乘法公式的综合运用
- 格式:doc
- 大小:50.50 KB
- 文档页数:2
乘法公式应用综合在咱们的数学世界里,乘法公式那可真是个神奇的存在!就像一把万能钥匙,能帮咱们打开好多难题的锁。
先来说说完全平方公式吧,(a ± b)² = a² ± 2ab + b²,这玩意儿可太有用啦!我记得有一次,我去逛菜市场,看到一个卖水果的摊位。
摊主正在算着成本和利润。
他说一箱苹果进价是 a 元,他打算每箱加价 b 元出售。
那按照完全平方公式,他每箱的利润就是 (a + b)² - a² = 2ab +b²。
这可让他一下子就清楚了自己能赚多少钱。
还有平方差公式 (a + b)(a - b) = a² - b²,也是解决问题的好帮手。
比如在装修房子的时候,要计算房间地面的面积。
如果房间的长是 (a + b) 米,宽是 (a - b) 米,那么地面的面积就是 a² - b²平方米。
乘法公式在代数运算中更是大显身手。
比如化简式子 (x + 2y)² - (x - 2y)²,咱们就可以直接套用公式。
先把前面的 (x + 2y)²展开得到 x² +4xy + 4y²,后面的 (x - 2y)²展开得到 x² - 4xy + 4y²,然后一减,4xy 就抵消掉了,剩下 8xy 。
是不是很简单?再看这道题:已知 a + b = 5 ,ab = 3 ,求 a² + b²的值。
这时候咱们就可以用完全平方公式啦,(a + b)² = a² + 2ab + b²,变形一下,a² + b² = (a + b)² - 2ab ,把数值带进去,5² - 2×3 = 19 。
乘法公式在几何图形中也有出色的表现。
比如说一个正方形的边长增加了 x ,那它的面积增加多少呢?原来正方形的边长是 a ,面积就是 a²。
学科教师辅导讲义【例2】判断下列各式能否用平方差公式计算,如果不能,应怎样改变才能使平方差公式适用?(1)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-b a b a 231312; (2)()()a b b a 3232++- ; (3)()()2323-+-m m .【借题发挥】1.在边长为a 的正方形中挖去一个边长为b 的正方形()a b >,(如图甲),把余下的部分拼成一个矩形(如图乙)根据两个图形中阴影部分的面积相等,可以证( )A. ()2222a b a ab b +=++;B. ()2222a b a ab b -=-+;C. ()()22a b a b a b -+=-;D.()()2222a b a b a ab b +-=+-.2.下列计算中可以用平方差公式的是( )A.()()22--+a a ;B.⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+a b b a 2121; C.()()y x y x -+-; D.()()22y x y x +-.3.如图,在边长为a 的正方形内减去边长为b 的正方形后,剩下的形状可以分割成两个大小相等的直角梯形,请你用,a b 表示梯形的上底,下底,高和面积,并由此理解()()22a b a b a b -=-+的几何意义。
4.如图,边长为,a b 的两个正方形的中心重合,边保持平行,如果从大正方形中剪去小正方形,剩下的图形可以分割成4个大小相等的等腰梯形,请你用,a b 表示出梯形的上底,下底,高和面积,并由此理解()()22a b a b a b -=-+的几何意义。
题型二:平方差公式的计算及简单应用【例3】类型1:()()22b a b a b a -=-+ (1)()()a a 2121+- ; (2)⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+3121312122x x .【例4】类型2:()()22a b a b b a -=-+ (1)(2xy+1)(1-2xy ); (2)(3x-4a )(4a+3x ).4、计算:200620052006200565654343212122222222+-+++-++-++- 。
1乘法公式的灵活运用一、复习:(a+b)(a —b)=a 2—b 2(a+b )2=a 2+2ab+b 2(a-b)2=a 2—2ab+b 2(a+b )(a 2-ab+b 2)=a 3+b 3(a —b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2) =x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992—2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
