3+(﹣5+b)x2+(﹣5b+c)x﹣5c,∵多项式x3﹣5x2﹣3x﹣y中,有一个因式为(x﹣5),另一个因式是x2+bx+c,∴﹣5+b=﹣5,﹣5b+c=﹣3,﹣y=﹣5c,解得:b=0,c=﹣3,y=﹣15,故选:A.10.如图,AB∥DE,BC⊥CD,则以下说法中正确的是()A.α,β的角度数之和为定值B.α随β增大而增大C.α,β的角度数之积为定值D.α随β增大而减小【分析】过C点作CF∥AB,利用平行线的性质解答即可.【解答】解:过C点作EF∥AB,∵AB∥DE,∴EF∥DE,∴∠α=∠BCE,∠β+∠DCE=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BCE+∠DCE=360°﹣∠BCD=270°,∴∠α+(180°﹣∠β)=270°,∴∠α﹣∠β=90°,∴α随β增大而增大,故选:B.二、填空题:本大题有6个小题,每小题4分,共24分11.(4分)因式分解:16x2﹣1=(4x﹣1)(4x+1).【分析】直接利用平方差公式分解因式得出答案.【解答】解:16x2﹣1=(4x)2﹣12=(4x﹣1)(4x+1).故答案为:(4x﹣1)(4x+1).12.(4分)某校200名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,结合表的信息,可得测试分数在79.5~89.5分数段的学生有60名.分数段59.5~69.569.5~79.579.5~89.589.5~99.5频率0.20.30.2【分析】根据频率之和为1求出分数在79.5~89.5分数段的频率,再根据频率、频数、总数之间的关系求解即可.【解答】解:200×(1﹣0.2﹣0.3﹣0.2)=200×0.3=60(人),故答案为:60.13.(4分)若x+y=3,且xy=1,则代数式(5﹣x)(5﹣y)=11.【分析】利用多项式乘多项式法则,先计算(5﹣x)(5﹣y),再代入求值.【解答】解:(5﹣x)(5﹣y)=25﹣5y﹣5x+xy=25﹣5(x+y)+xy∵x+y=3,xy=1,∴原式=25﹣5×3+1=11.故答案为:11.14.(4分)当x=2时,=0.【分析】根据分式值为零的条件是分子等于零且分母不等于零,进而得出答案.【解答】解:当=0时,则x2﹣4=0且x+2≠0,解得:x=2.故答案为:2.15.(4分)若2x﹣2=a,则2x=4a(用含a的代数式表示).【分析】根据同底数幂除法的逆运算即可进行解答.【解答】解:∵2x﹣2=2x÷22,2x﹣2=a,∴2x÷4=a,∴2x=4a.故答案为:4a.16.(4分)如图①,将长方形纸带沿EF折叠,∠AEF=70°,再沿GH折叠成图②,则图②中∠EHB'=40°.【分析】由折叠性质得到∠AEF=∠GEF=70°,由平行线的性质得到∠AEG=∠CGE =140°,进而得到∠EGH=70°,再由平行线的性质及折叠性质得到∠EHG=70°,∠B′HG=110°,最后由角的和差求解即可.【解答】解:由折叠性质得到,∠AEF=∠GEF=70°,∴∠AEG=∠AEF+∠GEF=140°,∵AB∥CD,∴∠AEG=∠CGE=140°,∵∠CGH=∠EGH,∴∠EGH=∠CGE=70°,∵AB∥CD,∴∠CGH+∠BHG=180°,∠CGH=∠EHG=70°,∴∠BHG=180°﹣∠CGH=110°=∠B′HG,∴∠EHB′=∠B′HG﹣∠EHG=110°﹣70°=40°,故答案为:40°.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤17.(6分)计算:(1)4a2b3÷(﹣2ab2);(2)(5+2a)2﹣5(5+2a).【分析】(1)直接利用单项式除以单项式计算得出答案;(2)直接利用完全平方公式化简,再合并同类项得出答案.【解答】解:(1)4a2b3÷(﹣2ab2)=﹣2ab;(2)(5+2a)2﹣5(5+2a)=25+4a2+20a﹣25﹣10a=4a2+10a.18.(8分)解方程:(1);(2)=﹣2.【分析】(1)①﹣②得出9t=3,求出t,把t=代入①得出2s+3×=2,再求出s即可;(2)方程两边都乘以x﹣3,得2﹣x=﹣1﹣2(x﹣3),求出方程的解,再进行检验即可.【解答】解:(1),①﹣②,得9t=3,解得:t=,把t=代入①,得2s+3×=2,解得:s=,所以方程组的解是;(2)方程两边都乘以x﹣3,得2﹣x=﹣1﹣2(x﹣3),解方程得:x=3,检验:当x=3时,x﹣3=0,所以x=3是增根,即原方程无解.19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对6月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.6月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0aB 5.0≤x<5.1480C 5.1≤x<5.2660D x≥5.230(1)求表中a的值及图中B组扇形的圆心角的度数;(2)这些抽样检验的羽毛球中,合格率是多少?如果购得6月份生产的羽毛球15筒(每简12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?