2019年人教A版必修一高中数学单元测试第三章函数的应用A卷 及答案
- 格式:doc
- 大小:200.00 KB
- 文档页数:14
本章知识结构本章测试1.若函数f(x)=121+x ,则该函数在(-∞,+∞)上是( ) A.单调递减无最小值 B.单调递减有最小值 C.单调递增无最大值 D.单调递增有最大值 思路解析:利用函数的图象就可以判断推出函数f(x)=121+x在(-∞,+∞)上是单调递减无最小值,故选A. 答案:A 2.设3x =71,则( ) A.-2<x<-1 B.-3<x<-2 C.-1<x<0 D.0<x<1 思路解析:利用对数函数将3x =71转化为x=log 371,再根据对数函数性质进行判断推出-2=log 391<x=log 371<log 331=-1,故选A.答案:A3.函数f(x)=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是( ) A.(0,21) B.(21,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)思路解析:已知函数f(x)=21++x ax 在区间(-2,+∞)上单调递增, 转化得f(x)=21++x ax =a+221+-x a 在区间(-2,+∞)上也单调递增,故1-2a <0⇒a >21.故选B.答案:B 4.函数f(x)=)34(log 122-+-x x 的定义域为( )A.(1,2)∪(2,3)B.(-∞,1)∪(3,+∞)C.(1,3)D.[1,3] 思路解析:f(x)=)34(log 122-+-x x 根据对数函数性质我们可以得到-x 2+4x-3>0,且-x 2+4x-3≠1可得{x|1<x <3且x ≠2}=,故选A.答案:A5.若函数f(x)是定义在R 上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x 的取值范围是( )A.(-∞,2)B.(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-2,2) 思路解析:f(x)是定义在R 上的偶函数,则f(-x)=f(x),又f(x)在(-∞,0]上是减函数,且f(2)=0,则可以根据偶函数性质判断出使得f(x)<0的x 的取值范围是(-2,2),故选D. 答案:D6.已知实数a 、b 满足等式(21)a =(31)b,下列五个关系式,其中不可能成立的关系式有( ) ① 0<b<a ② a<b<0③ 0<a<b ④ b<a<0 ⑤ a=bA.1个B.2个C.3个D.4个 思路解析:已知实数a 、b 满足等式(21)a =(31)b,则根据幂函数性质可以判断出等式成立的条件,当a=b=0时等式可成立;当0<b <a 时等式可成立;当a <b <0时等式也成立,故不可能成立的关系式有两个,选B. 答案:B7.设0<a<1,函数f(x)=log a (a 2x -2a x -2),则使f(x)<0的x 的取值范围( ) A.(-∞,0) B.(0,+∞) C.(-∞,log a 3) D.(log a 3,+∞)思路解析:已知0<a <1,函数f(x)=log a (a 2x-2a x -2)<0,即求a 2x-2a x -2>1,a 2x-2a x -3>0⇒(a x -3)(a x +1)>0⇒a x <-1(舍)或a x >3,a x >3⇒x <log a 3. 答案:C 8.设a=22ln ,b=53ln ,c=55ln ,则( ) A.a<b<c B.c<b<a C.c<a<b D.b<a<c思路解析:通过对数函数性质即可得到结果. 答案:C9.定义在(-∞,+∞)上的奇函数f(x)和偶函数g(x)在区间(-∞,0]上的图象关于x 轴对称,且f(x)为增函数,则下列各选项中能使不等式f(b)-f(-a)>g(a)-g(-b)成立的是( ) A.a>b>0 B.a<b<0 C.ab>0 D.ab<0思路解析:已知定义在(-∞,+∞)上的奇函数f(x)和偶函数g(x)在区间(-∞,0]上的图象关于x 轴对称,且f(x)为增函数,则根据图象性质及函数的奇偶性可以得到f(b)-f(-a)=f(b)+f(a)>g(a)-g(-b)=g(a)-g(b)成立的条件为a >b >0,故选A. 答案:A10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x-0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A.45.606B.45.6C.45.56D.45.51思路解析:设在甲地销售汽车x 辆,则在乙地销售汽车(15-x)辆,得可获得的总利润为 L=L 1+L 2=5.06x-0.15x 2+2(15-x)=30+3.06x-0.15x 2,配方得到 L=-0.15(x+10.2)2+45.606≤45.606故选A. 答案:BA.(21,1) B.(21,+∞) C.(0,21)∪[1,+∞) D.(0, 21) 答案:A 12.函数f(x)=x x x ---4lg 32的定义域是_______________. 思路解析:⎪⎩⎪⎨⎧<≠≥⇒⎪⎩⎪⎨⎧>-≠-≥-4320403,02x x x x x x ⇒x ∈[2,3]∪(3,4).答案:[2,3)∪(3,4) 13.若函数f(x)=log a (222a x x ++)是奇函数,则a=________________.思路解析:函数f(x)=log a (x+222a x +)是奇函数,即f(-x)=-f(x),代入可以得到log a (-x+222)(a x +-)=-log a (x+222a x +),化简得到a=22为所求. 答案:22 14.已知函数y=f(x)与y=f -1(x)互为反函数,又y=f -1(x+1)与y=g(x)的图象关于直线y=x 对称,若f(x)=21log (x 2+2)(x>0);f -1(x)=___________;g(6)=______________.思路解析:利用反函数的性质和图象性质可以直接得到结果. 答案:)1(2)21(-<-x x;-415.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是_____________________. 思路解析:如右图所示,利用勾股定理可以得到所求即为PM=PN ,而四边形CNPM 为矩形,所求即四边形面积,当四边形为正方形时可取得最大面积.利用三角形相似可以得到一些量化关系,观察易得到△ACB ∶△PBM ∶△ANP ,利用量化关系可以得到,当PM=PN=3时可以取得最大值,最大值为3.答案:316.已知函数f(x)=bax x +2(a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3, x 2=4.求函数f(x)的解析式.思路解析:利用函数根的性质作出判断,将x 1=3,x 2=4分别代入方程,分别解出a,b 的值即可得到所求结果.答案:将x 1=3,x 2=4分别代入方程b ax x +2-x+12=0得⎪⎪⎩⎪⎪⎨⎧-=+-=+,8416,939ba ba 解得⎩⎨⎧=-=.2,1b a 所以f(x)=x x -22 (x ≠2). 17.已知函数f(x)=x 3+x,x ∈R(1)指出f(x)在定义域R 上的奇偶性与单调性(只须写出结论,无需证明); (2)若a 、b 、c ∈R ,且a+b>0,b+c>0,c+a>0,试证明:f(a)+f(b)+f(c)>0.思路解析:利用函数单调性和奇偶性判断;根据已知条件a+b >0,b+c >0,c+a >0,可以判断出f(a),f(b),f(c)之间的大小关系. 答案:(1)f(x)是定义域R 上的奇函数且为增函数. (2)由a+b >0得a >-b.由增函数, 得f(a)>f(-b),由奇函数,得f(-b)=-f(b), ∴f(a)+f(b)>0,同理可得f(b)+f(c)>0,f(c)+f(a)>0,将以上三式相加后,得f(a)+f(b)+f(c)>0.18.20个劳动力种50亩地,这些地可种蔬菜、棉花、水稻.这些作物每亩地所需劳力和预计产值如下表.应怎样计划才能使每亩地都能种上作物(水稻必种),所有劳力都有工作且作物预计总产值达最高?劳动力得到使用以及获得最大产值.答案:设种x 亩水稻(0<x ≤50=,y 亩棉花(0<x ≤50=时,总产值为h 且每个劳力都有工作.h=0.3x+0.5y+0.6[50-(x+y)]且x 、y 满足4x +31y+21[50-(x+y)]=20. 即h=-203x+27,4≤x ≤50,x ∈N 欲使h 为最大,则x 应为最小,故当x=4(亩)时,h max =26.4万元,此时y=24(亩). 故安排1人种4亩水稻,8人种24亩棉花,11人种22亩蔬菜时农作物总产值最高且每个劳力都有工作.19.某公司生产的A 型商品通过租赁柜台进入某商场销售.第一年,商场为吸引厂家,决定免收该年管理费,因此,该年A 型商品定价为每件70元,年销售量为11.8万件.第二年,商场开始对该商品征收比率为p%的管理费(即销售100元要征收p 元),于是该商品的定价上升为每件%170p -元,预计年销售量将减少p 万件.(1)将第二年商场对该商品征收的管理费y(万元)表示成p 的函数,并指出这个函数的定义域; (2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p%的范围是多少?(3)第二年,商场在所收管理费不少于14万元的前提下,要让厂家获得最大销售金额,则p 应为多少?思路解析:根据题目分析可以得到第二年该商品年销售量为(11.8-p )万件,年销售收入 为%170p -(11.8-p)万元,则商场该年对该商品征收的总管理费为%170p -(11.8-p)p%(万元),可以得到所求函数,利用函数关系式的自变量和因变量取值范围便可解决后面的问题. 答案:(1)依题意,第二年该商品年销售量为(11.8-p )万件,年销售收入为%170p -(11.8-p)万元,则商场该年对该商品征收的总管理费为%170p -(11.8-p)p%(万元).故所求函数为:y=p -10070(118-10p)p.由 11.8-p >0及p >0得定义域为0<p <559.(2)由y ≥14,得p-1007(118-10p)p ≥14.化简得p 2-12p+20≤0,即(p-2)(p-10)≤0,解得2≤p ≤10.故当比率在[2%,10%]内时,商场收取的管理费将不少于14万元. (3)第二年,当商场收取的管理费不少于14万元时,厂家的销售收入为g(p)=%170p -(11.8-p)(2≤p ≤10).∵g(p)=%170p -(11.8-p)=700(10-p -100882)为减函数,∴g(p)max =g(2)=700(万元).故当比率为2%时,厂家销售金额最大,且商场所收管理费又不少于14万元.20.已知二次函数f(x)=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x 有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m <n),使f(x)的定义域和值域分别为[m,n ]和[4m,4n ],如果存在,求出m 的值;如果不存在,说明理由.思路解析:利用等根可得判别式Δ=0即可得到b 的值,同时根据f(x-1)=f(3-x)知此函数图ax 2+bx-2x=0象的对称轴方程为x=-ab2=1,得a 的值.解:(1)∵方程有等根,Δ=(b-2)2=0,得b=2.由f(x-1)=f(3-x)知此函数图ax 2+bx-2x=0象的对称轴方程为x=-ab2=1,得a=-1,故f(x)=-x 2+2x.(2)∵f(x)=-(x-1)2+1≤1, ∴4n ≤1,即n ≤41.而抛物线y=-x 2+2x 的对称轴为x=1, ∴当n ≤41时,f(x)在[m,n ]上为增函数. 若满足题设条件的m,n 存在,则⎩⎨⎧==.4)(,4)(n n f m m f即⎩⎨⎧-==-==⇒⎪⎩⎪⎨⎧=+-=+-.20,20424222n n m m nn n n m m 或或 又m <n ≤41, ∴m=-2,n=0,这时,定义域为[-2,0],值域为[-8,0].由以上知满足条件的m,n 存在, m=-2,n=0. 21.设函数f(x)表示实数,x 在与x 的给定区间内整数之差绝对值的最小值. (1)当x ∈[-21,21]时,求出f(x)的解析式,当x ∈[k-21,k+21](k ∈Z )时,写出用绝对值符号表示的f(x)的解析式,并说明理由;(2)用偶函数定义证明函数f (x )是偶函数(x ∈R ). 思路解析:当x ∈[-21,21]时,由定义知:x 与0距离最近,故当x ∈[k-21,k+21](k ∈Z )时,由定义知:k 为与x 最近的一个整数,可以得到第一问的解答;利用偶函数的定义证明第二问,需要注意使用第一问的结论,可以简化证明过程. 答案:(1)当x ∈[-21,21]时,由定义知:x 与0距离最近,f(x) =|x|,x ∈[-21,21], 当x ∈[k-21,k+21](k ∈Z )时,由定义知:k 为与x 最近的一个整数,故 f(x)=|x-k|,x ∈[k-21,k+21](k ∈Z ).(2)对任何x ∈R ,函数f(x)都存在,且存在k ∈Z ,满足k-21≤x ≤k+21,f(x)=|x-k|.由k-21≤x ≤k+21可以得出-k-21≤-x ≤-k+21(k ∈Z ), 即-x ∈[-k-21,-k+21](-k ∈Z ).由(1)的结论,f(-x)=|1-x-(-k)|=|k-x|=|x-k|=f(x),即f(x)是偶函数.。
