21.1 一元二次方程 教学设计 教案
- 格式:docx
- 大小:145.53 KB
- 文档页数:5
课题:21.1一元二次方程一、教学目标1.经历一元二次方程概念的形成过程,知道什么是一元二次方程.2.会把一元二次方程化成一般形式,并知道各项及系数的名称.二、教学重点和难点1.重点:一元二次方程的概念.2.难点:把一元二次方程化成一般形式.三、教学过程(一)创设情境,导入新课师:(板书:3x-5=0)这是一个什么方程?(稍停)3x-5=0是一个一元一次方程(板书:一元一次方程).师:哪位同学知道什么样的方程是一元一次方程?生:……(让几名同学回答)师:(指准3x-5=0)只含有一个未知数,并且未知数的次数是1的方程,叫做一元一次方程.(指准“一元一次方程”)一元指的是含有一个未知数,一次指的是未知数的次数是1.师:一元一次方程是我们在初一已经学过的,从今天开始,我们要学习一种新的方程,叫做一元二次方程(板书:一元二次方程).(二)尝试指导,讲授新课师:什么样的方程是一元二次方程?(板书:x2-x=56)x2-x=56是一个一元二次方程,(板书:4x2-9=0)4x2-9=0也是一元二次方程,(板书:x2+3x=0)x2+3x=0也是一元二次方程,(板书:3y2-5y=7)3y2-5y=7也是一元二次方程.师:从这些一元二次方程,哪位同学能概括什么样的方程是一元二次方程?(等到有一部分同学举手再叫学生)生:……(多让几名同学回答)师:(指准x2-x=56)只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.(师出示下面的板书)只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程.师:请大家把一元二次方程的定义读两遍.(生读)师:根据一元二次方程的定义,(指准方程)我们很容易判断x2-x=56,4x2-9=0,x2+3x=0,3y2-5y=7这些方程都是一元二次方程.(板书:3x(x-1)=5(x+2))现在请大家判断,这个方程是不是一元二次方程?为什么?(让生思考一会儿)生:……(让几名学生发表看法)师:把这个方程两边去括号,得到3x2-3x=5x+10(边讲边板书:3x2-3x=5x+10),去括号后容易看出,这个方程是一元二次方程.师:(指3x2-3x=5x+10)这个方程还可以继续整理,怎么继续整理?(指准方程)先把右边的5x和10都移到左边去,再合并,得到3x2-8x-10=0(边讲边板书:3x2-8x-10=0).师:(指原方程和3x2-8x-10=0)大家可以比较这两个方程,这个方程是这个方程经过整理得到的,这个方程的形式又简单又整齐,我们把这种形式叫做一元二次方程的一般形式(板书:一元二次方程的一般形式).师:从这个例子大家可以看到,任何一个一元二次方程,经过整理,都可以化成一般形式,一般形式就是ax2+bx+c=0这样的形式(边讲边板书:ax2+bx+c=0).师:(指准ax2+bx+c=0)在一元二次方程的一般形式中,我们把ax2叫做二次项,a 是二次项系数(板书:其中a是二次项系数);bx叫做一次项,b是一次项系数(板书:b 是一次项系数);c叫做常数项(板书:c是常数项).师:(指准3x2-8x-10=0)譬如,在这个方程中,二次项是3x2,二次项系数是3;一次项是-8x,一次项系数是-8;常数项是-10.师:(指x2+3x=0)大家看这个方程,它的二次项、二次项系数是什么?生:二次项是x2,二次项系数是1.(多让几名同学回答)师:(指x2+3x=0)它的一次项、一次项系数是什么?生:一次项是3x,一次项系数是3.(多让几名同学回答)师:(指x2+3x=0)它的常数项是什么?生:常数项是0.(多让几名同学回答,如有必要师作解释)师:(指4x2-9=0)大家再看这个方程,它的二次项、二次项系数是什么?生:二次项是4x2,二次项系数是4.师:(指4x2-9=0)它的一次项、一次项系数是什么?生:……(多让几名同学回答)师:这个方程的一次项可以写成0x(边讲边板书:0x),所以这个方程的一次项是0x,一次项系数是0.师:(指4x2-9=0)它的常数项是什么?生:常数项是-9.师:前面我们学习了一元二次方程的概念和一般形式,下面请大家利用这些知识来做几个练习.(三)试探练习,回授调节1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .(四)归纳小结,布置作业师:这节课我们学习了什么?哪位同学能帮老师小结一下?生:……(让一两名学生小结)(作业:P28习题1)四、板书设计一元一次方程:3x-5=03x(x-1)=5(x+2)一元二次方程:x2-x=56 3x2-3x=5x+104x2-9=0 3x2-8x-10=0x2+3x=0 一元二次方程的一般形式:3y2-5y=7 ax2+bx+c=0,其中a是二次项系数,b是一次项系只含有一个未知数……叫做数,c是常数项一元二次方程.课题:22.1一元二次方程(第2课时)一、教学目标1.知道什么是一元二次方程的解(根).2.会用直接开平方法解一元二次方程,渗透转化思想.二、教学重点和难点1.重点:一元二次方程解(根)的概念,直接开平方法.2.难点:直接开平方法.三、教学过程(一)基本训练,巩固旧知1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(二)尝试指导,讲授新课师:(板书:2x-6=0)这是一个一元一次方程,这个方程的解是什么?生:(齐答)解是x=3.(师板书:解是x=3)师:(指准方程)2x-6=0的解是x=3,这话是什么意思?(稍停)把x=3代入方程,左边=2×3-6=0,右边=0,左边和右边恰好相等.2x-6=0的解x=3,意思是,x=3能使方程左右两边恰好相等.师:(板书:x2-x=0)这是一个一元二次方程,这个方程的解是什么?(让生思考一会儿再叫学生)生:解是x=0.