【分析】(1)图表中“C组”的频数为660只,占抽查总数的55%,可求出抽查总数,进而求出“A组”的频数,即a的值;求出“B组”所占总数的百分比,即可求出相应的圆心角的度数;(2)计算“B组”“C组”的频率的和即为合格率,求出“不合格”所占的百分比,即可求出不合格的数量.【解答】解:(1)660÷55%=1200(只),1200﹣480﹣660﹣30=30(只),即:a=30,360°×=144°,答:表中a的值为30,图中B组扇形的圆心角的度数为144°;(2)==95%,12×15×(1﹣95%)=120×5%=9(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,估计非合格品的羽毛球大约有9只.20.(10分)一列数a1,a2,a3,…,a n,其中a1=﹣1,a2=,a3=,…,a n =.(1)求a2,a3的值;(2)求a1+a2+a3+…+a2021的值.【分析】(1)将a1=﹣1代入a2=计算可得a2,再将a2代入a3=,可求出a3;(2)根据规律可得出结果.【解答】解:(1)把a1=﹣1代入a2=得,a2==,把a2=代入a3=得,a3==2,答:a2=,a3=2;(2)将a3=2代入a4=得,a4==﹣1同理a5==,a6=2,a7=﹣1,a8=,……∵a1+a2+a3==a4+a5+a6=a7+a8+a9=…=a2017+a2018+a2019,所以a1+a2+a3+...+a2021=﹣1++2﹣1++2﹣1++2 (1)=×673﹣1+=1009.21.(10分)如图,∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(点A、B、C不与点O重合),且AB∥ON,连接AC交射线OE于点D.(1)求∠ABO的度数;(2)当△ADB中有两个相等的角时,求∠OAC的度数.【分析】(1)利用角平分线的性质求出∠ABO的度数即可;(2)分两种情况:当∠BAD=∠ABD时;当∠BAD=∠BDA时,进行讨论即可求解.【解答】解:(1)∵∠MON=40°,OE平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°;(2)当∠BAD=∠ABD时,∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°;当∠BAD=∠BDA时,∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°.22.(12分)化学实验室一容器内的a克盐水中含盐b克(盐水的浓度=×100%).(1)若加入4克盐,食盐水的浓度怎么变化,为什么?(用数学的方法书写过程)(2)若a=50,b=5,加多少克盐可使该容器内的盐水浓度提高到原来的2倍?(3)若a=50,b=5,则需要蒸发多少克水,使该容器内的盐水浓度提高到原来的2倍.【分析】(1)分别求得原来食盐水的浓度和加入4克盐以后的食盐水浓度,然后进行分式的减法计算;(2)设加入x克盐,根据容器内的盐水浓度提高到原来的2倍列方程求解;(3)设蒸发y克水,根据容器内的盐水浓度提高到原来的2倍列方程求解.【解答】解:(1)由题意可得,容器内原有盐水的浓度为:,加入4克盐后,容器中盐水的浓度为,∴,∴食盐水的浓度比原来增加了,(2)设加入x克盐后,可使该容器内的盐水浓度提高到原来的2倍,由题意可得:,当a=50,b=5时,,解得:x=,经检验:x=是原分式方程的解,且符合题意,∴加入克盐,可使该容器内的盐水浓度提高到原来的2倍,(3)设蒸发y克水,可使容器内的盐水浓度提高到原来的2倍,由题意可得:,当a=50,b=5时,,解得:y=25,经检验,y=25是原分式方程的解,且符合题意,∴蒸发25克水,可使容器内的盐水浓度提高到原来的2倍.23.(12分)已知点C在射线OA上.(1)如图①,CD∥OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示);(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°﹣2∠AOB,根据(2)∠OCD+∠BO′E′=360°﹣∠AOB,进而推出∠AOB=∠BO′E′.【解答】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°﹣∠AOE﹣∠AOB=360°﹣90°﹣120°=150°;(2)∠OCD+∠BO′E′=360°﹣α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°﹣∠OCD,∠BOF=∠E′O′O=180°﹣∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°﹣∠OCD+180°﹣∠BO′E′=360°﹣(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°﹣α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°﹣2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°﹣2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°﹣α=360°﹣∠AOB,∴360°﹣2∠AOB+∠BO′E′=360°﹣∠AOB,∴∠AOB=∠BO′E′.。
