高三数学空间向量及其坐标运算
- 格式:pdf
- 大小:956.10 KB
- 文档页数:9
2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
空间向量数量积及坐标运算在空间解析几何中,向量是研究的重要对象之一,而向量的数量积和坐标运算是向量运算中的基本概念。
本文将介绍空间向量的数量积及其坐标运算方法。
一、空间向量的数量积空间中的向量可以用其坐标表示,记作a = (x1, y1, z1)和b = (x2, y2,z2),其中a、b分别是空间中的两个向量,xi、yi、zi为它们在笛卡尔坐标系中的坐标。
向量的数量积(又称点积或内积)定义为两个向量的对应坐标的乘积之和,即:a ·b = x1 * x2 + y1 * y2 + z1 * z2其中·表示数量积运算。
性质:1.数量积是实数。
2.数量积的结果等于向量乘积和坐标乘积之和。
3.数量积满足交换律:a · b = b · a。
4.数量积满足分配率:(a + b) · c = a · c + b · c。
二、向量的坐标运算1. 向量的加法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的和记为c,则c的坐标为:x = x1 + x2y = y1 + y2z = z1 + z2即向量的和的每个坐标等于对应向量的坐标之和。
性质:1.向量的加法满足交换律:a + b = b + a。
2.向量的加法满足结合律:(a + b) + c = a + (b + c)。
2. 向量的减法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的差记为c,则c的坐标为:x = x1 - x2y = y1 - y2z = z1 - z2即向量的差的每个坐标等于对应向量的坐标之差。
3. 向量的数乘设k为实数,a = (x, y, z)是空间中的一个向量,ka为向量a的数乘,即ka 的坐标为:x' = k * xy' = k * yz' = k * z性质:1.数乘满足结合律:k(ka) = (k * k')a。
高三第一轮复习数学---空间向量的坐标运算一、教学目标::向量的坐标运算和建系意识. 二、教学重点:向量的坐标运算 三、教学过程:(一)主要知识: 1.空间直角坐标在空间选定一点O 和一个单位正交基底{ī,j ,k },以点O 为原点,分别以ī,j ,k 的正方向建立三条坐标轴: x 轴,y 轴,z 轴,使∠xOy=135°(或45°),∠yOz=90°,就建立了一个空间直角坐标系O-xyz 。
点O 叫原点,ī,j ,k 叫坐标向量,一般作右手直角坐标系。
任一点A 对应一个向量OA ,存在唯一的实数组x 、y 、z. =OA x ī+y j+z k . 记为A (x 、y 、z ),叫空间直角坐标系中的坐标。
其中x 叫点A 的横坐标,y 叫点A 的纵坐标,z 叫点A 的竖坐标2.向量的直角坐标运算 (1)设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3)则a+b =( a 1 +b 1 ,a 2 +b 2,a 3+b 3) a-b =( a 1 -b 1 ,a 2 -b 2,a 3-b 3) λa=(λa 1,λa 2,λa 3)(λ∈R ) a·b =a 1b 1+a 2b 2+a 3b 3a ∥b ↔ a 1 =λb 1 ,a 2=λb 2,a 3=λb 3(λ∈R ) a ⊥b ↔ a 1b 1+ a 2b 2 +a 3b 3=0 (2)设A (a 1,a 2,a 3),B (b 1,b 2,b 3)则=-=OA OB AB (b 1,b 2,b 3)-(a 1,a 2,a 3)=( b 1 -a 1 ,b 2-a 2,b 3-a 3)。
即一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
3.夹角和距离公式设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3)则232221a a a a a a ++=⋅=232221b b b b b b ++=⋅=a·b = a 1b 1+a 2 b 2+a 3b 3 232221232221332211b a b a b a cosbb b a a a ba ++⋅++++=⋅已知),,(111z y x A ,),,(222z y x B 则()()()221221221z z y y x x -+-+-==空间两点间距离公式4.如果表示向量a 的有向线段所在的直线垂直于平面α,则称这个向量垂直于平面α,记为α⊥a 如果α⊥a ,那么向量a 叫做平面α的法向量 5. 