人教A 版(2019)高中数学必修第一册第三章 函数概念与性质 函数的概念【附答案】一、选择题(60分)1.函数y = )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥⋃D .{}|01x x ≤≤2.已知函数()(0)1x a f x x ax +=>-,若0a =>,则()f x 的取值范围是( )A .[1,1)-B .(1)--C .[1)--D .(3.函数y =的值域是( )A .⎡⎣B .[]0,2C .⎡⎣D .[]1,24.函数y =的值域为A .]B .[1,2]C .D .2]5.已知函数()242tx t f x x --+=+在区间[-1,2]上的最大值为2,则t 的值等于( ) A .2或3 B .-1或3 C .1 D .36.设函数2()(0)f x ax bx c a =++<的定义域为D ,若所有点构成一个正方形区域,则a 的值为( )A .2-B .4-C .D .8-7.已知定义在[)0,+∞上的函数()f x 满足()()2f x f x x +=+,且当[)0,2x ∈时,()8f x x =-,则()93f =( ).A .2019B .2109C .2190D .29018.记号[x ]表示不超过实数x 的最大整数,若2()30x f x ⎡⎤=+⎢⎥⎣⎦,则()()()()()1232930f f f f f +++⋯++的值为( )A .899B .900C .901D .9029.函数()f x = ).A B .32 C .52D .2 10.设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图象绕原点逆吋针旋转3π后与原图象重合,则在以下各项中(1)f 的取值只可能是A B .1 C .3 D .011.已知函数f(x)={x,x <013x 3−12(a +1)x 2+ax,x ⩾0 ,若函数y =f(x)−ax −1有两个零点,则实数a 的取值范围是( )A .(0,1)B .(1,+∞)C .(−1,0)D .(−∞,−1)12.若函数()f x 满足关系式2()2()f x f x x x --=+,则(2)f =( )A .103-B .103C .143-D .143二、填空题(20分)13.函数()f x x =的值域为_______________.14.规定[]x 为不超过x 的最大整数,对任意实数x ,令1()[4]f x x =,()4[4]g x x x =-,21()(())f x f g x =.若1()2f x =,2()3f x =,则x 的取值范围是________.15.已知定义在R 上函数()f x 满足,对一切实数x 、y ,均有()()22223f x y y f x y ++≥+,且()100100f =,则()200f =______.16.函数()y f x =是最小正周期为4的偶函数,且在[]2,0x ∈-时,()21f x x =+,若存在1x ,2x ,…,n x 满足120n x x x ≤<<<,且()()()()1223f x f x f x f x -+-+()()12016n n f x f x -+-=,则n n x +最小值为__________.17.已知函数22y x x =+在闭区间[,]a b 上的值域为[1,3]-,则⋅a b 的最大值为________.三、解答题(70分)18.在正整数集*N 上定义函数()y f n =,满足()[(1)1]2[2(1)]f n f n f n ++=-+,且(1)2f =.(1)求证:9(3)(2)10f f -=; (2)是否存在实数,a b 使得1()132n f n a b =+⎛⎫-- ⎪⎝⎭任意正整数n 恒成立,并证明你的结论.19.设函数(),,x x P f x x x M∈⎧=⎨-∈⎩其中P ,M 是非空数集.记f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }. (Ⅰ)若P =[0,3],M =(﹣∞,﹣1),求f (P )∪f (M );(Ⅱ)若P ∩M =∅,且f (x )是定义在R 上的增函数,求集合P ,M ;(Ⅲ)判断命题“若P ∪M ≠R ,则f (P )∪f (M )≠R ”的真假,并加以证明.20.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x ); (2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围.21.已知二次函数f (x )的值域为[–9,+∞),且不等式f (x )<0的解集为(–1,5). (1)求f (x )的解析式;(2)求函数y =f22.已知x 为实数,用[]x 表示不超过x 的最大整数.(1)若函数()[]f x x =,求()()1.2, 1.2f f -的值; (2)若函数()()122x x f x x R +⎡⎤⎡⎤=-∈⎢⎥⎢⎥⎣⎦⎣⎦,求()f x 的值域; (3)若存在m R ∈且m Z ∉,使得()[]()f m fm =,则称函数()f x 是Ω函数,若函数 ()a f x x x=+是Ω函数,求a 的取值范围.23.设()22f x x tx =+,其中t R ∈. (1)当1t =时,分别求()f x 及()()f f x 的值域;(2)记()[]{|,,1}A y y f x x t t ==∈--+,()()[]{|,,1}B y y f f x x t t ==∈--+,若A B =,求实数t 的值.【参考答案】1.C 2.C 3.C 4.D 5.A 6.B。
第三章函数的概念与性质3.4函数的应用(一)考点1一次、二次函数模型的应用1.(2019·某某某某中学高一期中考试)一家报刊推销员从报社买进报纸的价格是每份2元,卖出的价格是每份3元,卖不完的还可以以每份0.8元的价格退回报社。
在一个月(以30天计算)内有20天每天可卖出400份,其余10天每天只能卖出250份,且每天从报社买进报纸的份数都相同,要使推销员每月所获得的利润最大,则应该每天从报社买进报纸()。
A.215份B.350份C.400份D.520份答案:C解析:设每天从报社买进x(250≤x≤400,x∈N)份报纸时,每月所获利润为y元,具体情况如下表:数量/份单价/元金额/元买进30x 2 60x卖出20x+10×250 3 60x+7500退回10(x-250) 0.8 8x-2000y=[(60x+7500)+(8x-2000)]-60x=8x+5500(250≤x≤400,x∈N)。
∵y=8x+5500在[250,400]上是增函数,∴当x=400时,y取得最大值8700。
即每天从报社买进400份报纸时,每月获得的利润最大,最大利润为8700元。
故选C。
2.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元/件)之间的关系满足一次函数:m=162-3x。
若要使每天获得最大的销售利润,则该商品的售价应定为()。
A.40元/件B.42元/件C.54元/件D.60元/件答案:B解析:设每天获得的销售利润为y元,则y=(x-30)(162-3x)=-3(x-42)2+432,所以当x=42时,获得的销售利润最大,故该商品的售价应定为42元/件。
3.某厂日产手套的总成本y(元)与日产量x(双)之间的关系式为y=5x+40000。
而手套出厂价格为每双10元,要使该厂不亏本至少日产手套()。
A.2000双B.4000双C.6000双D.8000双答案:D解析:由5x +40000≤10x ,得x ≥8000,即至少日产手套8000双才不亏本。
章末检测(A)(时间:120分钟满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分)1.函数y=1+1x的零点是()A.(-1,0) B.-1 C.1 D.02.设函数y=x3与y=(12)x-2的图象的交点为(x,y0),则x0所在的区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)3.某企业2010年12月份的产值是这年1月份产值的P倍,则该企业2010年度产值的月平均增长率为()A.PP-1B.11P-1C.11P D.P-1114.如图所示的函数图象与x轴均有交点,其中不能用二分法求图中交点横坐标的是()A.①③B.②④C.①②D.③④5.如图1,直角梯形OABC 中,AB ∥OC ,AB =1,OC =BC =2,直线l ∶x =t 截此梯形所得位于l 左方图形面积为S ,则函数S =f(t)的图象大致为图中的( )图16.已知在x 克a%的盐水中,加入y 克b%的盐水,浓度变为c%,将y 表示成x 的函数关系式为( )A .y =c -ac -b x B .y =c -ab -c x C .y =c -bc -axD .y =b -cc -ax 7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( )(下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38) A .38% B .41% C .44%D .73%8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R(Q)=4Q -1200Q 2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)( )A.250300 B.200300C.250350 D.2003509.在一次数学实验中,运用图形计算器采集到如下一组数据:则x、y)() A.y=a+bx B.y=a+b xC.y=ax2+b D.y=a+b x10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?() A.一次函数B.二次函数C.指数函数D.对数函数11.用二分法判断方程2x3+3x-3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421875,0.6253=0.24414)()A.0.25 B.0.375C.0.635 D.0.82512.有浓度为90%的溶液100g,从中倒出10g后再倒入10g水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg2=0.3010,lg3=0.4771)()A.19 B.20C.21 D.22二、填空题(本大题共4小题,每小题5分,共20分)13.用二分法研究函数f(x)=x3+2x-1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次计算的f(x)的值为f(________).14.若函数f(x)=a x-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围为________.15.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________________万元.16.函数f(x)=x2-2x+b的零点均是正数,则实数b的取值范围是________.三、解答题(本大题共6小题,共70分)17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x的取值范围.(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a,通过x块玻璃后强度为y.(1)写出y关于x的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下?(lg3≈0.4771)19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA是线段,曲线AB是函数y=ka t(t≥1,a>0,且k,a是常数)的图象.(1)写出服药后y关于t的函数关系式;(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3,(1)求f(x)的解析式;(2)判断函数g(x)=-1+lg f2(x)在区间[0,9]上零点的个数.21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x年后,我国人口为y亿.(1)求y与x的函数关系式y=f(x);(2)求函数y=f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)章末检测(A )1.B [由1+1x =0,得1x =-1,∴x =-1.] 2.B [由题意x 0为方程x 3=(12)x -2的根, 令f (x )=x 3-22-x ,∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0, ∴x 0∈(1,2).]3.B [设1月份产值为a ,增长率为x ,则aP =a (1+x )11, ∴x =11P -1.]4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.] 