(师板书:x=0)师:(指准方程)把x=0代入方程,左边和右边相等,所以x=0是这个一元二次方程的一个解.师:除了x=0,这个方程还有没有别的的解?生:x=1.(师板书:x=1)师:(指准方程)把x=1代入方程,左边和右边相等,所以x=1也是这个一元二次方程的一个解.师:可见x2-x=0有两个解,一个解x1=0(边讲边标下标),另一个解x2=1(边讲边标下标).师:一元二次方程的解也叫做一元二次方程的根(板书:(根)),所以也可以这样说,(指准板书)x2-x=0有两个根,一个根x1是0,另一个根x2是1.师:下面请同学们做一个练习.(三)试探练习,回授调节3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .(四)尝试指导,讲授新课师:(板书:x2-36=0)刚才我们求了x2-36=0这个一元二次方程的两个根,x1=6,x2=-6.我们是怎么求的?我们是通过凑数字求的.大家可以想到,凑数字求根是有局限性的,什么局限性?(稍停)通过凑数字只能求那些很简单的一元二次方程的根,如果方程稍微复杂一点,数字就不好凑了.譬如,我们把右边的0改为2x(边讲边把x2-36=0中的0改为2x),x2-36=2x这个方程就很难用凑数字来求根.所以,求一元二次方程的根不能光靠凑数字,还需要有专门的方法.师:解一元二次方程的方法有好几种,下面我们先来介绍第一种方法,叫直接开平方法(板书:直接开平方法).师:怎么用直接开平方法解一元二次方程?(稍停)让我们来看一个例子.(师出示例题)例解下列一元二次方程:(1)4x2-9=0; (2)3(2x-1)2=15.(师边讲解边板书,解题过程如下所示)解:(1)原方程化成29x=4.开平方,得3x=2±,x1=32,x2=-32.(2)原方程化成2(2x-1)=5.开平方,得2x-1=5±x1=5+12,x2=-5+12.师:(指准例题)从这两个题目,哪位同学会概括用直接开平方法解一元二次方程的步骤?生:……(让一两名好生概括)师:(指准例题)用直接开平方法解一元二次方程,有三步,第一步把原方程化成x2=常数,或者含x的式子的平方=常数的形式(板书:第一步:化成什么2=常数);第二步开平方,把一元二次方程化成一元一次方程(板书:第二步:开平方);第三步解一元一次方程,得到两个根(板书:第三步:解一元一次方程).师:下面请同学们按这三步来做两个题目.(五)试探练习,回授调节5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .(六)归纳小结,布置作业师:(指准板书)本节课我们学习了一元二次方程根的概念,还学习了用直接开平方法解一元二次方程.用直接开平方法解一元二次方程有这么三步,第一步把原方程化成什么2=常数这种形式;第二步开平方,把一元二次方程化成一元一次方程,也就是把二次降为一次(板书:降次);第三步解一元一次方程,得到两个根.(作业:P28习题3,P42习题1)四、板书设计2x-6=0解是x=3 直接开平方法例x2-x=0解是x1=0,x2=1 第一步:化成什么2=常数;x2-36=2x 第二步:开平方,降次;第三步:解一元一次方程.。
人教版数学九年级上册21.1《一元二次方程(1)》教学设计一. 教材分析《一元二次方程(1)》是人教版数学九年级上册第21.1节的内容,本节主要介绍一元二次方程的定义、解法及其应用。
一元二次方程是初中数学的重要内容,也是后续学习高中数学的基础。
通过本节的学习,学生能够了解一元二次方程在实际生活中的应用,培养其解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程有一定的了解。
但在解一元二次方程方面,学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导学生逐步掌握一元二次方程的解法。
三. 教学目标1.知识与技能:理解一元二次方程的定义,掌握一元二次方程的解法,能够应用一元二次方程解决实际问题。
2.过程与方法:通过合作交流,培养学生探究问题的能力,提高学生解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的联系。
四. 教学重难点1.重点:一元二次方程的定义,一元二次方程的解法。
2.难点:一元二次方程的解法,应用一元二次方程解决实际问题。
五. 教学方法采用问题驱动法、合作交流法、案例教学法等,引导学生主动探究,合作解决问题。
六. 教学准备1.教师准备:教材、教案、PPT、教学辅助材料等。
2.学生准备:课本、练习本、文具等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一元二次方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解一元二次方程的定义,呈现一元二次方程的解法,引导学生理解并掌握解法。
3.操练(10分钟)学生独立完成一些一元二次方程的练习题,巩固所学知识。
4.巩固(5分钟)对学生的练习进行讲解,解答学生的疑问,帮助学生巩固知识。
5.拓展(10分钟)引导学生思考一元二次方程在实际生活中的应用,让学生尝试解决实际问题。
6.小结(5分钟)对本节课的主要内容进行总结,强调一元二次方程的定义和解法。
7.家庭作业(5分钟)布置一些一元二次方程的练习题,让学生课后巩固所学知识。
XX市XXX中学统一备课用纸
称为一元二次方程的一般形式.
想一想:
为什么要限制a≠0,b 、c 可以为零吗?
例: 将方程
化成一元二次方程的一般形式,并分别指出它
们的二次项、一次项和常数项及它们的系数. 解:
10-8-32常数项:一次项:二次项:x x
精讲点拨
1.判断一个方程是否是一元二次方程不能只看表面,而是能化简必须先化简,然后再查看这个方程未知数的最高次数是否是
2.