乘法公式的运用乘法公式是在多项式乘法的基础上,将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.【例1】 (1)已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 .(2)已知(2000一a)(1998一a)=1999,那么(2000一a)2+(1998一a)2= .从特殊到一般的过程是人类认识事物的一般规律,而观察、发现、归纳是发现数学规律最常用的方法. 常见公式变形有: (1)ab b a b a 2)(222 ±=+, 2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++; (3) ab b a b a 4)()(22=--+;(4)4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++ 【例2】 若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( )A .M>NB . M<NC . M=ND .无法确定思路点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.【例3】 计算:(1)6(7十1)(72十1)(74十1)(78十1)+1;(2)1.345×0.345×2.69—1.3452一1.345×0.3452.【例4】 (1)已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式yx xy +的值. (2)整数x ,y 满足不等式y x y x 22122+≤++,求x+y 的值.(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ,乙商场:两次提价的百分率都是2b a +(a>0,b>o),丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由.完全平方公式逆用可得到两个应用广泛的结论:(1)0)(2222≥±=+±b a b ab a ;(2)ab b a 222≥+ 揭示式子的非负性,利用非负数及其性质解题.【例5】 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数.思路点拨 从222c b a =+的变形入手;222b c a -=,运用质数、奇偶数性质证明. 学力训练1.观察下列各式:(x 一1)(x+1)=x 2一l ;(x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1.根据前面的规律可得(x 一1)(x n +x n-1+…+x+1)= .2.已知052422=+-++b a b a ,则ba b a -+= . 3.计算:(1)1.23452+0.76552+2.469×0.7655: ;(2)19492一19502+19512一19522+…+19972一19982+19992 = ;(3)2199919991999199719991998222-+ . 4.如图是用四张全等的矩形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式 .5.已知51=+a a ,则2241a a a ++= . 6.已知5,3-=+=-c b b a ,则代数式ab a bc ac -+-2的值为( ).A .一15B .一2C .一6D .6 7.乘积)200011)(199911()311)(211(2222----等于( ). A .20001999 B .20002001 C .40001999 D .40002001 8.若(x -y )2+N=x 2+xy +y 2,则N 为( )。
乘法公式的复习讲义乘法是数学中非常重要的运算法则之一、掌握好乘法公式对于学生来说尤为重要,因此本讲义将以学生易于理解和操作的方式介绍乘法公式的内容。
一、乘法公式的基础1.乘法交换律:乘法运算中,乘数的先后顺序不影响最后的结果。
例如:3×4=4×3=122.乘法结合律:乘法运算中,不同乘数进行相乘后再乘以另一个数,结果相同。
例如:2×(3×4)=(2×3)×4=243.乘法分配律:乘法运算中,一个数与两个数的和相乘,等于这个数分别与这两个数相乘再相加。