5.C [解析式为S =f (t )=⎩⎪⎨⎪⎧12t ·2t (0≤t ≤1)12×1×2+(t -1)×2(1<t ≤2)=⎩⎨⎧t 2(0≤t ≤1)2t -1(1<t ≤2)∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]6.B [根据配制前后溶质不变,有等式a %x +b %y =c %(x +y ),即ax +by =cx +cy ,故y =c -ab -cx .] 7.B [设职工原工资为p ,平均增长率为x , 则p (1+x )6=8p ,x =68-1=2-1=41%.]8.A [L (Q )=4Q -1200Q 2-Q -200=-1200(Q -300)2+250,故总利润L (Q )的最大值是250万元,这时产品的生产数量为300.]9.B [∵x =0时,bx 无意义,∴D 不成立. 由对应数据显示该函数是增函数,且增幅越来越快, ∴A 不成立. ∵C 是偶函数,∴x =±1的值应该相等,故C 不成立. 对于B ,当x =0时,y =1, ∴a +1=1,a =0;当x =1时,y =b =2.02,经验证它与各数据比较接近.]10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]11.C [令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0, ∴方程2x 3+3x -3=0的根在区间(0.625,0.75)内,∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.] 12.C [操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21.] 13.(0,0.5) 0.25解析 根据函数零点的存在性定理. ∵f (0)<0,f (0.5)>0,∴在(0,0.5)存在一个零点,第二次计算找中点, 即0+0.52=0.25.14.(1,+∞)解析 函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a>1.15.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2; 故第n 年后这批设备的价值为a (1-b %)n . 16.(0,1]解析 设x 1,x 2是函数f (x )的零点,则x 1,x 2为方程x 2-2x +b =0的两正根,则有⎩⎨⎧Δ≥0x 1+x 2=2>0x 1x 2=b >0,即⎩⎨⎧4-4b ≥0b >0.解得0<b ≤1.17.解 (1)依题意得y =5x +10(1200-x ) =-5x +12000,0≤x ≤1200. (2)∵1200×65%≤x ≤1200×85%, 解得780≤x ≤1020,而y =-5x +12000在[780,1 020]上为减函数, ∴-5×1020+12000≤y ≤-5×780+12000. 即6900≤y ≤8100,∴国庆这天停车场收费的金额范围为[6 900,8 100]. 18.解 (1)依题意:y =a ·0.9x ,x ∈N *. (2)依题意:y ≤13a ,即:a ·0.9x≤a 3,0.9x ≤13=0.91log 30.9,得x ≥log 0.913=-lg32lg3-1≈-0.47710.9542-1≈10.42.答 通过至少11块玻璃后,光线强度减弱到原来的13以下. 19.解 (1)当0≤t <1时,y =8t ;当t ≥1时,⎩⎨⎧ka =8,ka 7=1.∴⎩⎨⎧a =22,k =8 2.∴y =⎩⎨⎧8t , 0≤t <1,82(22)t,t ≥1.(2)令82·(22)t ≥2,解得t ≤5.∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药. (3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y 1=82×(22)8=22(微克);含第二次服药后药量为y 2=82×(22)3=4(微克),y 1+y 2=22+4≈4.7(微克).故第二次服药再过3小时,该病人每毫升血液中含药量为4.7微克.20.解 (1)令f (x )=ax +b ,由已知条件得⎩⎨⎧a +b =22a +b =3,解得a =b =1, 所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0,g (9)=-1+lg102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个.21.解 (1)2009年底人口数:13.56亿.经过1年,2010年底人口数:13.56+13.56×1%=13.56×(1+1%)(亿).经过2年,2011年底人口数:13.56×(1+1%)+13.56×(1+1%)×1%=13.56×(1+1%)2(亿).经过3年,2012年底人口数:13.56×(1+1%)2+13.56×(1+1%)2×1%=13.56×(1+1%)3(亿).∴经过的年数与(1+1%)的指数相同.∴经过x 年后人口数为13.56×(1+1%)x (亿).∴y =f (x )=13.56×(1+1%)x .(2)理论上指数函数定义域为R .∵此问题以年作为时间单位.∴此函数的定义域是{x |x ∈N *}.(3)y =f (x )=13.56×(1+1%)x .∵1+1%>1,13.56>0,∴y =f (x )=13.56×(1+1%)x 是增函数,即只要递增率为正数,随着时间的推移,人口的总数总在增长.22.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550.因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x ≤100时,P =60;当100<x <550时,P =60-0.02·(x -100)=62-x 50;当x ≥550时,P =51.所以P =f (x )=⎩⎪⎨⎪⎧ 60, 0<x ≤10062-x 50,100<x <550,51,x ≥550(x ∈N ).(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则L =(P -40)x =⎩⎪⎨⎪⎧ 20x , 0<x ≤10022x -x 250,100<x <550,11x ,x ≥550(x ∈N ). 当x =500时,L =6000;当x =1000时,L =11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.。
《第三章 函数的概念与性质》检测试卷一、单选题(每小题5分,共40分)1.设A ={x |0≤x ≤2},B ={y |1≤y ≤2},能表示集合A 到集合B 的函数关系的是( )2.函数f (x )=1+x +1x的定义域是( )A.[-1,+∞) B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R3.若函数f (x )满足f (x )=x +3x +2,则f (x )在[1,+∞)上的值域为( ) A .(-∞,1] B .⎝ ⎛⎦⎥⎤0,43 C .⎝ ⎛⎦⎥⎤-∞,43D .⎝ ⎛⎦⎥⎤1,43 4.函数y =4xx 2+1的图象大致为( )5.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .126.(2020·菏泽高一检测)下列函数中,既是定义在R 上的偶函数,又在区间(-∞,0)上单调递增的是( ) A .y =-x 2+1 B .y =x 2+1 C .y =x +1D .y =-x 37.(2021·合肥高一检测)设奇函数f (x )在[-3,3]上是减函数,且f (3)=-3,若不等式f (x )<2t +1对所有的x ∈[-3,3]都成立,则t 的取值范围是( ) A.[-1,1]B .(1,+∞)C .(-∞,1)D .(-∞,1)∪(1,+∞)8.某品种鲜花进货价5元/枝,据市场调查,当销售价格(x 元/枝)在x ∈[5,15]时,每天售出该鲜花枝数p (x )=500x -4,若想每天获得的利润最多,则销售价格应定为____元.( ) A .9 B .11 C .13 D .15二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分) 9.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)210.设奇函数f (x )在(0,+∞)上单调递增,且f (3)=0,则下列选项中属于不等式f (x )-f (-x )2>0的解集的是( ) A .(-∞,-3) B .(-3,0) C .(0,3)D .(3,+∞)11.关于函数f (x )=xx -1,下列结论正确的是( ) A .f (x )的图象过原点 B .f (x )是奇函数C .f (x )在区间(1,+∞)上单调递减D .f (x )是定义域上的增函数12.已知狄利克雷函数f (x )=⎩⎪⎨⎪⎧1,x 是有理数0,x 是无理数 ,则下列结论正确的是( )A .f (x )的值域为[0,1]B .f (x )定义域为RC .f (x +1)=f (x )D .f (x )是奇函数三、填空题(每小题5分,共20分)13.幂函数f (x )=x n的图象过点(2,8)且f (a -1)<1,则a 的取值范围是______.14.对于每个实数x ,设f (x )取y =2x -1,y =-2x +3两个函数中的最小值,则f (x )的最大值是______. 15.已知函数f (x -1)=x 2+(2a -2)x +3-2a .(1)若函数f (x )在区间[-5,5]上为单调函数,则实数a 的取值范围为________; (2)若f (x )在区间[-5,5]上的最小值为-1,则a 的值为______.16.某单位计划建造的三个相同的矩形饲养场(如图所示),现有总长为1的围墙材料,则每个矩形的长、宽之比为______时,围出的饲养场的总面积最大.四、解答题(共70分)17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2.(1)求f (f (3 ))的值;(2)若f (a )=3,求a 的值. 18.(12分)已知函数f (x )=2x5x +5.(1)求f ⎝ ⎛⎭⎪⎫12 +f (2)的值; (2)求f ⎝⎛⎭⎪⎫12 020 +f ⎝ ⎛⎭⎪⎫12 019 +…+f ⎝ ⎛⎭⎪⎫12 +f (1)+f (2)+…+f (2 019)+f (2 020)的值.19.(12分)大气中的温度随着高度的上升而降低,根据实测的结果上升到12 km 为止,温度的降低大体上与升高的距离成正比,在12 km 以上温度一定,保持在-55℃.(1)当地球表面大气的温度是a ℃时,在x km 的上空为y ℃,求a ,x ,y 间的函数关系式; (2)问当地表的温度是29℃时,3 km 上空的温度是多少?20.(12分)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2+ax +3-2a . (1)求f (x )的解析式;(2)若f (x )是R 上的单调函数,求实数a 的取值范围.21.(12分)已知函数f (x )的定义域为(-2,0)∪(0,2),当x ∈(0,2)时,函数f (x )=ax -1x -2. (1)若a =0,利用定义研究f (x )在区间(0,2)上的单调性; (2)若f (x )是偶函数,求f (x )的解析式.22.(12分)已知定义在R 上的奇函数f (x ),当x <0时,f (x )=xx -1. (1)求函数f (x )的解析式; (2)画出函数f (x )在R 上的图象;(3)解关于x 的不等式f (ax 2-x )>f (ax -1)(其中a ∈R ).答案解析一、单选题(每小题5分,共40分)1.设A ={x |0≤x ≤2},B ={y |1≤y ≤2},能表示集合A 到集合B 的函数关系的是( )分析选D.A 不是函数(一个x 对应两个y ),排除;B 中y ∈[0,2],不是集合A 到集合B 的函数关系,排除;C 不是函数(x =1时对应两个函数值),排除;D 符合要求. 2.函数f (x )=1+x +1x的定义域是( )A.[-1,+∞) B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R分析选C.要使函数有意义,需满足⎩⎪⎨⎪⎧1+x ≥0,x ≠0, 即x ≥-1且x ≠0.3.若函数f (x )满足f (x )=x +3x +2,则f (x )在[1,+∞)上的值域为( ) A .(-∞,1] B .⎝ ⎛⎦⎥⎤0,43 C .⎝ ⎛⎦⎥⎤-∞,43D .⎝ ⎛⎦⎥⎤1,43 分析选D.f (x )=x +3x +2 =1+1x +2, 因为y =1x +2在[1,+∞)上单调递减, 所以y =1x +2 ∈⎝ ⎛⎦⎥⎤0,13 . 