2.一元二次方程的一般形式中“=”的左边最多三项,其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按x 的降幂排列.特别注意的是“=”的右边必须整理成0.
一元二次方程的根的概念:
使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.
例:下面哪些数是方程 x2 – x – 6 = 0的解? -4 -3 -2 -1 0 1 2 3 4
二、初步应用,巩固知识
1.判断下列方程是否为一元二次方程.
随堂练习
1.关于x 的方程(k -3)x 2
+ 2x -1=0,当k 时,是一元二次方程.
8
-3一次项系数:二次项系数:(1) x 2+ x=36 (2) x 3+ x 2=36 (3) x+3y =36 (5) x+1=0 (6) y 2- y = 6 + 3y 2 (7) x 2=0 (8) x 2+2x -3=1+x 2 (9) (x+3)(2x-4)=x 2。
人教版数学九年级上册教学设计21.1《一元二次方程》一. 教材分析《一元二次方程》是人民教育出版社九年级上册数学的一个重要内容,它标志着学生从简单方程的认识过渡到更复杂的一元二次方程的解决。
本节内容通过实例引入一元二次方程,使学生了解一元二次方程的定义、特点以及解法。
教材通过问题驱动,引导学生探索求解一元二次方程的方法,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了简单方程的解法、不等式的性质等知识,具备了一定的数学基础。
但一元二次方程较为抽象,学生可能难以理解其定义和解法。
因此,在教学过程中,需要关注学生的认知困难,通过实例和问题引导学生理解和掌握一元二次方程。
三. 教学目标1.理解一元二次方程的定义和特点;2.学会求解一元二次方程的配方法、公式法等基本方法;3.能够应用一元二次方程解决实际问题;4.培养学生的数学思维能力和问题解决能力。
四. 教学重难点1.一元二次方程的定义和特点;2.一元二次方程的解法;3.一元二次方程在实际问题中的应用。
五. 教学方法1.实例导入:通过生活中的实际问题,引导学生认识一元二次方程;2.问题驱动:提出问题,引导学生探索求解一元二次方程的方法;3.小组合作:分组讨论,共同探索一元二次方程的解法;4.归纳总结:引导学生总结一元二次方程的解法,并应用于实际问题。
六. 教学准备1.教学课件:制作课件,展示一元二次方程的定义、解法等知识;2.实例材料:准备生活中的实际问题,用于导入和巩固知识;3.练习题库:准备一定数量的一元二次方程练习题,用于巩固和拓展知识。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如抛物线与x轴的交点问题,引导学生认识一元二次方程。
通过问题驱动,激发学生的学习兴趣。
2.呈现(10分钟)讲解一元二次方程的定义、特点和解法。
通过实例演示和讲解,使学生理解和掌握一元二次方程的基本解法。
3.操练(10分钟)学生分组讨论,共同探索一元二次方程的解法。
《一元二次方程》教案教学内容一元二次方程的概念,一元二次方程的一般形式.教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念.(2)了解一元二次方程的一般形式,会将一元二次方程化成一般形式.教学难点一元二次方程的概念.教学过程设计1.创设情境,引入新知教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:问题1.这个方程属于我们学过的某一类方程吗?师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.2.拓宽情境,概括概念给出课本问题1、问题2的两个实际问题,设未知数,建立方程.问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应邀请多少个队参赛?教师引导学生思考并回答以下几个问题:全部比赛共有______场.若设应邀请个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.由此,我们可以列出方程______________,化简得________________.问题3.这些方程是几元几次方程?师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.问题4.这些方程是什么方程?师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.(1)一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.(2)一元二次方程的一般形式是.其中是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项.【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比,概括一般形式是对一元二次方程另一个角度的理解,是对数学符号语言的应用能力的提升.3.辨析应用,加深理解问题5.请你说出一个一元二次方程,和一个不是一元二次方程的方程.师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛地参与.追问学生所举的反例为什么不是一元二次方程?是什么方程?【设计意图】学生自己举例,应用概念,从正反两个方向强化了对概念的理解,在追问的过程中,帮助学生将已有的方程梳理成比较清晰的知识体系,如下:开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.问题6.下列方程哪些是一元二次方程?例1.下列方程哪些是一元二次方程?(1);(2);(3);(4);(5);(6).答案(2)(5)(6).