西湖区第一学期七年级期末教学质量调研科学考生须知:1.本科目试卷分试题卷和答题卷两部分。
满分120分,考试时间90分钟。
2.答题前,必须在答题卷内填写学校、班级和姓名。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,只需上交答题卷。
一、选择题(每小题只有一个选项符合题意,每小题2分,共50分)1.张平同学去超市购买饮料,发现其包装盒上的标识有“400mL”,这表示饮料的()A.体积B.质量C.价格D.生产时间2.下列变化中,属于化学变化的()A.冰雪消融B.云开雾散C.燃放烟花D.吹肥皂泡3.下列单位之间的关系错误的是()A.1米=1000毫米B.1立方米=1000升C.1千克=1000克D.1千克/立方米=1000克/立方厘米4.科学实验既要操作规范,更要保障安全。
下列实验基本操作符合这一要求的是()A B C D5.物质具有多种性质,如颜色、溶解性、导电性等。
下列不属于物质性质的是()A.质量B.密度C.比热容D.沸点6.右表是金属铁、铜、铅的密度。
有一个金属实心球,测得它的质量为90克,体积为10立方厘米。
下列的说法中正确的是()铁7.9克/立方厘米铜8.9克/立方厘米铅11.3克/立方厘米A.此金属球是由铁做成的B.此金属球是由铜做成的C.此金属球是由铅做成的D.以上判断都是错误的7.以下生物中属于鱼类的是()A.鲨鱼B.大鲵C.鲸D.白鳍豚8.下列各组植物中,全部属于裸子植物的是()A.玉兰、睡莲、黑松B.苏铁、桃树、银杏C.松树、银杏、侧柏D.水杉、厥、苏铁9.下面是制作口腔上皮细胞装片的操作几个步骤:①盖上盖玻片;②把牙签放在生理盐水中涂几下;③取一根牙签在漱过口的口腔内壁轻轻刮几下;④在载玻片上滴一滴生理盐水;⑤用亚甲基蓝溶液染色。
其正确的顺序是()A.④②③①⑤B.④③②①⑤C.④②③⑤①D.④③②⑤①10.当你肚子疼到医院里看病时,通常医生会问你哪里疼、有无拉肚子、是否感觉疲劳,也会用手挤压你的肚子,还会让你去化验血液、大便等。
2012-2013学年浙江省杭州市西湖区八年级(下)期末数学试卷2012-2013学年浙江省杭州市西湖区八年级(下)期末数学试卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案.1.(3分)要使式子有意义,则x的取值范围是()224.(3分)(2012•泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;5.(3分)(2007•滨州)关于x的一元二次方程(m+1)+4x+2=0的解为()6.(3分)(2012•泸州)已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的7.(3分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,若设计一种砌法,使矩形花园的面积为300m2.则AB长度为()8.(3分)阅读材料:对于任何实数,我们规定符号的意义是.按照这个规定,请你计算:当x2﹣4x+4=0时,的值()9.(3分)(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()10.(3分)已知,在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3均在x轴正半轴上.若已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,且B1C1∥B2C2∥B3C3,则点A3的坐标是()),二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)化简:=_________.12.(4分)已知如图,在线段BG同侧作正方形ABCD和正方形CEFG,其中BG=10,BC:CG=2:3,则S△ECG= _________,S△AEG=_________.13.(4分)(2012•包头)关于x的两个方程x2﹣x﹣2=0与有一个解相同,则a=_________.14.(4分)已知下列命题:①若a>0,b>0,则a+b>0;②若a2≠b2,则a≠b;③对角线互相垂直的平行四边形是菱形;④直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的序号是_________.15.(4分)如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为_________米.16.(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则:(1)a的取值范围是_________;(2)若设直线PQ为:y=kx+2(k≠0),则此时k的取值范围是_________.三.全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(1)解方程:(x+1)(x﹣5)=1(2)关于x的一元二次方程x2+bx+c=0(c<0)是否有实数解,请你作出判断并说明理由.18.