所以1+1x +2 ∈⎝ ⎛⎦⎥⎤1,43 , 所以f (x )在[1,+∞)上的值域为⎝ ⎛⎦⎥⎤1,43 . 4.函数y =4xx 2+1的图象大致为( )分析选A.函数y=4xx2+1的定义域为实数集R,关于原点对称,函数y=f(x)=4xx2+1,则f(-x)=-4xx2+1=-f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B.5.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )A.-1 B.1 C.6 D.12分析选C.由题意知当-2≤x≤1时,f(x)=x-2;当1<x≤2时,f(x)=x3-2,又因为f(x)=x-2,f(x)=x3-2在定义域上都为增函数,所以f(x)的最大值为f(2)=23-2=6. 6.(2020·菏泽高一检测)下列函数中,既是定义在R上的偶函数,又在区间(-∞,0)上单调递增的是( ) A.y=-x2+1 B.y=x2+1C.y=x+1 D.y=-x3分析选A.A,f(-x)=-(-x)2+1=-x2+1=f(x),则f(x)是偶函数,函数在(-∞,0)上是增函数,满足条件;B,f(-x)=(-x)2+1=x2+1=f(x),则f(x)是偶函数,函数在(-∞,0)上是减函数,不满足条件;C,f(-x)=-x+1≠x+1=f(x),则f(x)不是偶函数,不满足条件;D.f(-x)=-(-x)3=x3=-f(x),则f(x)是奇函数,函数在(-∞,0)上是减函数,不满足条件.7.(2021·合肥高一检测)设奇函数f(x)在[-3,3]上是减函数,且f(3)=-3,若不等式f(x)<2t+1对所有的x∈[-3,3]都成立,则t的取值范围是( )A.[-1,1] B.(1,+∞)C.(-∞,1) D.(-∞,1)∪(1,+∞)分析选B.因为奇函数f(x)在[-3,3]上是减函数,且f(3)=-3,所以f(x)max=f(-3)=3,若不等式f(x)<2t+1对所有的x∈[-3,3]都成立,则3<2t+1,解得t>1.8.某品种鲜花进货价5元/枝,据市场调查,当销售价格(x元/枝)在x∈[5,15]时,每天售出该鲜花枝数p(x)=500x-4,若想每天获得的利润最多,则销售价格应定为____元.( )A .9B .11C .13D .15 分析选D.设每天的利润为y 元, 则y =(x -5)·500x -4 =500⎝ ⎛⎭⎪⎫1-1x -4 ,5≤x ≤15,显然此函数是增函数,故当x =15时,y 取得最大值.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分) 9.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)2分析选BD.令t =2x -1,则x =t +12.f (t )=4⎝ ⎛⎭⎪⎫t +12 2=(t +1)2,故f (x )=(x +1)2,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确. 10.设奇函数f (x )在(0,+∞)上单调递增,且f (3)=0,则下列选项中属于不等式f (x )-f (-x )2>0的解集的是( ) A .(-∞,-3) B .(-3,0) C .(0,3)D .(3,+∞)分析选BD.因为f (x )为奇函数且f (3)=0, 所以f (-3)=-f (3)=0,因为f (x )在(0,+∞)上单调递增,故f (x )在(-∞,0)上单调递增,所以f (x )-f (-x )2=f (x )>0,当x >0时,x >3;当x <0时,-3<x <0, 故不等式的解集为(-3,0)∪(3,+∞). 11.关于函数f (x )=xx -1,下列结论正确的是( )A .f (x )的图象过原点B .f (x )是奇函数C .f (x )在区间(1,+∞)上单调递减D .f (x )是定义域上的增函数 分析选AC.函数f (x )=xx -1=x -1+1x -1 =1+1x -1,f (0)=0,A 正确; 图象关于(1,1)点对称,B 错误;在(-∞,1),(1,+∞)上是减函数,整个定义域上不是减函数,故C 正确,D 错误.12.已知狄利克雷函数f (x )=⎩⎪⎨⎪⎧1,x 是有理数0,x 是无理数 ,则下列结论正确的是( )A .f (x )的值域为[0,1]B .f (x )定义域为RC .f (x +1)=f (x )D .f (x )是奇函数分析选BC.根据分段函数的定义域为每段函数的并集可知,函数的定义域为全体有理数与无理数的并集即R ,故函数的定义域为R ,故B 正确;值域为{1,0},故A 错误; 当x 为有理数时,x +1也为有理数, 则f (x +1)=f (x )=1,当x 为无理数时,x +1也为无理数,则f (x +1)=f (x )=0,从而有f (x +1)=f (x ),故C 正确;当x 为有理数时,f (x )=1,f (-x )=1,不满足f (-x )=-f (x ),故D 错误. 三、填空题(每小题5分,共20分)13.幂函数f (x )=x n的图象过点(2,8)且f (a -1)<1,则a 的取值范围是______. 分析因为幂函数f (x )=x n的图象过点(2,8), 所以2n =8,所以n =3,所以幂函数f (x )=x 3,因为f (a -1)<1,所以(a -1)3<1,所以a -1<1,所以a <2. 答案:(-∞,2)14.对于每个实数x ,设f (x )取y =2x -1,y =-2x +3两个函数中的最小值,则f (x )的最大值是______. 分析因为f (x )取y =2x -1,y =-2x +3两个函数中的最小值, 故函数f (x )的图象如图中加粗线条所示:由图易得f (x )的最大值是1. 答案:115.已知函数f (x -1)=x 2+(2a -2)x +3-2a .(1)若函数f (x )在区间[-5,5]上为单调函数,则实数a 的取值范围为________; (2)若f (x )在区间[-5,5]上的最小值为-1,则a 的值为______.分析令x -1=t ,则x =t +1,f (t )=(t +1)2+(2a -2)·(t +1)+3-2a =t 2+2at +2, 所以f (x )=x 2+2ax +2.(1)因为f (x )图象的对称轴为x =-a ,由题意知-a ≤-5或-a ≥5,解得a ≤-5或a ≥5. 故实数a 的取值范围为(-∞,-5]∪[5,+∞). (2)当a >5时,f (x )最小值=f (-5)=27-10a =-1, 解得a =145(舍去);当-5≤a ≤5时,f (x )最小值=f (-a )=-a 2+2=-1,解得a =±3 ; 当a <-5时,f (x )最小值=f (5)=27+10a =-1, 解得a =-145 (舍去).综上a =±3 .答案:(1)(-∞,-5]∪[5,+∞) (2)±316.某单位计划建造的三个相同的矩形饲养场(如图所示),现有总长为1的围墙材料,则每个矩形的长、宽之比为______时,围出的饲养场的总面积最大.分析如图所示,设一个矩形饲养场的长为AB =x ,宽为AD =y ,则4x +6y =1,所以y =16 (1-4x ),则饲养场的总面积S =3xy =12 x (1-4x )=-2⎝ ⎛⎭⎪⎫x -18 2+132 , 故当x =18 ,y =112,即长、宽之比为18 ∶112=3∶2时,饲养场的总面积最大.答案:3∶2四、解答题(共70分)17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2.(1)求f (f (3 ))的值;(2)若f (a )=3,求a 的值. 分析(1)因为-1<3 <2,所以f (3 )=(3 )2=3. 又因为3≥2,所以f (f (3 ))=f (3)=2×3=6. (2)当a ≤-1时,f (a )=a +2. 又因为f (a )=3,所以a =1(舍去); 当-1<a <2时,f (a )=a 2.又因为f (a )=3,所以a =±3 ,其中负值舍去, 所以a =3 ; 当a ≥2时,f (a )=2a .又因为f (a )=3,所以a =32 (舍去).综上所述a =3 .18.(12分)已知函数f (x )=2x5x +5.(1)求f ⎝ ⎛⎭⎪⎫12 +f (2)的值; (2)求f ⎝⎛⎭⎪⎫12 020 +f ⎝ ⎛⎭⎪⎫12 019 +…+f ⎝ ⎛⎭⎪⎫12 +f (1)+f (2)+…+f (2 019)+f (2 020)的值.分析(1)因为函数f (x )=2x5x +5. 所以f ⎝ ⎛⎭⎪⎫12 +f (2)=2×125×12+5 +2×25×2+5 =25 . (2)因为函数f (x )=2x5x +5. 所以f (x )+f ⎝ ⎛⎭⎪⎫1x =2x 5x +5 +2x 5x+5=2x 5x +5 +25x +5 =25 ,所以f ⎝⎛⎭⎪⎫12 020 +f ⎝ ⎛⎭⎪⎫12 019 +…+f ⎝ ⎛⎭⎪⎫12 +f (1)+f (2)+…+f (2 019)+f (2 020)=2 019×25 +25+5 =4 0395. 19.(12分)大气中的温度随着高度的上升而降低,根据实测的结果上升到12 km 为止,温度的降低大体上与升高的距离成正比,在12 km 以上温度一定,保持在-55℃.(1)当地球表面大气的温度是a ℃时,在x km 的上空为y ℃,求a ,x ,y 间的函数关系式; (2)问当地表的温度是29℃时,3 km 上空的温度是多少?分析(1)由题设知,可设y -a =kx (0≤x ≤12,k <0),即y =a +kx .依题意,当x =12时,y =-55, 所以-55=a +12k ,解得k =-55+a12 .所以当0≤x ≤12时,y =a -x12(55+a )(0≤x ≤12).又当x >12时,y =-55.所以所求的函数关系式为y =⎩⎪⎨⎪⎧a -x 12(55+a ),(0≤x ≤12),-55,(x >12).(2)当a =29,x =3时,y =29-312 (55+29)=8,即3 km 上空的温度为8℃.20.(12分)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2+ax +3-2a . (1)求f (x )的解析式;(2)若f (x )是R 上的单调函数,求实数a 的取值范围.分析(1)根据题意,因为函数f (x )是定义在R 上的奇函数,所以f (0)=0, 当x <0时,-x >0,则f (-x )=(-x )2+a (-x )+3-2a =x 2-ax +3-2a =-f (x ),所以f (x )=-x 2+ax -3+2a (x <0),所以f (x )=⎩⎪⎨⎪⎧x 2+ax +3-2a ,x >00,x =0-x 2+ax -3+2a ,x <0.(2)若f (x )是R 上的单调函数,且f (0)=0, 则实数a 满足⎩⎪⎨⎪⎧3-2a ≥0-a 2≤0 ,解得0≤a ≤32 ,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,32 . 21.(12分)已知函数f (x )的定义域为(-2,0)∪(0,2),当x ∈(0,2)时,函数f (x )=ax -1x -2.(1)若a =0,利用定义研究f (x )在区间(0,2)上的单调性;(2)若f (x )是偶函数,求f (x )的解析式.分析(1)当a =0时,f (x )=12-x, 设x 1,x 2∈(0,2)且x 1<x 2,则f (x 1)-f (x 2)=12-x 1 -12-x 2 =x 1-x 2(2-x 1)(2-x 2), 因为x 1,x 2∈(0,2)且x 1<x 2,所以x 1-x 2<0,2-x 1>0,2-x 2>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )=12-x在区间(0,2)上单调递增. (2)令x ∈(-2,0),则-x ∈(0,2),所以f (-x )=a -x -1-x -2 =1x +2 -a x, 因为f (x )是偶函数,所以f (x )=f (-x )=1x +2 -a x,所以函数 f (x )在(-2,0)∪(0,2)上的解析式为:f (x )=⎩⎪⎨⎪⎧a x -1x -2,0<x <21x +2-a x ,-2<x <0. 22.(12分)已知定义在R 上的奇函数f (x ),当x <0时,f (x )=x x -1 . (1)求函数f (x )的解析式;(2)画出函数f (x )在R 上的图象;(3)解关于x 的不等式f (ax 2-x )>f (ax -1)(其中a ∈R ). 分析(1)令x >0,则-x <0,依题意得f (-x )=-x -x -1 =x x +1, 所以f (x )=-f (-x )=-xx +1 (x >0),又f (0)=0, 所以f (x )=⎩⎪⎨⎪⎧xx -1,x <00,x =0-x x +1,x >0. (2)图象如图所示.(3)解关于x 的不等式f (ax 2-x )>f (ax -1), 由图象可知,函数f (x )在R 上单调递减, 所以所求不等式等价于ax 2-x <ax -1,即ax 2-(a +1)x +1<0,即(ax -1)(x -1)<0, 当a =0时,解得x >1;当0<a <1时,解得1<x <1a ;当a =1时,解得x ∈∅;当a >1时,解得1a <x <1;当a <0时,解得x >1或x <1a .。