师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.问题7.指出下列方程的二次项、一次项和常数项及它们的系数.例2.将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:(1);(2).师生活动: (1)将方程去括号得:,移项,合并同类项得:,其中二次项是,二次项系数是3;一次项是,一次项系数是,常数项是.教师应及时分析可能出现的问题(比如系数的符号问题).(2)一元二次方程的一般形式是,过程略.例3.关于x的方程,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?答案:时此方程为一元二次方程;,时此方程为一元一次方程.【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.4.巩固概念,学以致用教科书第4页:练习【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.5.归纳小结,反思提高请学生总结今天这节课所学内容,通过对比之前所学其他方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.6.布置作业:教科书习题21.1复习巩固:第1,2,3题.五、目标检测设计1.下列方程哪些是关于x的一元二次方程(1);(2);(3);(4).【设计意图】考查对一元二次方程概念的理解.2.关于的方程是一元二次方程,则().A.B.C.D.【设计意图】考查的条件.3.将关于的一元二次方程化为一般形式,并指出二次项系数.【设计意图】考查化简方程的能力,及对一元二次方程一般式的掌握情况.《一元二次方程》同步试题首都师范大学附中周素裹一、选择题1.下列方程是一元二次方程的是( ).A.B.C. D.考查目的:考查一元二次方程的定义.答案:D.解析:一元二次方程是整式方程,含有最高次数项的次数为2,只有一个未知数,A是分式方程,B有两个未知数,C最高次数项为3次,故答案应选择D.2.已知关于x的方程是一元二次方程,则的取值范围是( ).A .B.C.D.考查目的:考查一元二次方程一般式中的条件.答案:B.解析:方程已经化为了一般形式,当二次项系数为时,方程为一元二次方程,本题答案为B.3.将方程化成一元二次方程的一般形式后,二次项系数、一次项系数和常数项系数可以是( )A.3,2,-1 B.3,-2,-1 C.3,-2,1 D.-3,-2,1考查目的:考查一元二次方程一般式.答案:C.解析:根据移项法则,方程可整理为.答案应选择C.二、填空题4.把一元二次方程化成一般形式,它的二次项系数是_________;一次项系数是________,常数项是_________.考查目的:一元二次方程的一般形式.答案:1,-1,-10.解析:去括号得,移项得,所以二次项系数是1,一次项系数是-1,常数项是-10.5.已知关于的方程方程当m满足__________时,它是一元一次方程;当满足___________时,它是一元二次方程.考查目的:考查一元二次方程的概念.答案:.解析:当即时,方程是一元一次方程;当即时,方程是一元二次方程.6.是方程的一个根,那么=_________.考查目的:方程的根的意义.答案:-5.解析:是方程的一个根,根据根的定义可知,可使等式成立,将代入方程,可得,则.三、解答题7.根据题意,列出方程:有一面积为60m2的长方形,将它的一边剪去5m,另一边剪去2m,恰好变成正方形,试求正方形的边长.考查目的:根据实际问题建立数学模型,抽象出一元二次方程.答案:设正方形的边长为m,则.解析:设正方形的边长为m,是解本题的关键,它使得题中蕴含的三个未知数:正方形的边长、长方形的长和宽,得以用同一个未知数表达,这样利用面积为60 m2找到等量关系.8.关于的一元二次方程的一个根是,求的值.考查目的:根的意义,一元二次方程的条件.答案:∵方程的一个根是∴,∴,∴.当时方程二次项系数,方程不是关于的一元二次方程∴,当时方程二次项系数,方程是关于的一元二次方程∴.解析:本题有两个条件:关于的一元二次方程,一个根是,转化成数学符号语言可以得到,所以.。
21.1一元二次方程一、教学目标:1.通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0). 2.分清二次项及其系数、一次项及其系数与常数项等概念.3.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.4.通过例题和习题,列一元二次方程,让学生体会一元二次方程是刻画现实世界数量关系的有效模型,培养学生初步形成“模型思想”,增强学生应用数学知识解决问题的意识.二、重点难点:重点:通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点:一元二次方程及其二次项系数、一次项系数和常数项的识别.三、教学过程:(一) 复习回顾:1.什么叫方程?2.目前我们已经学习了哪些方程?①一元一次方程 ②二元一次方程(组) ③分式方程练习:根据下列问题列出关于x 的方程.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个矩形的长比宽多2,面积是100,求矩形的长x ;即: (3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ; 即:问题:这三个方程和之前学习过的方程类型一样吗?它们属于哪一类方程?设计意图:引导学生回顾方程概念,梳理清楚在方程这个大家族里面有很多分支,比如一元一次方程,二元一次方程(组),分式方程等.其次通过列方程实际问题得出方程(一元二次方程),设计问题引导学生对比和类比,为新知识的学习做铺垫.注重新旧知识的联系,也让学生对新概念的内涵和外延都有初步认识.