(8分)已知在如图4×4的方格中,有一个格点三角形ABC(三个顶点均在格点上),其中AB=,BC=,AC=.(1)请你在方格中画出该三角形;(2)求△ABC的面积;(3)求△ABC中AC边上的高的长(结果保留根号).19.(8分)一次测试八年级若干名学生1分钟跳绳次数的频数分布直方图如图所示,请根据这个直方图回答下列问题:(1)已知自左至右第2、3组(组中值分别为145、155)的频率之和为0.28,第3、4、5组(组中值分别为155、165、175)的频率之和为0.8,则参加测试的总人数有_________人,第3组的频数为_________人,第4组的频率为_________,并将直方图补充完整;(2)若图中自左至右各组的跳绳平均次数分别为137次,146次,156次,164次,177次,则参加测试的学生跳绳的平均次数为_________(只需列出算式,不用计算结果);(3)若测试所得数据的中位数是160次,则测试次数为160次的学生至少有_________人.(直方图中每一组包括前一个边界值,不包括后一个边界值)20.(10分)如图,已知AG⊥BD,AF⊥CE,BD,CE分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4.(1)求FG的长;(2)求△ABC周长.21.(10分)平行四边形ABCD中,对角线AC、BD相交于点O,若E、F是线段AC上的两动点,分别从A、C 两点以1cm/s的速度向C、A运动,若BD=12cm,AC=16cm.(1)四边形DEBF是平行四边形吗?请说明理由;(2)当运动时间t为多少时,四边形DEBF是矩形.22.(12分)(2012•南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为_________万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)23.(12分)已知直角梯形ABCD如图放置在平面直角坐标系中,∠DCB=30°,AB边在y轴上,点D的横坐标为6,CQ⊥x轴,垂足为Q,点Q的横坐标为12,过CD的直线l交x轴于点E,E点坐标为(18,0).(1)求直线l的解析式,以及点A和点B的坐标;(2)P为线段CD上一动点,连结PQ、OP,探究△POQ的周长,并求出当周长最小时,P的坐标及此时的该三角形的周长;(3)点N从点Q(12,0)出发,沿着x轴以每秒1个单位长度的速度向点O运动,同时另一动点M从点B开始沿B﹣C﹣D﹣A的方向绕梯形ABCD运动,运动速度为每秒为2个单位长度,当其中一个点到达终点时,另一点也停止运动,设运动时间为t秒,连结MO和MN,试探究当t为何值时MO=MN.2012-2013学年浙江省杭州市西湖区八年级(下)期末数学试卷参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案.1.(3分)要使式子有意义,则x的取值范围是()224.(3分)(2012•泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;5.(3分)(2007•滨州)关于x的一元二次方程(m+1)+4x+2=0的解为()6.(3分)(2012•泸州)已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的7.(3分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,若设计一种砌法,使矩形花园的面积为300m2.则AB长度为()8.(3分)阅读材料:对于任何实数,我们规定符号的意义是.按照这个规定,请你计算:当x2﹣4x+4=0时,的值()∴9.(3分)(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()AC=BC===AC=BC=××,正八边形周围是四个全等三角形,面积和为:10.(3分)已知,在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3均在x轴正半轴上.若已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,且B1C1∥B2C2∥B3C3,则点A3的坐标是()),1=,=,×,=×==×==×=×=,M=+×=N=×=××)﹣=+++++,,二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)化简:=π﹣3.二次根式的性质:=12.(4分)已知如图,在线段BG同侧作正方形ABCD和正方形CEFG,其中BG=10,BC:CG=2:3,则S△ECG= 18,S△AEG=18.×××﹣13.(4分)(2012•包头)关于x的两个方程x2﹣x﹣2=0与有一个解相同,则a=4.代入=中得:=14.(4分)已知下列命题:①若a>0,b>0,则a+b>0;②若a2≠b2,则a≠b;③对角线互相垂直的平行四边形是菱形;④直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的序号是③④.15.