二重积分的概念及性质
- 格式:pptx
- 大小:1.43 MB
- 文档页数:33
二重积分及其应用于平面区域的面积计算二重积分是微积分中的重要概念,它是对平面区域上一个函数的积分。
在本文中,我将详细介绍二重积分的概念、性质和应用于平面区域面积计算的方法。
一、二重积分的概念和性质二重积分用于计算平面上某个函数在一个有界区域上的积分。
假设有一个平面区域D,它可以被一个闭区间[a, b]和一个连续函数g(x)所确定,那么函数f(x, y)在D上的二重积分可以表示为:∬_D▒f(x,y)dσ = ∫_a^b▒∫_g(x)^h(x)▒f(x,y)dydx其中dσ表示平面区域D的面积元素,f(x, y)是被积函数,g(x)和h(x)是确定区域D上y的范围的两个函数。
二重积分具有以下性质:1. 线性性:对于函数f(x, y)和g(x, y),以及常数c,有∬_D▒(cf(x,y)+g(x,y))dσ = c∬_D▒f(x,y)dσ+∬_D▒g(x,y)dσ。
2. 切割性:如果区域D可以被切割成有限个子区域Di,那么∬_D▒f(x,y)dσ = ∑▒∬_D_i▒f(x,y)dσ,其中∬_D_i▒表示对子区域Di的二重积分。
二、应用于平面区域面积计算的方法二重积分可以应用于计算平面区域的面积。
将平面区域D分为无穷小的面积元素dσ,利用二重积分的定义可以得到平面区域D的面积S为:S = ∬_D▒dσ = ∫_a^b▒∫_g(x)^h(x)▒dydx其中函数f(x, y)可以简化为1,因为在这种情况下,二重积分的计算只需求区域D的面积。
在实际应用中,计算平面区域的面积可以采用两种不同的方法:直角坐标系和极坐标系。
1. 直角坐标系方法在直角坐标系下,平面区域的面积计算可以通过确定区域上下边界的函数和左右边界的值来进行。
首先,通过确定左右边界的x值范围[a, b],以及上下边界的y值范围[g(x), h(x)],可以得到平面区域D的边界方程。
然后,应用二重积分的定义,计算∫_a^b▒∫_g(x)^h(x)▒dydx即可得到平面区域D的面积。
二重积分知识点一、引言二重积分是高等数学中的重要内容,是对二元函数在有限区域上的积分运算。
二重积分的概念与求解技巧是深入理解、掌握多元函数的必备工具,也为解决实际问题提供了数学方法。
本文将从二重积分的概念、性质、计算方法和应用等方面,全面详细地介绍二重积分的知识点。
二、概念1. 二重积分的定义设f (x,y )在闭区域D 上有定义,D 由有向闭曲线C 围成,且f (x,y )在D 上有界。
若存在数I ,对于任意给定的正数ε,都存在正数δ,使得对于D 内任意满足Δσ<δ的任意分割σ,对应的任意代点ξij ,总有|∑∑f mj=1n i=1(ξij )Δσij −I|<ε则称I 为函数f (x,y )在闭区域D 上的二重积分,记作I =∬f D(x,y )dσ其中,Δσij 表示第(i,j )个小区域的面积,Δσ表示整个区域D 的面积。
2. 二重积分的几何意义二重积分的几何意义是对二元函数在闭区域上的面积进行逐点求和,即将闭区域D 分割成无穷多个小面积区域,并对每个小面积区域上的函数值进行乘积再求和,最终得到二重积分。
三、性质1. 线性性质设闭区域D上有二重积分∬fD(x,y)dσ,若c为常数,则有∬(cf(x,y)) D dσ=c∬fD(x,y)dσ∬(f(x,y)±g(x,y)) D dσ=∬fD(x,y)dσ±∬gD(x,y)dσ2. 区域可加性设闭区域D可分为非重叠的两部分D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ3. Fubini定理(累次积分)设函数f(x,y)在闭区域D上连续,则有∬f D (x,y)dσ=∫(∫fβ(x)α(x)(x,y)dy)badx=∫(∫fδ(y)γ(y)(x,y)dx)dcdy其中,(x,y)∈D,α(x)≤y≤β(x),γ(y)≤x≤δ(y)。
4. 值定理设函数f(x,y)在闭区域D上一致连续,则存在(ξ,η)∈D,使得∬fD (x,y)dσ=f(ξ,η)∬dDσ=f(ξ,η)σ(D)其中,σ(D)表示闭区域D的面积。
第九章 重积分Chapter 9 Multiple Integrals9.1 二重积分的概念与性质 (The Concept of Double Integrals and ItsProperties)一、二重积分的概念 (Double Integrals)定义 ( 二重积分的定义 ) 设 D 是xy 平面的有界闭区域 ,f 是定义在 D 上的函数。
将 D 任意分成 n 个小区域i σ,它们的面 积用(1,2,)ii n σ∆=L 表示。
在每个(1,2,)i i n σ=L 上任取一点(,)i i ξη,并作和1(,)n i i i i f ξησ=∆∑。
假设存在一个确定的数I 满足:任给0ε>,存在0δ>,使得当各小区域i σ的直径中的最大值λ小于δ时,就有 1(,)ni i i i f I ξησε=∆-<∑ 不管区域D 的分法如何,(,)i i ξη的取法如何。
这样就称f 在D 上可积,I 称为f 在D 上的二重积分,记作(,)D f x y d I σ=⎰⎰或01(,)lim (,)λσξησ→==∆∑⎰⎰n i i i i D f x y d f Definition (The Double Integral) Let D be a bounded closed region in the 巧 1 plane and f a function defined on D. Partition D arbitrarily into nsubregions i σ,whose area is denoted by(1,2,)i i n σ∆=L Choose arbitrarily a point (,)i i ξη in (1,2,)i i n σ=L and then form the sum 1(,)n i i i i f ξησ=∆∑。
Supposethat there exists a fixed number I such that for any 0ε>, thereexists a 0δ>such that if the length λ of the longest diameter of those subregions i σ in a partition of D is less than δ, then 1(,)n i i i i f I ξησε=∆-<∑,no matter how the partition is and how those points (,)i i ξηare chosen from (1,2,)i i n σ=L Then f is said to be integrable over D and I is the double integral of f over D ,written (,)D f x y d I σ=⎰⎰,or 01(,)lim (,)λσξησ→==∆∑⎰⎰n i i i i D f x y d f 二、二重积分的性质 (Properties of Double Integrals)性质 1 两个函数和 ( 或差 ) 的二重积分等于它们二重积分的和 ( 或差 ), 即((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰.Property 1 The double integral of the sum(or difference) of two functions is equal to the sum( or difference) of their double integrals, that is((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰ 性质 2 被积函数前面的常数因子可以提到积分号前面 , 即(,)(,)D D kf x y d k f x y d σσ=⎰⎰⎰⎰,若k 为常数。