一个新的正项级数敛散性的判别法
- 格式:pdf
- 大小:257.94 KB
- 文档页数:3
正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。
判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。
一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。
2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。
二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。
三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。
四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。
五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。
这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。
同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。
关于正项级数敛散性的判别法作者: 学号: 单位: 指导老师摘要:级数是数学分析中的主要内容之一,我们学习过的数项级数敛散性判别法有许多种,柯西(Cauchy )判别法、达朗贝尔(D'Alembert )判别法、高斯(Gause )判别法、莱布尼兹(Leibniz )判别法、阿贝尔(Abel )判别法等,对数项级数敛散性判别法进行归纳,使之系统化.关键词:正项级数;敛散性;判别法1引言设数项级数121...++...nn n aa a a ∞+==+∑的n 项部分和为:121......nn n i i S a a a a ==++++=∑.若n 项部分和数列为{n S }收敛,即存在一个实数S ,使lim n x S S →∞=.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和,可见无穷级数是否收敛,取决于lim n x S →∞是否存在,从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]: 数项级数1nn a∞=∑收敛⇔0,,,N N n N p N ε++∀>∃∈∀>∀∈对,有+1+2++...+<n n n p a a a ε.当p=1时,可得推论:若级数∑∞=1n nu收敛,则u lim n n =∞→.其逆否命题为:若lim n ≠∞→,则级数∑∞=1n nu发散.2 正项级数敛散性判别法设数项级数1nn a∞=∑为正项级数()0n a ≥,则级数的n 项部分和数列{}n S单调递增,由数列的单调有界定理,有定理2.1:正项级数n 1u n ∞=∑收敛⇔它部分和数列{}n S 有上界.证明:由于,...),2,1(0u i =>i 所以{n S }是递增数列.而单调数列收敛的充要条件是该数列有界(单调有界定理),从而本定理得证 . 由定理2.1可推得 定理2.2(比较判别法):设两个正项级数n 1u n ∞=∑和n 1n v ∞=∑,且,n ,N N N ≥∀∈∃+有n n cv u ≤,c 是正常数,则1)若级数n 1n v ∞=∑收敛,则级数n 1u n ∞=∑也收敛;2)若级数n 1u n ∞=∑发散,则级数n 1n v ∞=∑也发散.证明:由定理知,去掉,增添或改变级数n 1u n ∞=∑的有限项,,则不改变级数n1u n ∞=∑的敛散性.因此,不妨设,+∈∀N n 有n n cv u ≤,c 是正常.设级数n 1n v ∞=∑与n1u n ∞=∑的n 项部分和分部是n B A 和n ,有上述不等式有,n n n n cB v v v c cv cv cv u A =+++=++≤+++=)...(......u u 212121n .1)若级数n 1n v ∞=∑收敛,根据定理1,数列{n B }有上届,从而数列{n A }也有上届,再根据定理1,级数n 1u n ∞=∑收敛;2)若级数n 1u n ∞=∑发散,根据定理1,数列{n A }无上届,从而数列{n B }也无上届,在根据定理1,级数n1un ∞=∑发散.其极限形式:定理2.2.1(比较判别法的极限形式):设n 1u n ∞=∑和n 1n v ∞=∑(n v 0≠)是两个正项级数且有lim =n x nuv λ→∞,+∞≤≤λ0,1)若级数n 1n v ∞=∑收敛,且+∞<≤λ0,则级数n 1u n ∞=∑也收敛;2)若级数n 1n v ∞=∑发散,且+∞≤<λ0,则级数n 1u n ∞=∑也发散.