第三章测评A(基础过关卷)(时间:90分钟满分:100分)第Ⅰ卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y=1+1x的零点是()A.(-1,0) B.-1 C.1 D.02.已知函数f(x)=2x-b的零点为x0,且x0∈(-1,1),那么b的取值范围是()A.(-2,2) B.(-1,1) C.11,22⎛⎫-⎪⎝⎭D.(-1,0)3.已知函数f(x)=e x-x2,则在下列区间上,函数必有零点的是()A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)4.下列给出的四个函数f(x)的图象中能使函数y=f(x)-1没有零点的是()5.方程3x+x=3的解所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)6.实数a,b,c是图象连续不断的函数y=f(x)定义域中的三个数,且满足a<b<c,f(a)·f(b)<0,f(b)·f(c)<0,则函数y=f(x)在区间(a,c)上零点为()A.2个B.奇数个C.偶数个D.至少2个7.若函数y=a x-x-a有两个零点,则a的取值范围是()A.(1,+∞) B.(0,1) C.(0,+∞) D.∅8.红豆生南国,春来发几枝?如图给出了红豆生长时间t(月)与枝数y的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?()A.y=2t B.y=log2t C.y=2t D.y=t29.已知x0是函数f(x)=2x+11x的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则()A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>010.甲、乙二人从A地沿同一方向去B地,途中都使用两种不同的速度v1与v2(v1<v2),甲前一半的路程使用速度v1,后一半的路程使用速度v2;乙前一半的时间使用速度v1,后一半的时间使用速度v2,关于甲、乙二人从A地到达B地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t表示时间,纵轴s表示路程,C是AB的中点),则其中可能正确的图示分析为()第Ⅱ卷(非选择题共50分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是__________.12.已知长为4,宽为3的矩形,若长增加x ,宽减少2x,则面积最大,此时x =__________,面积S =__________.13.方程13⎛⎫ ⎪⎝⎭|x |=2-x 的实数根的个数为__________.14.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N *)内,则n =__________.15.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%.若初始时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤__________次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)三、解答题(本大题共4小题,共25分.解答时应写出文字说明、证明过程或演算步骤) 16.(6分)定义在R 上的偶函数y =f (x )在(-∞,0]上递增,函数f (x )的一个零点为-12,求满足f (log 14x )≥0的x 的取值集合.17.(6分)已知函数f (x )=x -1+12x 2-2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在定理确定各零点所在的区间(各区间长度不超过1).18.(6分)已知函数f (x )=log a (x +2)-1(a >0,且a ≠1),g (x )=12⎛⎫ ⎪⎝⎭x -1.(1)若函数y =f (x )的图象恒过定点A ,求点A 的坐标; (2)若函数F (x )=f (x )-g (x )的图象过点12,2⎛⎫⎪⎝⎭,试证明函数F (x )在x ∈(1,2)上有唯一零点.19.(7分)经市场调查,某种商品在过去50天的销售价格(单位:元)均为销售时间t (天)的函数,且销售量(单位:件)近似地满足f (t )=-2t +200(1≤t ≤50,t ∈N ),前30天价格(单位:元)为g (t )=12t +30(1≤t ≤30,t ∈N ),后20天价格(单位:元)为g (t )=45(31≤t ≤50,t ∈N ). (1)写出该种商品的日销售额S (元)与时间t (天)的函数关系; (2)求日销售额S 的最大值.参考答案1. 答案:B2. 解析:解方程f (x )=2x -b =0,得x 0=2b , 所以2b∈(-1,1),所以b ∈(-2,2). 答案:A 3. 解析:f (-2)=21e-4<0,f (-1)=1e -1<0,f (0)=e 0=1>0,f (1)=e -1>0,f (2)=e 2-4>0.∵f (-1)·f (0)<0,∴f (x )在(-1,0)上必有零点. 答案:B4. 解析:把y =f (x )的图象向下平移一个单位后,只有C 图中的图象满足y =f (x )-1与x 轴无交点.答案:C5. 解析:设f (x )=3x +x -3,则f (0)=-2<0,f (1)=1>0,则函数f (x )的零点即方程3x+x =3的解所在的区间为(0,1).答案:A6. 解析:由f (a )·f (b )<0知,区间(a ,b )上至少有1个零点,由f (b )·f (c )<0知在区间(b ,c )上至少有1个零点,故在区间(a ,c )上至少有2个零点.答案:D7. 解析:令f (x )=a x ,g (x )=x +a ,当a >1时,f (x )与g (x )的图象有两个交点,即函数y =a x -x -a 有两个零点. 答案:A8. 解析:当t =2时,y =4;当t =4时,y =16;当t =5时,y =32,故用y =2t 拟合最好.答案:A9. 解析:设y 1=2x ,y 2=11x -,在同一坐标系中作出其图象, 如图,在(1,x 0)内y 2=11x -的图象在y 1=2x 图象的上方, 即111x ->2x 1, 所以2x 1+111x -<0, 即f (x 1)<0,同理f (x 2)>0.答案:B10. 解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D ,再根据v 1<v 2可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.答案:A11. 解析:设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).答案:(2,3)12. 解析:S =(4+x ) 32x ⎛⎫- ⎪⎝⎭=-22x +x +12=-12 (x 2-2x )+12=-12 (x -1)2+252. 当x =1时,S max =252. 答案:125213. 解析:在同一平面直角坐标系内画出函数y =13⎛⎫ ⎪⎝⎭|x |与函数y =2-x 的图象,两图象有1个交点,所以方程13⎛⎫⎪⎝⎭|x|=2-x有1个实数根.答案:114.解析:设g(x)=ln x,h(x)=-3x+7,则函数g(x)和函数h(x)的图象交点的横坐标是函数f(x)的零点.在同一坐标系中画出函数g(x)和函数h(x)的图象,如图所示.由图象知函数f(x)的零点属于区间7 1,3⎛⎫ ⎪⎝⎭,又f(1)=-4<0,f(2)=-1+ln 2=ln 2e<0,f(3)=2+ln 3>0,所以函数f(x)的零点属于区间(2,3).所以n=2.答案:215.解析:设过滤n次才能达到市场要求,则2%113⎛⎫-⎪⎝⎭n≤0.1%,即23⎛⎫⎪⎝⎭n≤0.12,∴n lg 23≤-1-lg 2.解得n≥1lg22lg3--≈7.39.又n∈N*,∴n的最小值为8. 答案:816.解:∵-12是函数的一个零点,∴f12⎛⎫- ⎪⎝⎭=0.∵y=f(x)是偶函数且在(-∞,0]上单调递增,∴当log14x≤0,即x≥1时,log14x≥-12,解得x≤2,即1≤x≤2.由对称性可知,当log14x>0时,12≤x<1.综上所述,x的取值范围是1,2 2⎡⎤⎢⎥⎣⎦.17.解:由f(x)=0,得x-1=-12x2+2,令y1=x-1,y2=-12x2+2,分别画出它们的图象如图所示,其中抛物线顶点为(0,2),与x轴交于点(-2,0),(2,0),y1与y2的图象有3个交点,从而函数y=f(x)有3个零点.由f(x)的解析式知x≠0,f(x)的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线.且f(-3)=136>0,f(-2)=-12<0,f12⎛⎫⎪⎝⎭=18>0,f(1)=-12<0,f(2)=12>0,所以函数零点所在区间为(-3,-2),1,12⎛⎫⎪⎝⎭,(1,2).18.解:(1)∵函数y=log a x的图象恒过点(1,0),∴函数f(x)=log a(x+2)-1(a>0,且a≠1)的图象恒过点A(-1,-1).(2)F(x)=f(x)-g(x)=log a(x+2)-1-12⎛⎫⎪⎝⎭x-1,∵函数F(x)的图象过点1 2,2⎛⎫ ⎪⎝⎭,∴F(2)=12,即log a4-1-12⎛⎫⎪⎝⎭2-1=12,∴a=2.∴F(x)=log2(x+2)-12⎛⎫⎪⎝⎭x-1-1.∴函数F(x)在(1,2)上是增函数.又∵F(1)=log23-2<0,F(2)=12>0,∴函数F(x)在(1,2)上有零点,故函数F(x)在(1,2)上有唯一零点.19.解:(1)根据题意,得S=()1220030130245(2200)3150t t t tt t t⎧⎛⎫-++≤≤∈⎪ ⎪⎝⎭⎨⎪≤≤∈⎩NN,,,-+,,=240 6 000130909 0003150.t t t tt t t⎧≤≤∈⎨≤≤∈⎩NN-++,,,-+,,(2)当1≤t≤30,t∈N时,S=-(t-20)2+6 400,当t=20时,S有最大值,为6 400;当31≤t≤50,t∈N时,S=-90t+9 000为减函数,当t=31时,S有最大值,为6 210.∵6 210<6 400,∴当销售时间为20天时,日销售额S有最大值,为6 400元.。
第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数20()(31)f x x =+-的定义域是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .1,13⎛⎫⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,133⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数1(2),()(3)(2),x f x f x x =+⎪⎩≥<则(1)(9)f f +等于( )A .2-B .7-C .27D .73.函数111y x -=+-的图像是下列图像中的( )ABCD4.若函数y ax =与by x=-在(0,)+∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是( ) A .增函数B .减函数C .先增后减D .先减后增5.函数2()(2)1f x ax a x =+++是偶函数,则函数的单调递增区间为( ) A .[0,)+∞B .(,0]-∞C .(,)-∞+∞D .[1,)+∞6.函数2()(1)1f x mx m x =+-+在区间(,1]-∞上为减函数,则m 的取值范围是( )A .10,3⎛⎤ ⎥⎝⎦B .10,3⎡⎫⎪⎢⎣⎭C .10,3⎡⎤⎢⎥⎣⎦D .10,3⎛⎫ ⎪⎝⎭7.定义在R 上的偶函数()f x ,对任意()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x --<,则( )A .(3)(2)(1)f f f -<<B .(1)(2)(3)f f f -<<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f -<<8.若函数,1,()(23)1,1ax f x x a x x ⎧⎪=⎨⎪-+⎩>≤是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤ ⎥⎝⎦D .2,3⎛⎫+∞ ⎪⎝⎭9.设函数()f x 满足对任意的,m n (,m n 为正数)都有()()()f m n f m f n +=⋅且(1)2f =,则(2)(3)(2020)(1)(2)(2019)f f f f f f +++等于( )A .2 020B .2 019C .4 038D .4 04010.在函数([1,1])y x x =∈-的图像上有一点(,)P t t ,此函数图象与x 轴、直线1x =-及x t =围成图形的面积为S (如图的阴影部分所示),则S 与t 的函数关系的图象可表示为( )ABCD11.