小值.
解:将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上, 如图,线段AA1的长为所求△AEF周长的最小值.
∴AA1=4 2, ∴△AEF 周长的最小值为 4 2.
∵∠AVB=∠A1VC=∠BVC=30°,∴∠AVA1=90°. 又VA=VA1=4,
反思感悟 本题是多面体表面上两点间的最短距离问题,常常要归
特征的关键.因此,在涉及多面体的结构特征问题时,先看是否满足
定义,再看它们是否具备各自的性质:侧面、底面形状、侧棱、棱之
间的关系等.判断时要充分发挥空间想象能力,必要时可借助于几何 模型.
变式训练1下列说法正确的有
(填序号).
①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧
面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;
图形及表示:
如图棱柱可记作:棱柱ABCDEF-A'B'C'D'E'F'
三、棱锥的结构特征 问题思考
1.观察下列多面体,有什么共同特点?
提示:(1)有一个面是多边形;(2)其余各面都是有一个
公共顶点的三角形.
2.关于棱锥的定义、分类、图形及表示 定义:有一个面是多边形,其余各面都是 有一个公共定点 的 三角形,由这些面所围成的多面体叫做棱锥 相关概念:底面(底):多边形面;侧面:有 公共顶点 的各个 三角形面;侧棱:相邻侧面的 公共边 ;顶点:各侧面的公共顶 点分类:①依据:底面多边形的边数;②举例:三棱锥(底面是三角形)、 四棱锥(底面是四边形)……
是一个四棱柱;④⑤都正确,如图.故填①③④⑤.
答案:①③④⑤
防范措施 在解答关于空间几何体概念的判断题时,要注意紧
扣定义,切忌只凭图形主观臆断.同时立体几何问题中也要注意分