证明:1)若级数n1n v∞=∑收敛,且+∞<≤λ0,,由已知条件,,,,00N n N N ≥∀∈∃>∃+ε,有0u ελ<-nnv ,即n n v N )(u ,n 0ελ+<≥∀有,根据柯西收敛准则推论的逆否命题,级数n 1u n ∞=∑收敛;2)若级数n 1n v ∞=∑发散,且+∞≤<λ0,由已知条件,,u ,,,00n nv N n N N <-≥∀∈∃+∞<<∃+ελλε有:根据柯西收敛准则推论的逆否命题知,则级数n 1u n ∞=∑也发散.若级数n 1n v ∞=∑发散,且+∞=λ,有已知条件,,u ,,0M v N n N N M nn>≥∀∈∃>∃+有,即,u ,,0M v N n N N M nn>≥∀∈∃>∃+有,根据’柯西收敛准则推论的逆否命题,则级数n 1u n ∞=∑也发散.例1 判别级数∑∞=+1)1(1n n n 的敛散性.分析: 考虑通项)1(1+n n ,分子n 的最高幂是0(只有常数1 ),分母n 的最高幂是2,这时通项接近2201n n n =,原级数也接近于级数∑∞=121n n ,这是12>=p 的收敛的p-级数,那么原级数也一定收敛.事先知道级数是收敛的,就把通项放大,放大为一个收敛的级数通项,这个级数一般就是∑∞=121n n ,至多差一个系数. 解: 因为21)1(1n n n <+(分母缩小,分数放大),又由于∑∞=121n n收敛.则由此比较判别法,原级数∑∞=+1)1(1n n n 也收敛.例2 判别级数∑∞=--+12521n n n n 的敛散性. 分析: 考虑通项5212--+n n n ,分子n 的最高幂是1,分母n 的最高幂是2,这时通项接近,n n n 2122=,原级数也接近于级数∑∞=11n n,至多差一个系数.解: 因为52152221222--+≤--<=n n n n n n n n n (分子缩小,分母放大,分数缩小),又由于∑∞=11n n是发散的,则由比较判别法,原级数也是发散的.由比较判别法可推得:定理2.3(比值判别法——达朗贝尔判别法):设n 1u n ∞=∑(0>n u )为正项级数,且存在正常数q,则有1) 若,1u ,,1<≤≥∀∈∃++q u N n N N nn 有则级数n1un ∞=∑收敛;2) 若N n N N ≥∀∈∃+,,有1n n u v ≥,则级数n1u n ∞=∑发散. 证明:1)不妨设q N n n u u ,1n ≤∈∀+有, n=1, q u u 12≤;n=2,;u 2123q u q u ≤≤ n=3,;u 3134q u q u ≤≤......n=k,kk k q u u 11u ≤≤+......已知几何级数)10(11<<∑∞=q qu kk 收敛,根据柯西收敛准则推论的逆否命题,则级数n 1u n ∞=∑收敛.2)已知,1,n ,1≥≥∀∈∃++nn u u N N N 有即正项级数{n u }从N 项以后单调增加,不去近乎0()∞→0,则级数n1un ∞=∑发散.定理2.3.1(比值判别法的极限形式):设n 1u n ∞=∑(0>n u )为正项级数,且l u u n n n =+∞→1lim,有,1) 若1<l ,则级数n 1u n ∞=∑收敛;2) 若1>l ,则级数n 1u n ∞=∑发散.证明:1),1:q <<∃q l 由数列极限定义,l q l N N N l nn -<->∀∈∃>=∃++u u ,n ,,0-q 10有ε即1u u 1<<+q nn ,根据达朗贝尔判别法,级数n 1u n ∞=∑收敛;2)已知1>l ,根据数列极限的保号性,1u u ,,n1n >≥∀∈∃++有N n N N ,达朗贝尔判别法,级数n1un ∞=∑发散.例3 判别级数∑∞=1!n n n n 的敛散性. 解: 由于11])11(1[lim )1(lim ]!)1()!1([lim lim11<=+=+=++=∞→∞→+∞→+∞→en n n nn n n u u n n n n nn n n n n ,所以根据达朗贝尔判别法的推论知,级数∑∞=1!n nnn 收敛. 例4 判别级数∑∞=155n nn的敛散性.解: 由于15)1(5lim ]5)1(5[lim lim55511>=+=+=∞→+∞→+∞→n n nn u u n n n n n n n ,根据达朗贝尔判别法的推论知,级数∑∞=155n nn发散.当正项级数的一般项n u 具有积、商、幂的形式,且n u 中含有!n 、!!n 、n a 以及形如)()2)((nb a b a b a +++ 的因子时,用达朗贝尔判别法比较简便.定理2.4(根式判别法——柯西判别法):设n 1u n ∞=∑)0(u n >为正项级数,存在常数q ,则有1) 若,n ,N N N ≥∀∈∃+有1n <≤q u n ,则级数n 1u n ∞=∑收敛;2) 若存在自然数列的子列{}i n ,使得1u ≥nn ,则级数n 1u n ∞=∑发散.证明:1)已知,n ,N N N ≥∀∈∃+有qu n ≤n,有已知几何级数∑∞=<≤0n )10(q qn收敛,于是级数∑∞=0n nu收敛;2)已知存在无限个n,有1n≥n u ,即n u 趋近于0(∞→n ),于是级数n1un ∞=∑发散.