设奇函数()f x 在(0,)+∞上是增函数,且(2)0f =,则不等式()()0f x f x x --<的解集为( )A .(2,0)(2,)-+∞B .(2,0)(0,2)-C .(,2)(2,)-∞-+∞D .(,2)(0,2)-∞-12.已知定义在R 上的函数()f x ,若函数(1)y f x =+为偶函数,且()f x 对任意()1212,[1,)x x x x ∈+∞≠都有()()21210f x f x x x -->,若(1)(2)f a f a -≥,则实数a 的取值范围是( )A .[1,1]-B .(,1]-∞-C .[1,)+∞D .(,1][1,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.设函数0()1,02x x f x x =⎨⎛⎫⎪ ⎪⎝⎭⎩≥<则((4))f f -=________.14.若函数2(1)2()1a x a f x x a -+-=+-为奇函数,则实数a =________. 15.设函数2()24f x x x =-+在区间[,]m n 上的值域是[6,2]-,则m n +的取值范围是________.16.已知函数29,3,()6,3,x f x x x x ⎧⎪=⎨-+⎪⎩≥<则不等式()22(34)f x x f x --<的解集是________. 三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明,证明过程或演算步骤)17.[10分]已知函数22(),[1,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围; (3)讨论函数的单调性.(只写出结论即可)18.[12分]设函数2()23,f x x x a x =--+∈R .(1)小鹏同学认为,无论a 取何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明你的理由. (2)若()f x 是偶函数,求a 的值.(3)在(2)的情况下,画出()y f x =的图象并指出其单调递增区间。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第三章单元测试卷班级:___________姓名:___________评卷人得分一、单选题(每题5分,共40分)1.已知幂函数()y f x =的图象过点()2,2,则()4f =( )A .2-B .2C .1D .42.某人去上班,先跑步,后步行.如果y 表示该人离单位的距离,x 表示出发后的时间,那么下列图象中符合此人走法的是().A .B .C .D .3.下列四个函数中,在(0,)+¥上为增函数的是( )A .()3f x x=-B .2()3f x x x=-C .1()f x x=D .()f x x=4.下列哪组中的两个函数是同一函数( )A .2y =与y x=B .3y =与y x=C .y =2y =D .2y =与2x y x=5.函数2()ax bf x x +=是定义在(,3][1,)b b -¥-È-+¥上的奇函数.若(2)9f =,则a b +的值为( )A .6B .5C .4D .36.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是( )A .[3,)-+¥B .(,3]-¥-C .(,5)-¥D .[3,)+¥7.给定函数2()2,()4,f x x g x x =+=-对于,x R "Î用()M x 表示(),()f x g x 中的较小者,记为{}()min (),()M x f x g x =,则()M x 的最大值为( )A .0B .1C .3D .48.设函数()22f x x x =-+,()2g x ax =-,若对任意[]11x Î-,恒有()()f x g x >,则实数a 的取值范围为()A .(),2-¥-B .(),1-¥-C .()2,+¥D .()1,3评卷人得分二、多选题(每题5分,共20分)9.已知幂函数()f x 的图像经过127,3æöç÷èø,则幂函数()f x 具有的性质是()A .在其定义域上为增函数B .在()0,¥+上单调递减C .奇函数D .定义域为R10.下列函数中,值域为[)1,+¥的是( )A .222y x x -=+B .11yx =-C .y=D .y =11.已知奇函数()f x 是定义在R 上的减函数,且()21f =-,若()()1g x f x =-,则下列结论一定成立的是()A .()10g =B .()122g =-C .()()0g x g x -+>D .()()0g x g x -+<12.下列命题,其中正确的命题是()A .函数221y x x =++在()0,¥+上单调递增B .函数11y x =-在()(),11,-¥--+¥U 上是减函数C .函数y 的单调区间是[)2,-+¥D .已知()f x 在R 上是增函数,若0a b +>,则有()()()()f a f b f a f b +>-+-评卷人得分三、填空题(每题5分,共20分)13.已知函数12,0()1,0x x f x x x -<ìï=í>ïî,则()2f f -=éùëû___________.14.函数()f x =___.15.构造一个定义在R 上的奇函数___________.16.设()f x =[)0,+¥,则实数a 的值组成的集合是___________.评卷人得分四、解答题(第17题10分,18-22题每题12分,共70分)17.(1)已知f (x )的定义域为[0,2],求y =f (x +1)的定义域;(2)已知y =f (x +1)的定义域为[0,2],求f (x )的定义域;(3)已知函数y =f (2x ﹣1)的定义域为[﹣1,1],求函数y =f (x ﹣2)的定义域.18.求下列函数的解析式(1)已知f (x )=x 2+3x +2,求f (x +1);(2)已知f (x 2+1)=3x 4+2x 2﹣1,求f (x );(3)已知f (x )是一次函数,且满足3f (x +1)﹣2f (x ﹣1)=2x +17,求f (x ).19.已知函数()4f x x x=+.(1)求证:()f x 在()2,+¥上是增函数;(2)判断()f x 在()0,2上的单调性(只写结论不必给出理由),并求出()f x 在[]1,5上的最值.20.已知函数()f x 的定义域为R ,且对任意的,x y R Î,都有()()()f x y f x f y +=+成立.若当0x >时,()0f x <.(1)试判断()f x 的奇偶性;(2)试判断()f x 的单调性;(3)解不等式()2(6)f x x f ->.21.食品安全问题越来越引起人们的重视,为了给消费者提供放心的蔬菜,某农村合作社搭建了两个无公害蔬菜大棚,分别种植西红柿和黄瓜,根据以往的种植经验,发现种植西红柿的年利润P (单位:万元),种植黄瓜的年利润Q (单位:万元)与投入的资金x (4≤x ≤16,单位:万元)满足P =,Q =1124x +.现合作社共筹集了20万元,将其中8万元投入种植西红柿,剩余资金投入种植黄瓜.求这两个大棚的年利润总和.22.已知函数()f x 是定义在R 上的奇函数,且当0x <时,()22f x x x =--.(1)求函数()()f x x R Î的解析式;(2)函数()()[]()221,2g x f x ax x =-+Î,当[]1,2x Î时,求函数()g x 的最小值.参考答案1.D 【分析】设()f x x a =,然后将点()2,2代入可求出a ,从而可求出解析式,进而可求得()4f 的值【详解】由题意设()f x x a =,因为幂函数()y f x =的图象过点()2,2,所以22a =,得1a =,所以()f x x =,所以()44f =,故选:D 2.D 【分析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用0x =时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:0x =时所走的路程为0,离单位的距离为最大值,排除A 、C ,随着时间的增加,先跑步,开始时y 随x 的变化快,后步行,则y 随x 的变化慢,所以适合的图象为D ;故选:D 3.D 【分析】根据题意,依次判断各选项中函数的单调性即可.【详解】对于A ,()3f x x =-,在区间(0,)+¥为减函数,故A 不符合题意;对于B ,2()3f x x x =-的对称轴为直线32x =,且开口向上,所以函数在3,2æö-¥ç÷èø上单调递减,在3,2æö+¥ç÷èø上单调递增,故B 不符合题意;对于C ,1()f x x=,在区间(0,)+¥为减函数,故C 不符合题意;对于D ,,0(),0x x f x x x x ³ì==í-<î,所以函数在区间(0,)+¥为增函数,故D 符合题意.故选:D.4.B 【分析】利用两个函数相同的定义,定义域相同且对应法则相同,依次判断即可【详解】选项A ,2y =定义域为[0,)+¥,y x =定义域为R ,故不为同一函数;选项B ,两个函数定义域都为R ,且3y x ==,故两个函数是同一个函数;选项C ,y =定义域为R ,2y =定义域为[0,)+¥,故不为同一个函数;选项D ,2y =定义域为[0,)+¥,2x y x=定义域为{|0}x x ¹,故不为同一个函数.故选:B 5.A 【分析】由奇函数的定义域可得b 的值,再由(2)9f =解出a ,进而求出答案.【详解】函数2()ax bf x x +=是定义在(,3][1,)b b -¥-È-+¥上的奇函数,则(3)(1)0b b -+-=,解得2b =.又(2)9f =,则222942a a ´+=Þ=,所以6ab +=.故选:A 6.B 【分析】利用二次函数的性质,比较对称轴和区间端点的大小,列不等式可得a 的取值范围.【详解】函数f (x )的对称轴是1x a =-,开口向上,则14a -³,解得3a £-故选:B 7.C【分析】先把()M x 写成分段函数的形式,再求最大值即可.【详解】解:令224x x +<-,即220x x +-<,解得21x -<<,所以()(][)22,2,1()4,,21,x x M x x x ì+Î-ï=í-Î-¥-È+¥ïî,当21x -<<时,()()13M x M <=,当2x …或1x -…时,max ()(1)3M x M ==,所以函数()M x 的最大值为3,故选:C .8.D 【分析】转化()()f x g x >为222ax x x <-++,分0x =,(0,1]x Î,[1,0)x Î-讨论,参变分离即得解【详解】由题意,对任意[]11x Î-,恒有()()f x g x >即222222ax x x ax x x -Û<-++>+-(1)当0x =时,02<恒成立,a R Î;(2)当(0,1]x Î时,22a x x <-++,即min2(2)a x x <-++令22y x x=-++,由于22,y x y x =-+=都在(0,1]x Î单调递减故函数22y x x=-++在(0,1]x Î单调递减,故min 1|3x y y ===,故3a <(3)当[1,0)x Î-时,22a x x >-++,即max 2(2)a x x>-++令22y x x=-++,由于22,y x y x =-+=都在[1,0)x Î-单调递减故函数22y x x=-++在[1,0)x Î-单调递减,故max 1|1x y y =-==,故1a >综上: 13a <<故选:D 9.BC 【分析】设幂函数()af x x =,将127,3æöç÷èø代入解析式即可求出解析式,根据幂函数性质判断选项即可.【详解】设幂函数()af x x =,Q 幂函数图象过点127,3æöç÷èø,1273a \=,13a \=-())310f x xx -=\=¹,\ ()f x 定义域为(,0)(0,)-¥+¥U ,满足()()f x f x -=-,是奇函数,值域为(,0)(0,)-¥+¥U ,在定义域内不单调,在()0,¥+上单调递减.故选:BC 10.AC 【分析】A.函数的值域为[)1,+¥,所以该选项符合题意;B.当0x <时,0y <,所以该选项不符合题意;C.函数的值域为[)1,+¥,所以该选项符合题意;D.函数的值域不是[)1,+¥,所以该选项不符合题意.【详解】A. 2222(1)11y x x x =+=-+³- ,所以函数的值域为[)1,+¥,所以该选项符合题意;B. 11y x =-,当0x <时,0y <,所以该选项不符合题意;C. 1y =³,所以函数的值域为[)1,+¥,所以该选项符合题意;D. 0y =>,所以函数的值域不是[)1,+¥,所以该选项不符合题意.故选:AC 11.AC 【分析】根据奇函数性质得(0)0f =,即得(1)g ,可判断A; (2)(1)g f =,根据单调性可得1(1)0f -<<,即可判断B;先根据定义以及奇函数性质得()()(1)(1)g x g x f x f x -+=--+,再根据函数()f x 单调性判断C; 根据定义以及奇函数性质得(1)(1)()()0g x g x f x f x -+++=-+=,即可判断D.【详解】因为()f x 为定义在R 上的奇函数,所以(0)0f =,因为()(1)g x f x =-,所以(1)(0)0g f ==,故A 正确;因为()f x 为定义在R 上的减函数,且(2)1f =-,(2)(1)(0)f f f <<,即1(1)0f -<<.