(4分)如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为1米.16.(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则:(1)a的取值范围是﹣2≤a≤2;(2)若设直线PQ为:y=kx+2(k≠0),则此时k的取值范围是k≤﹣1或k≥1.三.全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(1)解方程:(x+1)(x﹣5)=1(2)关于x的一元二次方程x2+bx+c=0(c<0)是否有实数解,请你作出判断并说明理由.;18.(8分)已知在如图4×4的方格中,有一个格点三角形ABC(三个顶点均在格点上),其中AB=,BC=,AC=.(1)请你在方格中画出该三角形;(2)求△ABC的面积;(3)求△ABC中AC边上的高的长(结果保留根号).,;.19.(8分)一次测试八年级若干名学生1分钟跳绳次数的频数分布直方图如图所示,请根据这个直方图回答下列问题:(1)已知自左至右第2、3组(组中值分别为145、155)的频率之和为0.28,第3、4、5组(组中值分别为155、165、175)的频率之和为0.8,则参加测试的总人数有50人,第3组的频数为8人,第4组的频率为0.4,并将直方图补充完整;(2)若图中自左至右各组的跳绳平均次数分别为137次,146次,156次,164次,177次,则参加测试的学生跳绳的平均次数为(只需列出算式,不用计算结果);(3)若测试所得数据的中位数是160次,则测试次数为160次的学生至少有8人.(直方图中每一组包括前一个边界值,不包括后一个边界值)=0.12;20.(10分)如图,已知AG⊥BD,AF⊥CE,BD,CE分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4.(1)求FG的长;(2)求△ABC周长.21.(10分)平行四边形ABCD中,对角线AC、BD相交于点O,若E、F是线段AC上的两动点,分别从A、C 两点以1cm/s的速度向C、A运动,若BD=12cm,AC=16cm.(1)四边形DEBF是平行四边形吗?请说明理由;(2)当运动时间t为多少时,四边形DEBF是矩形.AO=CO=BD=6cm22.(12分)(2012•南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为26.8万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)23.(12分)已知直角梯形ABCD如图放置在平面直角坐标系中,∠DCB=30°,AB边在y轴上,点D的横坐标为6,CQ⊥x轴,垂足为Q,点Q的横坐标为12,过CD的直线l交x轴于点E,E点坐标为(18,0).(1)求直线l的解析式,以及点A和点B的坐标;(2)P为线段CD上一动点,连结PQ、OP,探究△POQ的周长,并求出当周长最小时,P的坐标及此时的该三角形的周长;(3)点N从点Q(12,0)出发,沿着x轴以每秒1个单位长度的速度向点O运动,同时另一动点M从点B开始沿B﹣C﹣D﹣A的方向绕梯形ABCD运动,运动速度为每秒为2个单位长度,当其中一个点到达终点时,另一点也停止运动,设运动时间为t秒,连结MO和MN,试探究当t为何值时MO=MN.∴∴;当y=),x∴,,∴s6+综上可得:参与本试卷答题和审题的老师有:dbz1018;sjzx;yangwy;WWF;gsls;lanyan;zhjh;sd2011;星期八;HLing;zjx111;HJJ;caicl;xiawei(排名不分先后)菁优网2014年6月19日。
2023-2024学年浙江省杭州市西湖区七年级(下)期末语文试卷一、班级准备开展“天下家国”主题展,请你参与相关活动。
(10分)◎设计展板1.(5分)阅读下文,回答问题。
展板一展板二惊涛澎湃掀起万丈狂(lán)(1)_____ 斑(lán)(2)_____的山雕狐仙姑深夜的(lán)(3)_____语宣传组准备布置展板,请你参与讨论。
小文:这是我根据《黄河颂》《土地的誓言》设计的展板。
小语:这里有三个含有“”的形近字容易写错,我们要怎么去区分它们呢?小文:展版一中的“涛”本义是大波浪,“澎”的本义是波涛发出的声音,“湃”的本义是冰镇或用冷水浸过,字义都和水有关,所以都以“氵”为偏旁。
小语:我明白了,黄河之水壮观汹涌,所以应该是“掀起万丈狂(1)”。
小文:是的,“斑(2)”“(3)语”也可以这样类推,理由是(4)小语:据此,我们可以总结出一条避免写错别字的方法:(5)◎修改邀请函2.(2分)请你以小贴士为依据,修改画线句,使外联组的邀请函语言更简明。
小贴士首先,行文时要围绕中心来写。
其次,在没有特殊的表达需要时,避免词语的重复。
再次,还要注意不要堆砌词语。
——七下语文教科书《语言简明》亲爱的同学们:你们好!七(1)班将于6月25日下午13:00在报告厅举办“天下家国”主题展。
我们诚挚、真诚地邀请大家参与活动,共同感受家国情怀的力量。
期待您的到来!七(1)班全班同学2024年6月16日◎续写对联3.(3分)文案组为本次活动拟写了上联,请你帮忙选择合适的下联()上联:泱泱华夏,一撇一捺皆载希望下联:_____A.神州大地,一思一念皆是未来B.浩浩九州,一文一墨尽显辉煌C.家家户户,一桌一椅皆摆佳肴二、班级开展“托物言志”专题读写活动,请你参与。