例如:2×(3+4)=2×3+2×4=14二、乘法公式的应用1.加法乘法运算律:利用乘法分配律可以进行更加复杂的计算。
例如:(3+2)×4=3×4+2×4=202.幂运算:乘方运算是指一个数连乘几次自己的运算。
例如:2的3次方表示为2³,即2×2×2=83.积的计算:乘法运算中,两个整数相乘得到的结果称为积。
例如:7×6=424.乘法的逆运算:除法是乘法的逆运算,可以通过除法运算求解未知数。
例如:如果6×x=12,那么x=12÷6=2三、乘法公式的综合应用1.平方的乘法公式:一个数的平方是指这个数乘以自己。
例如:(x + y)² = x² + 2xy + y²2.两个不同数的乘法公式:(a+b)(a-b)=a²-b²例如:(3+2)(3-2)=3²-2²=9-4=53.平方差公式:a²-b²=(a+b)(a-b)例如:4²-3²=(4+3)(4-3)=7×1=74.立方的乘法公式:一个数的立方是指这个数乘以自己两次。
例如:(a + b)³ = a³ + 3a²b + 3ab² + b³注意:(a+b)³不等于a³+b³四、乘法公式的例题应用1.计算16×8÷4=32解析:首先乘法运算,16×8=128,然后除以4,128÷4=322.计算(5+3)×2-7=9解析:先计算括号中的加法,5+3=8,然后乘以2,8×2=16,最后减去7,16-7=93.计算6²+3²=45解析:首先计算平方运算,6²=6×6=36,然后再计算3²=3×3=9,最后相加,36+9=45通过以上的学习和例题应用,相信同学们对乘法公式有了更加深入的理解和掌握。
2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3一. 教材分析《乘法公式综合运用》是北师大版数学七年级下册1.6.3的教学内容。
这部分内容是在学生掌握了平方差公式、完全平方公式等乘法公式的基础上进行学习的。
通过这部分的学习,学生能够灵活运用乘法公式解决实际问题,提高他们的解决问题的能力。
二. 学情分析面对七年级的学生,他们在之前的学习中已经掌握了平方差公式、完全平方公式等乘法公式。
但是,他们在运用这些公式解决实际问题时,往往会存在理解不深、运用不灵活的情况。
因此,在教学这部分内容时,需要引导学生深入理解乘法公式的内涵,提高他们解决问题的能力。
三. 教学目标1.知识与技能:使学生掌握乘法公式的运用方法,能够灵活解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.重点:乘法公式的运用。
2.难点:灵活运用乘法公式解决实际问题。
五. 教学方法采用自主学习、合作交流、教师引导相结合的教学方法,让学生在探究中掌握知识,提高解决问题的能力。
六. 教学准备1.准备相关的乘法公式的资料,以便在教学中进行查阅。
2.准备一些实际问题,让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过提问的方式,引导学生回顾之前学过的平方差公式、完全平方公式等乘法公式,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过展示一些实际问题,让学生尝试运用乘法公式进行解决。
学生在解决问题的过程中,教师给予适当的引导和提示。
3.操练(10分钟)学生分组进行练习,教师给出一些运用乘法公式的问题,学生通过合作交流,共同解决问题。
4.巩固(5分钟)教师挑选一些学生解决的实际问题,让学生上台进行讲解,以此巩固乘法公式的运用。
5.拓展(5分钟)教师提出一些拓展问题,引导学生深入思考,提高他们解决问题的能力。
乘法公式的综合运用计算题在咱们的数学学习中啊,乘法公式那可是个相当重要的家伙!像什么完全平方公式、平方差公式,在解决计算题的时候,那用处可大了去了。
就拿这么一道题来说吧,计算$(3x + 2y)^2 - (3x - 2y)^2$。
这道题看着是不是有点让人头疼?别急,咱们一步步来。
先看前面的$(3x + 2y)^2$,根据完全平方公式$(a + b)^2 = a^2 + 2ab + b^2$,那它就等于$9x^2 + 12xy + 4y^2$。
再看后面的$(3x - 2y)^2$,同样根据完全平方公式,它就是$9x^2 - 12xy + 4y^2$。
然后把这两个式子相减,$9x^2 + 12xy + 4y^2 - (9x^2 - 12xy +4y^2)$,去括号可得:$9x^2 + 12xy + 4y^2 - 9x^2 + 12xy - 4y^2$这时候,好多项就可以相互抵消啦,$9x^2 - 9x^2 = 0$,$4y^2 -4y^2 = 0$,剩下的就是$12xy + 12xy = 24xy$。
