一元二次方程的根与系数的关系教学微课设计
- 格式:doc
- 大小:91.00 KB
- 文档页数:2
一元二次方程根与系数关系数学教案标题:一元二次方程根与系数关系数学教案
I. 引言
- 课程目标和学习目标
- 知识点概述
II. 一元二次方程的基本概念
- 定义和形式
- 解一元二次方程的方法(完全平方公式、求根公式)
III. 根与系数的关系定理
- 定理阐述
- 定理证明
IV. 应用举例
- 分别给出两个根为正数、负数、一个正数一个负数的情况
- 让学生自己尝试解题,并理解根与系数的关系
V. 拓展应用
- 通过实例展示如何使用根与系数的关系解决更复杂的问题
- 如何将这个定理应用于其他数学领域或者实际问题中
VI. 练习题
- 提供一些简单的题目让学生练习
- 设计一些需要深入思考的题目以测试学生的理解和应用能力
VII. 课后作业
- 设置一些延伸的题目供学生课后完成
- 可能包括对定理的理解、运用定理解决问题等
VIII. 教学反思
- 对本节课的教学过程进行反思
- 针对学生的学习情况进行总结并提出改进措施。
一元二次方程的根与系数的关系》教案一元二次方程的根与系数的关系知识与技能】掌握一元二次方程根与系数的关系,能够使用关系定理求已知一元二次方程的两根之和及两根之积,并解决一些简单的问题。
过程与方法】通过探究一元二次方程根与系数的关系,培养学生的观察思考、归纳概括能力和解决问题的能力,渗透整体的数学思想和求简思想。
情感态度】通过学生自主探究,发现根与系数的关系,增强研究的信心,培养科学探究精神。
教学重点】根与系数的关系及运用。
教学难点】定理的发现及运用。
一、情境导入,初步认识我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理,而我们的数学学科中更蕴藏着大量的规律。
那么一元二次方程中是否也存在什么规律呢?今天我们一起去探究,感受一次当科学家的滋味。
二、思考探究,获取新知解下列方程,将得到的解填入下面的表格中,观察表中x1+x2,x1·x2的值,它们与对应的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?教学说明】通过让学生计算一些特殊的一元二次方程的两根之和与两根之积,引导学生从中发现存在的一般规律,渗透特殊到一般的思考方法。
归纳总结】一般地,对于关于x的一元二次方程ax2+bx+c=0(a≠0),用求根公式求出它的两个根x1、x2,由一元二次方程ax2+bx+c=0的求根公式可知:x1=(-b+√(b^2-4ac))/2a,x2=(-b-√(b^2-4ac))/2a则有以下结果:x1+x2=-b/a,x1·x2=c/a教学说明】让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程。
三、运用新知,深化理解1.求下列方程的两根之和与两根之积。
1)x2-6x-15=0;2)5x-1=4x2;3)x2=4;4)2x2=3x。
2.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.1)求k的取值范围;2)若|x1+x2|=x1x2-1,求k的值。
一元二次方程根与系数的关系【教学目标】一、知识与技能掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和以及两根之积,并会解一些简单的问题。
二、过程与方法经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,在运用关系解决问题的过程中,培养学生解决问题能力,渗透整体的数学思想,求简思想。
三、情感态度通过学生自己探究,发现根与系数的关系,增强学习的信心,培养科学探究精神。
【教学重难点】1.重点:根与系数关系及运用。
2.难点:定理的发现及运用。
【教学过程】一、情景导入,初步认知我们知道,一元二次方程ax2+bx+c=0的根的值是由a、b、c来决定的。
除此之外,根与系数之间还有什么关系呢?教学说明:由问题引入新课,提高学生学习兴趣。