所以1(2)0g -<<,故B 不一定成立;因为()(1)g x f x =-,所以()(1)(1)g x f x f x -=--=-+,所以()()(1)(1)g x g x f x f x -+=--+,因为()f x 是定义在R 上的减函数,所以(1)(1)f x f x ->+,所以(1)(1)0f x f x --+>,即()()0g x g x -+>,故C 正确,选项D 错误.故选:AC 12.AD 【分析】根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.【详解】解:对于A 选项,函数221y x x =++的对称轴为124b x a =-=-,开口向上,所以在()0,¥+上单调递增,故正确;对于B 选项,函数11y x =-在()(),11,-¥--+¥U 上不具有单调性,故错误;对于C 选项,解不等式2540x x +-³得15x -££,函数得定义域为[]1,5-,故错误;对于D 选项,由0a b +>得,a b b a >->-,由于()f x 在R 上是增函数,故()()()(),f a f b f b f a >->-,所以()()()()f a f b f a f b +>-+-,故正确.故选:AD13.15.【分析】先求解得(2)5f -=,由50>,再代入解析式求()2f f -éùëû即可【详解】由题意,(2)12(2)5f -=-´-=,又50>,故1(5)5f =.故答案为:1514.(][),13,-¥-+¥U 【分析】依题意可得偶次方根的被开方数为非负数,即可得到不等式,解得即可;【详解】解:因为()f x =,所以2230x x --³,即()()130x x +-³,解得3x ³或1x £-,故函数()f x =(][),13,-¥-+¥U 故答案为:(][),13,-¥-+¥U 15.y x =(答案不唯一)【分析】利用奇函数的定义即可得出答案.【详解】若函数为奇函数,则()()f x f x -=,所以()y f x x ==.故答案为:y x=16.[)3,+¥【分析】根据值域为[0,+∞),分析可得,函数f (x )=ax 2+2ax +3开口向上,且最小值要小于等于0,列出方程,即可得结果.【详解】因为函数y =的值域为[0,+∞),设函数f (x )=ax 2+2ax +3,当0a =时,()3f x =显然不成立;当0a <,二次函数开口向下,有最大值,值域不为[0,+∞),不成立;当0a >,二次函数开口向上,要保证值域为[0,+∞),则最小值要小于等于0204120a a a >ì\íD =-³î,解得a ≥3.故答案为:[3,+∞)17.(1)[﹣1,1];(2)[1,3];(3)[﹣1,3].【分析】(1)由f (x )的定义域为[0,2],可得0≤x ≤2,进而得出0≤x +1≤2,解不等式可得y =f (x +1)的定义域;(2)由y =f (x +1)的定义域为[0,2],可得0≤x ≤2,进而求出x +1的范围,即为f (x )的定义域;(3)由函数y =f (2x ﹣1)的定义域为[﹣1,1],可得﹣1≤x ≤1,进而求出2x ﹣1的范围,即为x ﹣2的范围,解不等式得出x 的范围,为所求函数定义域.【详解】(1)已知f (x )的定义域为[0,2],则0≤x ≤2,由0≤x +1≤2,得﹣1≤x ≤1即y =f (x +1)的定义域为[﹣1,1];(2)已知y =f (x +1)的定义域为[0,2],则0≤x ≤2,则1≤x +1≤3,即y =f (x )的定义域为[1,3];(3)已知函数y =f (2x ﹣1)的定义域为[﹣1,1],则﹣1≤x ≤1,则﹣2≤2x ≤2,﹣3≤2x ﹣1≤1由﹣3≤x ﹣2≤1,得﹣1≤x ≤3,即函数y =f (x ﹣2)的定义域为[﹣1,3].18.(1)f (x +1)=x 2+5x +6;(2)f (x )=3x 2﹣4x ;(3)f (x )=2 x +7.【分析】(1)以x +1代替x 化简计算,可得f (x +1);(2)令x 2+1=t ,则x 2=t ﹣1,代入解析式求出f (t ),进而可得f (x );(3)设f (x )=kx +b ,代入已知等式化简计算,利用待定系数法求出,k b 的值,进而得出f (x ).【详解】(1)f (x +1)=(x +1)2+3(x +1)+2=x 2+5x +6;即f (x +1)=x 2+5x +6;(2)令x 2+1=t ,则x 2=t ﹣1;∴f (t )=3(t ﹣1)2+2(t ﹣1)﹣1=3t 2﹣4t ;∴f (x )=3x 2﹣4x ;(3)设f (x )=kx +b ;∴f (x +1)=k (x +1)+b =kx +k +b ,f (x ﹣1)=k (x ﹣1)+ b =kx ﹣k +b ;∴代入3f (x +1)﹣2f (x ﹣1)=2x +17得:3(kx +k +b )﹣2(kx ﹣k +b )=2 x +17;整理得,kx +5k +b =2x +17;2517k k b =ì\í+=î;∴k =2,b =7;∴f (x )=2x +7.19.(1)见解析;(2)()f x 在()0,2上的单调单调递减,()f x 在[]1,5上的最小值为()24f =;最大值为()2955f =.【分析】(1)利用函数单调性的定义,设122x x <<,则()()12f x f x -通分化简得到()121241x x x x æö--ç÷èø,然后进行论证即可.(2)类似(1)中方法得到()f x 在()0,2上的单调单调递减.然后根据在[]1,5上的单调性,得到最大值和最小值.【详解】(1)设122x x <<,则()()12121244f x f x x x x x -=+--()()2112121212441x x x x x x x x x x æö-=-+×=--ç÷èø, 122x x <<Q ,120x x \-<,12410x x ->,故()()120f x f x -<,故()f x 在()2,+¥上递增;(2)()f x 在()0,2上的单调单调递减.所以()f x 在[1,2]上单调递减,在(2,5]单调递增,又∵()()()42915,24,5555f f f ===+=,∴()f x 在[]1,5上的最小值为()24f =;最大值为()2955f =.20.(1)奇函数;(2)在R 上为减函数;(3)(2,3)-.【分析】(1)用赋值法先求出(0)f ,再令y x =-,即可得证;(2)对已知等式赋值,令211,y x x x x =-=,结合函数单调性定义,即可证明结论;(3)利用单调性和奇偶性,转化为自变量的不等量关系,即可解出不等式.【详解】(1)函数()f x 的定义域为R ,定义域关于原点对称.令0x y ==,则(0)(0)(0)2(0)f f f f =+=,(0)0f \=令y x =-,则()()()0f x x f x f x -=+-=,()()f x f x \-=-,()f x \是奇函数(2)任取12,x x R Î,且12x x >,由题意得,120x x ->,()120f x x -<()()()()1122122f x f x x x f x x f x =-+=-+,()()()12120f x f x f x x \-=-<()()12f x f x \<,又12x x >,()f x \在R 上为减函数.(3)由(2)得,26x x -<,即260x x --<,解得,23x -<<.\不等式的解集为(2,3)-.21.39(万元)【分析】分别代入数据计算P 、Q ,然后求和即得【详解】P =824=,Q =()120812154´-+=,P +Q =24+15=39(万元).这两个大棚的年利润总和为39(万元).22.(1)()222,02,0x x x f x x x x ì--£=í->î;(2)答案不唯一,具体见解析.【分析】(1)根据函数的奇偶性来求得()f x 的解析式.(2)先求得()g x 的解析式,对a 进行分类讨论,由此求得()g x 的最小值.【详解】(1)Q 函数()f x 是定义在R 上的奇函数,\当0x >时,此时0x -<,()()f x f x \=--,又Q 当0x <时,()22f x x x =--,()()()()22][22f f x x x x x x =--=----=-\-,Q ()00f =,\函数()()f x x R Î的解析式为:()222,02,0x x x f x x x x ì--£=í->î.(2)函数()()()[]()22222222221,2g x f x ax x x ax x a x x =-+=--+=-++Î,二次函数对称轴为:1x a =+,当21a £+时,即1a ³时,()()min 224g x g a ==-,当11a +£时,即0a £时,()()min 112g x g a ==-,当112a <+<时,即01a <<时,2min ()(1)21g x g a a a =+=--+,综上,当1a ³时,()min 24g x a =-,当0a £时,()min 12g x a =-,当01a <<时,2min ()21g x a a =--+.。
阶段质量检测(三) 函数的应用一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图象表示的函数中没有零点的是( )解析:函数没有零点即相应的函数图象与x 轴没有交点,观察图象可知选项A 中图象表示的函数没有零点.答案:A2.函数f (x )=x ln x 的零点为( ) A .0或1 B .1C .(1,0)D .(0,0)或(1,0)解析:函数f (x )的定义域为(0,+∞), 由f (x )=0得x =0或ln x =0, 即x =0或x =1.又因为x ∈(0,+∞),所以x =1.故选B. 答案:B3.方程0.9x -x =0的实数解的个数是( ) A .0个 B .1个 C .2个 D .3个解析:设f (x )=0.9x -x ,则f (x )为减函数,值域为R ,故f (x )有1个零点,∴方程0.9x -x =0有一个实数解.答案:B4.若等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则它的解析式为( )A .y =20-2x (x ≤10)B .y =20-2x (x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10) 解析:由题意,得2x +y =20,∴y =20-2x . ∵y >0,∴20-2x >0,∴x <10.又∵三角形两边之和大于第三边, ∴⎩⎪⎨⎪⎧2x >y ,y =20-2x ,解得x >5, ∴5<x <10,故选D.C.b<c<a D.c<a<b解析:因为a=243=1613,b=425=1615,c=2513,且幂函数y=x13在上单调递增,指数函数y=16x在R上单调递增,所以b<a<c.答案:A6.已知函数f(x)的图象是连续不断的,有如下x,f(x)的对应值表:x 345678f(x)123.5621.45-7.82-11.5753.76126.49则函数f(x)在区间[3,8]内的零点至少有()A.2个B.3个C.4个D.5个解析:根据零点的存在性定理可知,函数f(x)在区间(4,5),(6,7)内至少各存在一个零点,故函数f(x)在区间[3,8]内至少有2个零点.答案:A7.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x 兔子在中间一段时间内路程是不变的,且当乌龟到达终点时兔子A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:令h (x )=⎝ ⎛⎭⎪⎫13x -(3-x ),则f (0)=-2,f (1)=-53,f (2)=-89,127.故h (x )的零点在(2,3)内,因此两函数图象交点在(2,3)内.选C.答案:C10.三个变量y 1,y 2,y 3随着变量x 的变化情况如表:x 1 3 5 7 9 11 y 1 5 135 625 1 715 3 635 6 655y 2 5 29 245 2 189 19 685177149y 3 5 6.10 6.61 6.95 7.20 7.40则与x 呈对数型函数、指数型函数、幂函数型函数变化的变量依次是 )A .y 1,y 2,y 3B .y 2,y 1,y 3 个.故选B.B.⎝ ⎛⎭⎪⎫15,+∞ C.⎝ ⎛⎭⎪⎫-1,15 D .(-∞,-1)解析:由题意⎩⎪⎨⎪⎧ f (-1)<0,f (1)>0或⎩⎪⎨⎪⎧f (-1)>0,f (1)<0.即⎩⎪⎨⎪⎧ -3a +1-2a <0,3a +1-2a >0或⎩⎪⎨⎪⎧-3a +1-2a >0,3a +1-2a <0. 整理得⎩⎪⎨⎪⎧ 1-5a <0,a +1>0或⎩⎪⎨⎪⎧1-5a >0,a +1<0.解得a >15或a <-1,故选A. 答案:A的图象(如图所示)当x =0时,y =20=1, 当x =-1时,y =2|-1|=2, 当x =1时,y =21=2,所以当值域为[1,2]时,区间[a ,b ]的长度的最大值为2,最小值为1,它们的差为1.答案:1三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设函数f (x )=⎩⎪⎨⎪⎧2x -2,x ∈[1,+∞),x 2-2x ,x ∈(-∞,1),求函数g (x )=f (x )(2.375,2.5) 2.437 5 -0.145 5由表中数据可得x 0∈(2,2.5),x 0∈(2.25,2.5),x 0∈(2.375,2.5),x 0∈(2.437 5,2.5).因为|2.437 5-2.5|=0.062 5<0.1,所以方程2x +x -8=0在区间(2,3)内的近似解可取为2.437 5.19.(12分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的15%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按2log 5(A +1)进行奖励.记奖金为y (单位:万元销售利润为x (单位:万元).(1)写出奖金y 关于销售利润x 的关系式;(2)如果业务员老江获得5.5万元的奖金,那么他的销售利润是多少万元?解析:(1)由题意知 y =⎩⎪⎨⎪⎧0.15x ,0≤x ≤10,1.5+2log (x -9),x >10.。