(二)引出本节课课题:一元二次方程观察与思考:2425x =(2)100x x -=22100x x -=2(1)x x =-212x x x =-+222425210012x x x x x x =-==-+这三个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点: ①都是整式方程;②只含一个未知数;③未知数的最高次数是2.知识1类比归纳:一元二次方程的概念等号两边都是整式, 只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.练习1.下列方程是一元二次方程吗?(1) 3253x y +=- ×(2) 24x = √(3) 2211x x x --=+ × (4)224(2)x x -=+ ×方法总结:判断一个方程是否是一元二次方程的依据:①都是整式方程;②只含一个未知数;③未知数的最高次数是2.注意:有些方程化简前含有未知数最高次数为2的项,但是化简后不存在未知数最高次数是2的项,这样的方程不是一元二次方程.设计意图:将一元二次方程的具体例子与一元一次方程作比较,引导学生观察一元二次方程在形式上的特点,找出两类方程的相同点和不同点,再类比一元一次方程的命名,学生可以很容易得出一元二次方程的命名和概念.让学生对一元二次方程的概念印象深刻,同时减少学生对新知识的陌生感,提高学习兴趣.通过练习,加深对概念的理解.活动:对这些一元二次方程进行整理,使得右边等于0.222425210012x x x x x x =-==-+222425021000310x x x x x -=--=-+=知识2:一元二次方程的一般形式:ax 2+bx +c =0(a ≠0)20(0)ax bx c a ++=≠一元二次方程一般式:思考:为什么要规定a ≠0?b 、c 可以为零吗? 设计意图:让学生对所给的一元二次方程进行整理,容易发现其一般形式,并分清二次项及其系数、一次项及其系数与常数项等概念.例 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数: 3(1)5(2)x x x -=+注:各项都应带符号.练习2.将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:22(1)514(2)481(3)4(2)25(4)(32)(1)83x x x x x x x x -==+=-+=-练习3. 当m 为何值时, 方程 42(1)2750m m xmx -+++= 是关于x 的一元二次方程.练习4.方程2(24)20a x bx a --+=,在什么条件下为一元二次方程?在什么条件下为一元一次方程?解:当 a ≠2 时,是一元二次方程;当 a =2,b ≠0 时,是一元一次方程.练习5.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:问题(1) 要设计一座高2m 的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,求雕像的下部应设计为高多少米?解:设雕像的下部应设计为高x 米(2)::2x x x -=问题(2) 有一块矩形铁皮,长100㎝,宽50㎝,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?解:设各角切去的正方形边长x cm(1002)(502)3600x x --=问题(3) 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?解:设比赛组织者应邀请x 个队参加比赛(1)472x x -=⨯ 设计意图:通过例题和习题,加深对一元二次方程概念以及二次项及其系数、一次项及其系数与常数项等概念的理解.最后通过所学方程解决实际问题,让学生体会一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.知识3:一元二次方程的根使方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根. 练习6. 下列哪些数是方程的根?260--=x x-4,-3,-2,-1,0,1,2,3,4设计意图:通过复习方程根的知识,明白方程根的意义.也为解一元二次方程做铺垫,提高学生学习兴趣.(三)课堂小结:1.一元二次方程的概念是什么?2. 如何将一元二次方程转化为一般形式,一般形式包括哪些项?3. 什么是一元二次方程的根?。
第二十一章 一元二次方程 21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程. 2.教材第2页 问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x 个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页 例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页 练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页 习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时 直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n ≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2直接开平方,得:x +3=± 2 即x +3=2,x +3=- 2所以,方程的两根x 1=-3+2,x 2=-3- 2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m 2提高到14.4 m 2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x ,一年后人均住房面积就应该是10+10x =10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x =10(1+x)2解:设每年人均住房面积增长率为x ,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x =±1.2 即1+x =1.2,1+x =-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页 练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页 复习巩固1.