(27分)4.(27分)阅读下文,回答问题。
邂逅石榴花作家驿站王永波①家乡淮安的盐河之畔,碧波轻漾。
静谧的午后,我与故友坐于盐河边斑驳石凳之上,电吹管吹奏的旋律悠扬,仿佛能穿透时空的帷幕,唤醒沉睡的记忆。
2023-2024年浙江省杭州市西湖区七年级数学期中模拟卷1(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列现象中,不属于平移的是( )A. 滑雪运动员在平坦的雪地上沿直线滑行B. 时针的走动C. 商场自动扶梯上顾客的升降运动D. 火车在笔直的铁轨上行驶2. 芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,它作为食物和药物,得到广泛的使用.经测算,一粒芝麻的质量约为0.00000201kg ,将0.00000201用科学记数法表示为( )A. 82.0110−×B. 70.20110−×C. 62.0110−×D. 52.0110−× 3. 如图所示,直线a 、b 被直线c 所截,1∠与2∠是( )A. 内错角B. 同位角C. 同旁内角D. 对顶角 4. 方程4x ﹣y =8,xy =2,x 3y +=3,3﹣2y =z ,x 2+y =6中二元一次方程的个数是( ) A. 1 B. 2C. 3D. 4 5. 已知二元一次方程组2423a b a b −= −=,则a b +=( ) A. 1 B. -1 C. 7 D. -76. 下列说法正确的是( ).A. 过一点有且只有一条直线与已知直线平行B. 三角形的三条高线都在三角形的内部C. 两条直线被第三条直线所截,同旁内角互补D. 平移前后图形的形状和大小都没有发生改变7. 下列计算正确是( )A 326•a a a = B. 2226()3b a a b −= C. 23356()a b a b = D. 236()a a =8. 已知多项式322x x m −+分解因式后有一个因式是1x +,则m 的值为( )A. 3B. 3−C. 1D. 1−9. 有两个正方形A ,B ,将A ,B 并列放置后构造新的长方形得到图甲,将A ,B 并列放置后构造新的正方形得到图乙,若图甲和图乙中阴影部分的面积分别为10和32,则正方形B 的面积为( )A. 4B. 5C. 6D. 710. 已知2020a m =+,2021b m =+,2022c m =+,则代数式222222222a b c ab bc ac ++−−−的值为( )A. 4B. 10C. 8D. 6二、填空题:本大题有6个小题,每小题4分,共24分.11. 计算:3a a ÷=__________. 12. 若249x kx ++是一个完全平方式,则k 的值是______.13. 若2310x y z ++=,43215x y z ++=,则x y z ++的值为_____. 14. 已知x ,y 是二元一次方程组2321x y x y −= +=解,则代数式224x y −的值为_____. 15. 如图,已知AD ∥BE,点C 是直线FG 上的动点,若在点C 的移动过程中,存在某时刻使得∠ACB=45°, ∠DAC=22°,则∠EBC 的度数为________.的.的16. 如图,AF 是∠BAC 的平分线,DF ∥AC ,若∠1=35°,则∠BAF 的度数为_____.三、解答题:本题共8小题,17-19题每题6分,20-21题每题8分,22-23题每题10分,24题12分,共66分.解答应写出文字说明、证明过程或演算步棸.17. 计算(1)化简 ①()()3232321243a b a b a b ⋅−÷−; ②()()()32123a a a a −−−−.(2)分解因式①4224816x x y y −+;②()222416a a +−.18. 解方程组:(1)3155214x y x y += −=; (2)327221132x y x y y −= −− −= . 19. 如图,方格纸中,有两条线段AB ,BC .利用方格纸完成以下操作:在(1)过点A 作BC 的平行线AE .(2)过点C 作AB 的平行线,与(1)中的平行线相交于点D .(3)用符号表示出图中的一组平行线.20. 如图:已知,∠HCO =∠EBC ,∠BHC +∠BEF =180°.(1)求证:EF ∥BH ;(2)若BH 平分∠EBO ,EF ⊥AO 于F ,∠HCO =64°,求∠CHO 的度数.21. 自从上海发生新冠肺炎发生以来,社会各界携手抗疫,全国人民积极捐助,共克时艰.温州市无偿捐助新鲜蔬菜120 t 运往疫区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如表所示:(假设每辆车均满载) 车型甲 乙 丙 汽车运载量(t/辆)5 8 10 汽车运费(元/辆)400 500 600(1)全部蔬菜可用甲型车8辆,乙型车5辆,丙型车____辆来运送;(2)若全部蔬菜都用甲、乙两种车型来运送,需运费8 200元,问分别需甲、乙两种车型各几辆?(3)该地打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为16辆,你能分别求出运费最省时三种车型的辆数吗?