定理2.4.1(根式判别法的极限形式):设n 1u n ∞=∑为正项级数,若lu n n n =∞→lim1) 若1<l 时,级数n 1u n ∞=∑收敛;2) 若1>l 时,则级数n 1u n ∞=∑发散.证明:1):q ∃1<<q l ,由数列极限定义,11,n ,,01q n 0<<--≥∀∈∃>-=∃+q u q l u N N N n n n 即有ε,根据柯西判别法,级数n 1u n ∞=∑收敛;2)已知1>l ,根据数列极限的保号性,1,n ,n >≥∀≥∃+n u N N N 有,根据柯西判别法,级数n 1u n ∞=∑发散.注意:在比值判别法和根式判别法的极限形式中,对=1r 的形式都为论及.实际上,当+1lim=1n x n u u →∞或+1lim =1n x nuu →∞时,无法使用这两个法判别来判断敛散性,如级数=11n n ∞∑和2=11n n∞∑,都有1+1lim =lim =11+1x x n n n n→∞→∞,()2221+1lim =lim =11+1x x n n n n →∞→∞⎛⎫ ⎪⎝⎭,lim x →∞,lim x →∞但前者发散而后者收敛.此外,定理2.3和定理2.4中,关于收敛条件+1q<1n nu u ≤和<1q ≤也不能放宽到+1<1n n u u,.例如对调和级数=11n n∞∑,有+1=<1+1n n u nu n ,,但级数却是发散的.例1 判别级数nnnn)12(1∑∞=+的敛散性.分析: 该级数的通项nnn)12(+是一个n次方的形式,于是联想到柯西判别法,对通项开n次方根,看其结果与1的大小关系.解: 由于12112lim)12(limlim<=+=+=∞→∞→∞→nnnnunnnnnnn,根据柯西判别法的推论,可得级数nnnn)12(1∑∞=+收敛.例2 判别级数∑∞=1ln32nnn的敛散性.解: 由于123232lim32limlimlnln>====∞→∞→∞→nnnnnnnnnnu,所以根据柯西判别法的推论知,级数∑∞=1ln32nnn发散.我们知道,广义调和级数(P-级数)11npnn=∑当1q>时收敛,而当1q≤时发散,因此,取P-级数作为比较的标准,可得到比比式判别法更为精细而又应用方便的判别法.即定理2.5(拉阿贝判别法):设1nnnu=∑是正项级数且有)0(u>n,则存在常数q,1)若11n,n,1>≥⎪⎪⎭⎫⎝⎛-≥∀∈∃++quuNNNnn有,则级数1nnnu=∑收敛;2)若11n,,1≤⎪⎪⎭⎫⎝⎛-≥∀∈∃++nnuuNnNN有,则级数1nnnu=∑发散.证明:1)由q u u n n ≥⎪⎪⎭⎫ ⎝⎛-+11n 可得n qu n n -<+1u 1,选p 使1<p<q.由 ()()()11lim11lim 111lim 100<=-=--=---→→∞→qpqx p qx x nq np x px pn ,因此,存在正数N ,是对任意n>N,pn n⎪⎭⎫ ⎝⎛-->111q ,这样p p p n n n n ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛---<+1111111u u n 1n ,于是,当n>N 时就有()Np PN PppN N N n n u n N u N N n n n n u u u u u .1.1...121.......u u u 11n 1n 1n -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-≤=++++,当p>1时,级数∑∞=1n n1p收敛,故级数 则级数1nn n u =∑收敛;2)由,1111111nn n u u u u n n n n n -=-≥≤⎪⎪⎭⎫ ⎝⎛-++可得于是222231-n n n 1n 1n .1u .21...12.1.u u .....u u .u u u u n n n n n u =--->=++,因为∑∞=1n 1n 发散,故级数1nnn u=∑发散.定理2.5.1(拉阿贝判别法的极限形式): 设正项级数∑∞=1n n u )0(>n u ,且极限存在,若.)1(lim 1l u u n nn n =-+∞→ 1)当1<l 时,级数∑∞=1n n u 收敛;2) 当1>l 时,级数∑∞=1n n u 发散.例1 讨论级数sn n n ∑∞=⎥⎦⎤⎢⎣⎡⋅⋅⋅-⋅⋅⋅1)2(42)12(31 当3,2,1=s 时的敛散性.分析: 无论3,2,1=s 哪一值,对级数sn n n ∑∞=⎥⎦⎤⎢⎣⎡⋅⋅⋅-⋅⋅⋅1)2(42)12(31 的比式极限,都有1lim1=+∞→nn n u u .所以用比式判别法无法判别该级数的敛散性.现在用拉贝判别法来讨论.解: 当1=s 时,由于)(12122)22121()1(1∞→<→+=++-=-+n n n n n n u u n n n , 所以根据拉贝判别法知,原级数是发散的.