二、思考探究,获取新知(一)探究规律先填空,再找规律:(二)若x 1、x 2是一元二次方程ax 2+bx+c=0(a≠0)的两个根,你能猜想x 1+x 2=______,x 1·x 2=______(三)你能证明你的猜想吗?当Δ≥0时,一元二次方程ax 2+bx+c=0(a≠0)有两个根,分别为:1x =2x =归纳结论:当Δ≥0时,一元二次方程的根与系数之间具有以下关系:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比。
即:这种关系称为韦达定理。
三、运用新知,深化理解(一)教材相关的例1、例2。
(二)利用根与系数的关系,求一元二次方程2x 2+3x-1=0的两个根。
分析:根据一元二次方程的两根与系数之间的关系可求。
(三)已知方程5x 2+kx-6=0的一个根为2,求它的另一个根及k 的值。
分析:根据一元二次方程的两根与系数之间的关系可求。
解:设方程的另一个根是x 1,那么2x 1=-6/5∴x 1=-3/5又x 1+2=-k/5∴k=-7(四)已知一元二次方程x 2-6x-5=0的两根为a 、b ,则1/a+1/b 的值是多少?解:∵a ,b 是一元二次方程的两根∴a+b=6,ab=-5,(五)已知方程x2-4x-1=0有两个实数根x1,x2,要求不解方程,求值:1.(x1+1)(x2+1)2.x2x1+x1x2解:x1+x2=-b/a=4;x1x2=c/a=-1,(1)(x1+1)(x2+1)=x1x2+x1+x2+1,=-1+4+1=4(六)已知x,y均为实数,且满足关系式x2-2x-6=0,y2-2y-6=0,求x/y+y/x的值。
《根与系数的关系》教案一、教学目标1. 让学生理解一元二次方程的根与系数之间的关系。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对一元二次方程的解法及应用的理解。
二、教学内容1. 一元二次方程的一般形式:ax^2 + bx + c = 0。
2. 根的判别式:Δ= b^2 4ac。
3. 根与系数的关系:(1) 若有两个实数根,则根的值为:x1 = (-b + √Δ) / (2a),x2 = (-b √Δ) / (2a)。
(2) 若有两个相等的实数根,则根的值为:x1 = x2 = -b / (2a)。
(3) 若没有实数根,则方程无实数解。
三、教学重点与难点1. 教学重点:根与系数之间的关系。
2. 教学难点:理解根的判别式Δ的意义及应用。
四、教学方法1. 采用问题驱动法,引导学生探究根与系数的关系。
2. 通过实例分析,让学生感受数学知识在实际问题中的应用。
3. 利用数形结合法,帮助学生直观地理解根与系数之间的关系。
五、教学准备1. 教学课件:展示一元二次方程的图像,直观地展示根与系数之间的关系。
2. 实例:准备一些实际问题,让学生运用根与系数的关系解决问题。
3. 练习题:设计一些有关根与系数关系的练习题,巩固所学知识。
六、教学过程1. 引入新课:通过复习一元二次方程的一般形式和根的判别式,引导学生思考根与系数之间的关系。
2. 讲解根与系数的关系:结合课件和实例,讲解一元二次方程的根与系数之间的关系。
3. 互动环节:学生分组讨论,尝试解决实例中的问题,教师巡回指导。
4. 练习环节:学生独立完成练习题,教师选取部分题目进行讲解和解析。
5. 总结与反思:学生分享学习心得,教师总结根与系数之间的关系及其应用。
七、教学拓展1. 探讨二元二次方程的根与系数之间的关系。
2. 研究多项式方程的根与系数之间的关系。
3. 引导学生思考根与系数关系在实际问题中的应用,如线性规划、优化问题等。
八、课后作业1. 复习根与系数的关系,巩固所学知识。
《一元二次方程的根与系数的关系》教学设计
一、教学目标
1.熟练掌握一元二次方程的根与系数的关系;
2.灵活运用一元二次方程的根与系数的关系解决实际问题;
3.经历探索一元二次方程的根与系数的关系,发展学生的逻辑推理和数学运算的核心
素养,培养学生观察、分析、归纳和判断的能力;
4.通过探索一元二次方程的根与系数的关系,体验韦达定理的发现、不完全归纳证明
以及演绎证明等整个数学思维过程,提升数学的学习兴趣;
5.提高学生综合运用知识分析解决较复杂问题的能力.
二、教学重难点
重点:一元二次方程的根与系数的关系.
难点:对一元二次方程的根与系数关系的理解和推导.
三、教学用具
多媒体课件
四、教学过程设计
思维导图的形式呈现本节课的主要内容:
问题:本节课你学到了什么?。