再比如说这道题,计算$(2a + 3b)(2a - 3b)$,这就得用到平方差公式$(a + b)(a - b) = a^2 - b^2$。
所以这道题就是$(2a)^2 - (3b)^2 = 4a^2 - 9b^2$。
记得有一次,我给班上的同学讲这类题,有个小同学总是搞不清楚什么时候用完全平方公式,什么时候用平方差公式。
我就跟他说:“你就想象啊,完全平方公式就像是一个大大的正方形房子,有自己的‘房顶’和‘四面墙’,都要算清楚;平方差公式呢,就像是两个长方形,一减就得出差别啦。
”这小家伙听完,眼睛一下子亮了,后来做题的时候也很少出错啦。
还有像计算$(x + 5)^2 - (x - 5)^2$这样的题目。
按照前面的方法,先分别展开,$(x + 5)^2 = x^2 + 10x + 25$,$(x - 5)^2 = x^2 - 10x + 25$,再相减,$x^2 + 10x + 25 - (x^2 - 10x + 25) = 20x$。
学习乘法公式的十个层次乘法公式是初中数学中极其重要的公式,应用十分广泛.解题时,若能根据题目特点灵活运用,则能达到迅速解题的目的.下面谈谈学习乘法公式的十个层次.一、对号入座,直接套用公式分清题中哪些数或式可以看作公式中的a、b,对号入座,直接套用公式.例1 计算:(-85+13x2)(-85-13x2).分析两个因式中的-85完全相同,而13x2与-13x2互为相反数,因而可运用平方差公式计算.解原式=(-85)2-(13x2)2=7225-169 x2.二、连续运用乘法公式例2 化简:(a-1)(1+a)(1+a2)(-1-a4).分析观察式子的结构特征,若将(-1-a4)变为-(1+a4),可连续运用平方差公式.解原式=-(a2-1)(a2+1)(a4+1)=-(a4-1)(a4+1)=-(a8-1)=1-a8.三、符号变形后连续运用乘法公式例3 化简:(a-2)(-2-a)(4+a2) (16+a4).分析观察式子的结构特征,发现将(-2-a)变为-(a+2)后,连续运用平方差公式既简单又快捷.解原式=-(a+2)(a-2)(a2+4) (a4+16)=-(a2-4)(a2+4)(a4+16)=-(a4+16)(a4-16)=256-a8.四、拆项变形后运用乘法公式例4 化简:(7x-5y+3)(-7x-5y-9).分析若将本题两个因式中的项分别进行拆项变形:前一因式的“3”拆成“-3+6”,后一因式的“-9”拆成“-3-6”,再通过合理分组,即符合平方差公式的特征,从而巧用公式,简捷求解.解原式=(7x-5y-3+6)(-7x-5y-3-6)=[(-5y-3)+(7x+6)][(-5y-3)-(7x+6)]=(-5y-3)2-(7x+6)2=25 y2-49x2+30y-84x-27.五、添项变形运用乘法公式在不改变原式值的前提下,将原式添上一个因式,使得它能运用乘法公式计算.例5 计算:[3(22+1](24+1)(28+1)-216]2018.分析将“3”写成(22-1),如此变形后即可连续运用平方差公式.解原式=[(22-1) (22+1) (24+1) (28+1)-216 ) 2018=[(24-1)(24+1) (28+1)-216] 2018=[(28-1) (28+1)-216]2018=[ (216-1)-216]2018=(-1)2018=1.六、分组结合后逆用乘法公式例6 计算:20202-20192+20182-20172+…+10002-9992+…+1002-992+982-972+…+22-12.七、变形后逆用乘法公式例7 求满足方程5x2-12xy+10y2-6x-4y+13=0的x、y的值.分析观察到,通过配方并逆用完全平方公式将方程左边化成三个完全平方式和的形式,再利用非负数的性质即可.解通过拆项、配方原方程可化为(4x2-12xy+9y2)+(x2-6x+9)+(y2-4y+4)=0,即(2x -3y)2+(x-3)2+(y-2)2=0.八、正逆联用乘法公式根据题设条件和待求式的结构特征,乘法公式既可顺用,又可逆用.例8 已知14(b -c )2=(a -b)(c -a),且a ≠c ,求b c a+的值. 分析 欲求b c a +的值,则需b +c 与a 之间的等量关系,而条件等式正好是a 、b 、c 之间的关系式,因此运用完全平方公式和多项式乘法将原式变形,再逆用完全平方公式即可达到求值目的.