当2=s 时,由于)(1)22()34()2212(1)1(221∞→<++=⎥⎦⎤⎢⎣⎡++-=-+n n n n n n n u u n n n , 所以原级数是发散的.当3=s 时,∵)(23)22()71812()2212(1)1(3231∞→→+++=⎥⎦⎤⎢⎣⎡++-=-+n n n n n n n n u u n n n , 所以原级数收敛.考虑到级数与无穷积分的关系,可得 定理2.6(积分判别法):设函数()f x 在区间(]1,∞上非负且递减,()n u f n =,n=1,2,……,则级数1nnn u=∑收敛的充分必要条件是极限()1lim xx f x dt →∞⎰存在.证明:()0f x ≥,知()F x =1()xf t dt ⎰单调递增.1lim ()lim ()xx x F x f t dt →∞→∞∴=⎰存在⇔()F x 在(]1,∞有界.(充分性)设1lim ()x x f t dt →∞⎰存在,则存在0M >,使得(]11,,()xx f t dt M ∀∈∞≤⎰级数1n n u ∞=∑的部分和12...n n S u u u =+++()()()12...f f f n =+++()()()()231211...n n f f t dt f t dt f t dt -≤+++⎰⎰⎰()()()111nf f t dt f M=+≤+⎰即部分和数列有上界.所以级数1n n u ∞=∑收敛.(必要性)设正项级数1n n u ∞=∑收敛,则它的部分和有上界,即存在0,,M n N ≥∀∈有,n S M ≤从而对(]1,,x ∀∈∞令[]1n x =+ 则()()2311121()()...()xnn n f t dt f t dt f t dt f t dt f t dt -≤=++⎰⎰⎰⎰⎰()()()112...1n f f f n S M -≤+++-=≤.故极限1()x f t dt ⎰存在.由此我们得到两个重要结论: (1)p 级数11pn n∞=∑收敛1p ⇔>; (2)级数11ln pn n n∞=∑收敛1p ⇔>. 证明:1)在p 级数一般项中,把n 换位x ,得到函数1()(1)pf x x x =≥.我们知道,这个函数的广义积分收敛1p ⇔>,因此根据正项级数的广义积分判定法,结论成立.2)证法同(1). 例1 判别级数∑∞=131n n 的敛散性. 分析:因为将n 换成连续变量x ,即是31x ,显然函数31x在),1[+∞是单调减少的正值函数,所以可以用积分判别法.解:将原级数∑∞=131n n 换成积分形式dx x ⎰+∞131,由于21210)21()21(lim 21121213=+=---=-=+∞→+∞∞+⎰px dx x p ,即dx x ⎰+∞131收敛,根据积分判别法可知,级数∑∞=131n n 也收敛. 例2 证明调和级数∑∞=11n n发散.把n 换成连续变量x 得函数x1,显然这是一个在),1[+∞单调减少的正值函数,符合积分判别法的条件.解:将原级数∑∞=11n n换成积分形式dx x ⎰+∞11,由于+∞=-+∞==∞++∞⎰0ln 111x dx x ,即dx x ⎰+∞11发散,根据积分判别法可知,调和级数∑∞=11n n发散. 3 正项级数敛散性其他两种判别法定理2.7(阶的估计法):设1n n u ∞=∑为正项级数1()()n pu O n n=→∞,即n u 与1p n 当()n →∞是同阶无穷小,则1) 当1p >时,级数1n n u ∞=∑收敛;2) 当1p ≤是,级数1n n u ∞=∑发散.把比较判别法和比式判别法结合,又可得 定理2.8(比值比较判别法):设级数1n n u ∞=∑和1n n v ∞=∑是正项级数且存在自然数N ,使当n N ≥时有11n n n nu v u v ++≤,则1) 若1n n v ∞=∑收敛,则1n n u ∞=∑也收敛;2) 若1n n u ∞=∑发散,则1n n v ∞=∑也发散.证明:当n N ≥时,由已知得12121111.......n N N n N N n n N N N n N N n Nu u u u v v v vu u u u v v v v +++++-+-=≤=由此可得,N N n n n n N Nu vu v u v v u ≤≤.再由比较判别法即知定理结论成立. 主要参考文献:[1]刘玉琏、傅沛仁等,数学分析讲义(第三版).高等教育出版社,2003 [2]罗仕乐,数学分析绪论.韶关学院数学系选修课程,2003.8 [3]李成章、黄玉民,数学分析(上册).科学出版社,1999.5 [4]邓东皋、尹晓玲,数学分析简明教程.高等教育出版社,2000.6 [5]张筑生,数学分析新讲.北京大学出版社,2002.6 [6]丁晓庆,工科数学分析(下册).科学出版社,2002.9[7]R.柯朗、F.约翰,微积分与数学分析引论.科学出版社,2002.5(注:文档可能无法思考全面,请浏览后下载,供参考。