此时的运费又是多少元?22. 可以利用几何直观的方法获得一些代数结论,如:例1:如图,可得等式:()a b c ab ac +=+;.例2:如图,可得等式:()()222632a a b a ab b ++=++.(1)如图1,将几个面积不等的小正方形与小长方形拼成一个边长为a b c ++的正方形,从中你发现的结论用等式表示为____________________.(2)利用(1)中所得到的结论,解决下面的问题:已知10a b c ++=,22236a b c ++=.求ab bc ac ++的值.(3)如图2,拼成AMGN 为大长方形,记长方形ABCD 面积与长方形EFGH 的面积差为S .设CD x =,若S 的值与CD 无关,求a 与b 之间的数量关系.23. 已知:点E 在线段,AB CD 间(如图1).连接,BE DE .BED ABE CDE ∠=∠+∠.(1)求证:AB CD .(2)如图2,点F 在点E 右侧.连接,FB FD .求证360ABF BFD CDF ∠+∠+∠=°.(3)如图3在(2)的条件下,线段BE ,FD 的延长线交于点H .BH 交CD 于点K .当BE平分的ABF ∠,DE 平分CDF ∠,32BFD BED ∠=∠,123BKD HDK ∠+∠=°时,求BHF ∠的度数. 24. 某工厂准备用图甲所示的A 型正方形板材和B 型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若现有A 型板材120张,B 型板材240张可制作竖式和横式两种无盖箱子各多少个?(2)若该工厂准备用12000元资金去购买A ,B 两种型号板材,制作竖式,横式箱子共100个,已知A 型板材每张10元,B 型板材每张30元,发现资金恰好用完,问可以制作竖式箱子多少个?(3)若该工厂新购得65张规格为33m m ×的C 型正方形板材,将其全部切割成A 型或B 型板材(不记损耗),用切割的板材制作成两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个?。
杭州市西湖区2012-2013学年第二学期期末教学质量调研
七年级数学试卷
一、仔细选一选 (本题有10个小题, 每小题3分, 共30分 )下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应格子内. 1.化简62a a ¸的结果是( )
A .3a
B .4a
C . 5a
D .2a
2.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000000 7 (平方毫米),这个数用科学记数法表示为()
A .7×10-6
B . 7×10-7
C .0.7×10-6
D .70×10-
8
3.下列运算正确的是( )
A .(
)
2
3524a a -=B .()2
22a b a b -=- C .
123
16+=+a a D .11
b b a a +---=
4.方程
1
02
x x +=-的根是( ) A .1- B .2 C .1-或2 D .1或2
5.如图,已知12? ,则下列结论一定成立的是( )
A .AB//CD
B . AD//B
C C .ÐB=Ð
D D .Ð3=Ð4 6.已知2,2m n mn +==-,则)1)(1(n m --的值为( )
A .3-
B .4-
C . 3
D .4
7.分解因式22
21a a b -+-正确的是( )
A .()
2
21
a b -- B .()()()211a a b b --+-
C .()()11a b a b +---
D .()()21a b
a b a +--+
8.某校运动员按规定组数进行分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则可列出的方程组为( )
A .7385y x y x ì=+ïí
=-ïî B .7385y x y x ì=+ïí=+ïîC .7385y x y x ì=-ïí=-ïî D .73
85
y x y x ì=-ïí=+ïî
(第5题)
9.若关于x ,y 的方程组2318517ax y x by ì+=ïí-+=ïî(其中a ,b 是常数)的解为3
4x y ì=ïí=ïî
,
则方程组()()(
)()2318
517a x y x y x y b x y ì++-=ïí-++-=ïî的解为( )
A .34x y ì=ïí=ïî
B .71x y ì=ïí=-ïî
C . 3.50.5x y ì=ïí=-ïî
D . 3.5
0.5x y ì=ïí=ïî
10.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格中的两个格点(即网格中横、纵线的交点).在这个55´的方格纸中,格点C 使△ABC 的面积为2个平方单位,则图中这样的点C 有()个. A .3 B .4 C .5 D .6
二、认真填一填 (本题有6个小题, 每小题4分, 共24分)
11.分解因式:221x x -+=___________,32s st - =____________. 12.计算
:0
2(3)-+
=____________
;1
2
2--+=____________.