九、综合运用乘法公式例9 正数x 、y 、z 满足xy +yz =1022,求x 2+5y 2+4z 2的最小值.十、乘法公式变式的应用乘法公式常见的变形有:a 2+b 2=(a +b)2-2ab ;a 2+b 2=(a -b )2+2ab ;a 2+b 2=()()222a b a b ++-; ()()()22222a b a b a b ++-=+;()()221144ab a b a b =+-- 2222a b a b +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭; ()()224ab a b a b =+--这些变形公式,在解题中有着广泛的应用.在运用公式时,不应拘泥于公式的形式需要深刻理解、灵活运用. 例10 已知a +b =70,c 2=ab -1225,求a 、b 、c 的值.分析 此题运用积化和差公式ab 2222a b a b +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,解题过程极为简捷. 解 ∵ab 2222a b a b +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭从而a =b ,c =0.代入已知式,解得a =b =35,c =0.。
典题精练例题4答案解析标注式>整式的乘除>乘法公式>题型:配方求最值配方法求下列式子的最值:当为何值时,有最小值.(1)当为何值时,有最大值.(2).(1).(2),故当时,最小值为.(1),故当时,最大值为.(2)例题5答案解析标注式>整式的加减>整式的定义配方法求的最值.,所以有最小值.例题6典题精练标注式>整式的乘除>乘法公式>题型:利用完全平方公式计算例题12答案解析标注式>整式的乘除>乘法公式>题型:和与差的立方公式已知,求证:.证明见解析例题13答案解析已知:,,求:.(1).(2).(3).(4).(1).(2).(3).(4).(1).(2)(3)标注式>整式的乘除>乘法公式>题型:配方思想的运用;或.;或.(4)例题14答案解析已知,,求的值..方法一:∵,∴.又因为,∴,.标注式>整式的乘除>整式的乘除运算>题型:多乘多∵,∴.方法二:可得,则,.例题15答案解析已知:,求下列各式的值..(1).(2).(3).(1).(2).(3)∵,∴,∴,即.(1)∵,∴,∴.(2)∵,∴,∴.(3)解析标注式>整式的乘除>乘法公式>题型:利用完全平方公式计算得,,原式巩固8答案解析若,求的值..方法一:由,故.方法二:.标注式>整式加减>整式加减化简求值>题型:整体代入化简求值方法三:由,故, 从而可知,.方法四:由,故.巩固9答案解析标注式>因式分解>因式分解综合应用已知,求的值..由题意得,.巩固10答案解析已知,.求下列各式的值..(1).(2).(1).(2)由可知,.(1),(2)。
第三课时(乘法公式的综合运用)
一、学导目标:1.进一步理解乘法公式。
2.能熟练地运用乘法公式解题。
二、学导重点:熟练的利用平方差、完全平方公式进行混合运算。
三、学导难点:灵活运用乘法公式
四、目标导航
1.复习回顾两个公式。
2.自学例题:教材P65例2第(2)小题、P66例
3.(注意书上的解题方法。
)
3.注意:难,小本节内容偏组内、小组间要认真交流,有困难的要问老师。
4.教材P66练习第1、2 题:
5.计算:
(1)(x+3)2(3-x)2(2)(2a+b+1)(2a+b-1)
(3)(a-2b-3)(a+2b+3) (4)(2a+b)2-(b+2a)(2a-b)
五、学导流程:
(一)、出示目标:1.进一步理解乘法公式。
2.能熟练地运用乘法公式解题。
(二)、自学质疑:1、学生把课前没学完的可以再围绕“目标”和“目标导航”自学、对学、小组内展开。
2、教师深入其中查进度、问题汇总、导学。
3、检测“目标导航”有关内容。
(三)、汇报展示:1、各小组再小组长带领下共同展示目标内容
2、教师针对展示的结果进行分析、归纳组织学生再学、学会、会学。
五、测评提升:
1.先化简,再求值:
(5y+1)(5y-1)-(5y+25y 2),其中y=
52
2.解方程:
(1)(x+
41)2–(x-41)(x+41)=41 (2)(x+1)(x-1)-(x+2)2=7
3.解不等式:
2(x+4)(x-4) (x-2)(2x+5)
4.计算
(1)(2x+3)3 (3)(2a-b-3c)2
5.计算:
(1)已知x 2+xy =6 y 2+xy=10
求:1.(.x+y)2 2. x 2-y 2 3..x-y。