第三章 函数的应用单元测试(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2-2x -3的零点是( ) A .1,-3 B .3,-1 C .1,2 D .不存在2.用二分法求方程f (x )=0在区间(1,2)内的唯一实数解x 0时,经计算得f (1)=3,f (2)=-5,f ⎝ ⎛⎭⎪⎫32=9,则下列结论正确的是( )A .x 0∈⎝ ⎛⎭⎪⎫1,32B .x 0=32C .x 0∈⎝ ⎛⎭⎪⎫32,2D .x 0∈⎝ ⎛⎭⎪⎫1,32或x 0∈⎝ ⎛⎭⎪⎫32,23.若函数f (x )=ax +b 的零点是-1(a ≠0),则函数g (x )=ax 2+bx 的零点是( )A .-1B .0C .-1和0D .1和04.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2 000元降到1 280元,则这种手机的价格平均每次降低的百分率是( )A .10%B .15%C .18%D .20%5.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,3,x >0,若f (-4)=f (0),f (-2)=-2,则函数y =f (x )-x 的零点的个数为( )A .1B .2C .3D .46.函数f (x )=ln(x +1)-2x的零点所在的大致区间是( )A.(0,1) B.(1,2) C.(2,e) D.(3,4)7.实数a,b,c是图象连续不断的函数y=f(x)定义域中的三个数,且满足a<b<c,f(a)·f(b)<0,f(c)·f(b)<0,则函数y=f(x)在区间(a,c)上的零点个数为( )A.2 B.奇数 C.偶数 D.至少2个8.若方程m x-x-m=0(m>0,且m≠1)有两个不同实数根,则m 的取值范围是( )A.m>1 B.0<m<1 C.m>0 D.m>29.如图,△ABC为等腰直角三角形,直线l与AB相交且l⊥AB,直线l截这个三角形所得的位于直线右方的图形面积为y,点A到直线l的距离为x,则y=f(x)的图象大致为四个选项中的( )10.若一次函数f(x)=ax+b有一个零点2,则函数g(x)=bx2-ax的图象可能是( )11.某商场对顾客实行购物优惠活动,规定一次购物付款总额:①如果不超过200元,则不给予优惠;②如果超过200元但不超过500元,则按标价给予9折优惠;③如果超过500元,其500元内的按第②条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款( ) A.413.7元 B.513.7元C.546.6元 D.548.7元12.已知0<a<1,则方程a|x|=|log a x|的实根个数为( )A.2 B.3C.4 D.与a的值有关第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数f (x )=ln x -1x -1的零点的个数是________.14.根据表格中的数据,若函数f (x )=ln x -x +2在区间(k ,k +1)(k ∈N *)内有一个零点,则k 的值为________.不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km.16.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m有3个零点,则实数m 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)若二次函数f (x )=-x 2+2ax +4a +1有一个零点小于-1,一个零点大于3,求实数a 的取值范围.18.(本小题满分12分)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.19.(本小题满分12分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的15%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分按2log5(A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型;(2)如果业务员老江获得5.5万元的奖金,那么他的销售利润是多少万元?20.(本小题满分12分)设函数f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3和2.(1)求f(x);(2)当函数f(x)的定义域是0,1]时,求函数f(x)的值域.21.(本小题满分12分)函数y=f(x)的图象关于x=1对称,当x≤1时,f(x)=x2-1.(1)写出y=f(x)的解析式并作出图象;(2)根据图象讨论f(x)-a=0(a∈R)的根的情况.22.(本小题满分12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?详解答案第三章函数的应用单元测试1.B 解析:令x2-2x-3=0得x=-1或x=3,故选B.2.C 解析:∵f (2)·f ⎝ ⎛⎭⎪⎫32<0,∴x 0∈⎝ ⎛⎭⎪⎫32,2.3.C 解析:由条件知f (-1)=0,∴b =a ,∴g (x )=ax 2+bx =ax (x +1)的零点为0和-1,故选C.4.D 解析:由题意,可设平均每次价格降低的百分率为x , 则有2 000(1-x )2=1 280,解得x =0.2或x =1.8(舍去),故选D.5.C 解析:本题主要考查二次函数、分段函数及函数的零点.f (-4)=f (0)⇒b =4,f (-2)=-2⇒c =2,∴ f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,3,x >0.当x ≤0时,由x 2+4x +2=x 解得x 1=-1,x 2=-2;当x >0时,x =3.所以函数y =f (x )-x 的零点的个数为3,故选C.6.B 解析:f (1)=ln(1+1)-21=ln 2-2=ln 2-ln e 2<0,f (2)=ln(2+1)-22=ln 3-1>0,因此函数的零点必在区间(1,2)内,故选B.7.D 解析:由f (a )·f (b )<0知,y =f (x )在(a ,b )上至少有一零点,由f (c )·f (b )<0知,y =f (x )在(b ,c )上至少有一零点,故y =f (x )在(a ,c )上至少有2个零点.8.A 解析:方程m x -x -m =0有两个不同实数根,等价于函数y =m x 与y =x +m 的图象有两个不同的交点.显然当m >1时,如图①有两个不同交点;当0<m <1时,如图②有且仅有一个交点,故选A.9.C 解析:设AB =a ,则y =12a 2-12x 2=-12x 2+12a 2,其图象为抛物线的一段,开口向下,顶点在y 轴正半轴.故选C.10.C 解析:由题意知,2a +b =0,所以a =-b2.因此g (x )=bx 2+b2x =b ⎝⎛⎭⎪⎫x 2+12x =b ⎝⎛⎭⎪⎫x +142-b 16.易知函数g (x )图象的对称轴为x =-14,排除A ,D.又令g (x )=0,得x =0或x =-0.5,故选C.11.C 解析:设该顾客两次购物的商品价格分别为x ,y 元,由题意可知x =168,y ×0.9=423,∴y =470,故x +y =168+470=638(元),故如果他一次性购买上述两样商品应付款:(638-500)×0.7+500×0.9=96.6+450=546.6(元). 12.A 解析:设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如下图所示.由图可知,有两个交点,故方程a|x|=|log a x|有两个根.故选A.13.2 解析:由y=ln x与y=1x-1的图象可知有两个交点.14.3 解析:由表中数据可知,f(1)=ln 1-1+2=1>0,f(2)=ln 2-2+2=ln 2=0.69>0,f(3)=ln 3-3+2=1.10-1=0.1>0,f(4)=ln 4-4+2=1.39-2=-0.61<0,f(5)=ln 5-5+2=1.61-3=-1.39<0,∴f(3)·f(4)<0,∴k的值为3.15.9 解析:设乘客每次乘坐出租车需付费用为f(x)元,由题意,得f (x )=⎩⎪⎨⎪⎧8+1,x ∈ 0,3],9+ x -3 ×2.15,x ∈ 3,8],9+5×2.15+ x -8 ×2.85,x ∈ 8,+∞ ,令f (x )=22.6,显然9+5×2.15+(x -8)×2.85=22.6(x >8),解得x =9.16.(0,1) 解析:画出f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图所示.由函数g (x )=f (x )-m 有3个零点,即f (x )-m =0有3个不相等的实根,结合图象,得0<m <1.17.解:因为二次函数f (x )=-x 2+2ax +4a +1的图象开口向下,且在区间(-∞,-1),(3,+∞)内各有一个零点,所以⎩⎪⎨⎪⎧f -1 >0,f 3 >0,即⎩⎪⎨⎪⎧- -1 2-2a +4a +1>0,-32+2a ×3+4a +1>0,即⎩⎪⎨⎪⎧2a >0,10a -8>0,解得a >45.18.解:设f (x )=ax 2+bx +c (a ≠0),由题意知,c =3,-b2a=2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 1+x 2=-b a ,x 1·x 2=ca.∵x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,即⎝ ⎛⎭⎪⎫-b a 2-2c a =10,∴42-6a =10,∴a =1,b =-4. ∴f (x )=x 2-4x +3. 19.解:(1)由题意,得y =⎩⎪⎨⎪⎧0.15x ,0<x ≤10,1.5+2log 5 x -9 ,x >10.(2)x ∈(0,10],0.15x ≤1.5. 又∵y =5.5,∴x >10,∴1.5+2log 5(x -9)=5.5,∴x =34. ∴老江的销售利润是34万元.20.解:(1)∵f (x )的两个零点是-3和2, ∴函数图象过点(-3,0),(2,0),∴⎩⎪⎨⎪⎧9a -3 b -8 -a -ab =0,①4a +2 b -8 -a -ab =0.②①-②,得b =a +8.③③代入②,得4a +2a -a -a (a +8)=0, 即a 2+3a =0. ∵a ≠0,∴a =-3, ∴b =a +8=5.∴f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18=-3⎝⎛⎭⎪⎫x +122+34+18,图象的对称轴是x =-12,又0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18, ∴函数f (x )的值域是12,18].21.解:(1)由题意知f (x )=⎩⎪⎨⎪⎧x 2-1 x ≤1 ,x -2 2-1 x >1 .图象如图所示.(2)当a <-1时,f (x )-a =0无解; 当a =-1时,f (x )-a =0有两个实数根; 当-1<a <0时,f (x )-a =0有四个实数根; 当a =0时,f (x )-a =0有三个实数根; 当a >0时,f (x )-a =0有两个实数根. 22.解:(1)设f (x )=k 1x ,g (x )=k 2x , 所以f (1)=18=k 1,g (1)=12=k 2,即f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品x 万元,则股票类投资为(20-x )万元.依题意,得y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20). 令t =20-x (0≤t ≤25). 则y =20-t 28+12t =-18(t -2)2+3,所以当t =2,即x =16(万元)时,收益最大,最大收益为3万元.。