13.若分式22943x x x --+=0,则x =____________;若分式229
43
x x x --+有意义,则x 应满足的
条件是_____________.
14.若2225x y +=,且7x y +=,则x y -的值是________. 15.如图,已知AB//DE ,ÐABC=75°,ÐCDE=150°,
则ÐBCD 的度数为____________.
16.若等式()()
2738810A B x A B x -+-=+对一切实数x 都成立,则A =________,B
=_________.
三、全面答一答 (本题有7个小题, 共66分)解答应写出必要的文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么写出一部分解答也可以. 17.(本小题满分6分)
如图,由3×3组成的方格中每个方格内均有代数式(图中只
列出了部分代数式),方格中每一行、每一列以及每一条对角线
上的三个代数式的和均相等.求打上“a ”的方格内的数.
.
(第15题)
E
D
C B A
5 4 a
-5x -3x 3y
y
18.(本小题满分8分)
(1)计算:①11(5)(5)22
a b a b -+ ②)5()201015(23234453y x y x y x y x -÷--
(2)先化简,再求值:222
12212
x x x
x x x x --+ -+-,其中241x =.
19.(本小题满分8分)
某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元.若要求每种广告播放不止1次,问两种广告的播放次数有哪几种安排方式?2分钟广告总收费多少万元? 20.(本小题满分10分)
(1)如图1,P 是ÐABC 内一点,请过点P 画.射线PD ,使PD//BC ;过点P 画.射线PE ,使PE//BA .通过观察思考后你发现ÐABC 与ÐDPE 的大小关系是_________,并说明理由..... (2)如图2,直线a ,b 所成的角跑到画板外面去了,为了测量这两条直线所成的角的度数,请画图..并简单地写出..
你的方法.
(图1)(图2)
(第
b
a
(第21题图1)
(第21题图2)
b
a
21.(本小题满分10分)
某区从参加数学质量检测的8000名学生中,随机抽取了部分学生的成绩作为样本.为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到表一;随后汇总整个样本数据,得到部分结果,如表二.
表一
注:[60,72)表示成绩在60分和72分之间(包含60分,但不含72分),以此类推.请根据表一、表二所提供的信息完成下列问题:
(1)求出样本中,学生数学成绩的平均分为多少?(结果精确到0.1)
(2)分别求出样本中,数学成绩在分数段[84,96)的频数和等级为B的人数占抽样学生人数的百分比.
(3)请你估计这8000名学生数学成绩在C等级的有多少人?
22.(本小题满分12分)
我市在一项市政工程招标时,接到甲、乙工程队的投标书:每施工一天,需付甲工程队工程款为1.5万元,付乙工程队1.1万元.工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
方案1:甲队单独施工完成此项工程刚好如期完工;
方案2:乙队单独施工完成此项工程要比规定工期多用5天;
方案3:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.
(1)你认为哪一种施工方案最节省工程款?请说明理由.
(2)如果工程领导小组希望能够提前4天完成此项工程,请问该如何设计施工方案,需要工程款多少万元?(要求用二元一次方程组解答,天数必须为整数)
23.(本小题满分12分) 阅读理解并填空:
(1)为了求代数式223x x ++的值,我们必须知道x 的值.若1x =,则这个代数式的值为_______;若2x =,则这个代数式的值为_______,……,可见,这个代数式的值因x 的取值不同而_______(填“变化”或“不变”).尽管如此,我们还是有办法来考虑这个代数式的值的范围.
(2)数学课本第105页这样写“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”.在运用完全平方公式进行因式分解时,关键是...判断这个多项式是不是一个完全平方式.同样地,把一个多项式进行部分因式分解可以来解决代数式值的最大(或............................最.小)值问题......例如:22223(21)2(1)2x x x x x ++=+++=++,因为2
(1)x +是非负数,所以,这个代
数式2
23x x ++的最小值是_______,这时相应的x 的值是__________.
尝试探究并解答:
(3)求代数式2
1410x x -++的最大(或最小)值,并写出相应的x 的值.
(4)求代数式2
2121x x -+的最大(或最小)值,并写出相应的x 的值.
(5)已知213
322
y x x =--,且x 的值在数1~4(包含1和4)之间变化,求这时y 的变化范围.。