第2课时 配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0 老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联? 二、探索新知讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.例1 解下列方程:(1)2x 2+1=3x (2)3x 2-6x +4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页 练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页 复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4(2)(x-2)2=7提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程 2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-ca配方,得:x 2+b a x +(b 2a )2=-c a +(b2a)2即(x +b 2a 2=b 2-4ac4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac 4a 2≥0∴(x +b 2a 2=(b 2-4ac 2a)2直接开平方,得:x +b 2a ±b 2-4ac 2a即x =-b±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x (3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 补:(5)(x -2)(3x -5)=0 三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况. 五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程. 难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1 三、巩固练习教材第14页 练习1,2.四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x 1 x 2 x 1+x 2 x 1·x 2 x 2-2x =0 x 2+3x -4=0x 2-5x +6=0观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x 1 x 2 x 1+x 2 x 1·x 2 2x 2-7x -4=0 3x 2+2x -5=0 5x 2-17x +6=0小结:根与系数关系:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0) ∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1) (2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ; 变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.21.3实际问题与一元二次方程(2课时)第1课时 解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页 习题21.3第2-7题.第2课时 解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页 习题21.3第8,10题.。
教学准备
1. 教学目标
1.经历一元二次方程概念的形成过程,知道什么是一元二次方程.
2.会把一元二次方程化成一般形式,并知道各项及系数的名称.
2. 教学重点/难点
1.重点:一元二次方程的概念.
2.难点:把一元二次方程化成一般形式.
3. 教学用具
4. 标签
教学过程
教学过程
(一)创设情境,导入新课
师:(板书:3x-5=0)这是一个什么方程?(稍停)3x-5=0是一个一元一次方程(板书:一元一次方程).
师:哪位同学知道什么样的方程是一元一次方程?
生:……(让几名同学回答)
师:(指准3x-5=0)只含有一个未知数,并且未知数的次数是1的方程,叫做一元一
次方程.(指准“一元一次方程”)一元指的是含有一个未知数,一次指的是未知数的次数是1.
师:一元一次方程是我们在初一已经学过的,从今天开始,我们要学习一种新的方程,叫做一元二次方程(板书:一元二次方程).
(二)尝试指导,讲授新课
(师出示下面的板书)
只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程. 师:请大家把一元二次方程的定义读两遍.(生读)
课堂小结
师:这节课我们学习了什么?哪位同学能帮老师小结一下?生:……(让一两名学生小结)
课后习题
板书。