设A (a 1,a 2,a 3),B (b 1,b 2,b 3)则AB 中点坐标为)2,2,2(332211b a b a b a +++6.向量位置与立体几何中位置对照:⑴AB//CD CD AB CD AB λ=⇔⇔// ⑵0=⋅⇔⊥CD AB CD AB⑶证A 、B 、C 、D 四点共面可通过证1=++++=+=r q p OD r OC q OB p OA AD y AC x AB 且或⑷AB ==⑸线线角即为两向量的夹角或其补角⑹线面角即为线所在向量与面的法向量的夹角的余角或再减90⑺面面角即为两面的法向量的夹角或其补角 ⑻距离可通过求在法向量上投影的长度得到(二)例题分析:例1(1) 已知直角坐标系内三点A (2,4,1),B (3,7,5),C (4,10,9),判断A 、B 、C 三点是否共线?(2)已知直角坐标系内四点A (2,3,1),B (4,1,-2),C (6,3,7),D (-5,4,8),判断A 、B 、C 、D 四点是否共线?解:(1)),8,6,2(),4,3,1(==AC AB 可见AB AC AB AC 和故,2=共线,即A,B,C 三点共线。
空间向量的坐标和运算一、空间向量的坐标和运算1.空间直角坐标系在单位正方体$oabc$-$d$′$a$′$b$′$c$′中,以$o$点为原点,分别以射线$oa$,$oc$,$od$′的方向为正方向,以线段$oa$,$oc$,$od$′的长为单位长,建立三条数轴:$x$轴、$y$轴、$z$轴。
这时我们说建立了一个空间直角坐标系$oxyz$,其中点$o$叫做坐标原点,$x$轴、$y$轴、$z$轴叫做坐标轴。
通过每两个坐标轴的平面叫做坐标平面,分别称为$xoy$平面、$yoz$平面、$xoz$平面。
2.空间矢量的坐标一个向量在空间直角坐标系中的坐标等于表示向量的有向线段的终点坐标减去起点坐标。
如果$a(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,那么$\overrightarrow{AB}=\overrightarrow{ob}-\overrightarrow{OA}$=$(x_2-x_1$,$y_2-y_1$,$z_2-z_1)$。
3、空间向量的坐标运算设置$\boldsymbol(x_1,y_1,z_1)$,$\boldsymbol B(x_2,y_2,z_2)$,然后(1)$\boldsymbola+\boldsymbolb$=$(x_1+x_2,y_1+y_2,z_1+z_2)$。
(2) $\boldsymbola-\boldsymbolb$=$(x_1-x_2,y_1-y_2,z_1-z_2)$(3)$\boldsymbola·\boldsymbolb$=$x_1x_2+y_1y_2+z_1z_2$。
(4) $|\boldsymbola |=\sqrt{x^2_1+y^2_1+z^2_1}$(5)$λ\boldsymbola=(λx_1,λy_1,λz_1)$。
4.平行(共线)和垂直空间向量的充要条件设非零向量$\boldsymbola(x_1,y_1,z_1)$,$\boldsymbolb(x_2,y_2,z_2)$,则$\boldsymbola∥\boldsymbolb\leftrightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}=λ(λ∈\mathbf{r})$$\boldsymbola⊥\boldsymbolb\leftrightarrow\boldsymbola·\boldsymbolb=0\leftrig htarrow$$x_1x_2+y_1y_2+z_1z_2=0$。
空间向量坐标运算空间向量是指在空间中有大小和方向的线段。
空间向量的坐标运算包括向量的加法、减法、数乘和内积。
下面将对这些运算进行详细介绍。
一、向量的加法设空间中有两个向量A和B,它们的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz)。
向量的加法即将两个向量的对应分量相加得到一个新的向量C。
它的坐标为(Ax+Bx, Ay+By, Az+Bz)。
例如,设A = (1, 2, 3)和B = (4, 5, 6),则A+B = (1+4, 2+5, 3+6) = (5, 7, 9)。
二、向量的减法向量的减法是指将一个向量减去另一个向量。
设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A减去向量B的坐标为(Ax-Bx, Ay-By, Az-Bz)。
例如,设A = (1, 2, 3)和B = (4, 5, 6),则A-B = (1-4, 2-5, 3-6) = (-3, -3, -3)。
三、向量的数乘向量的数乘是指一个向量乘以一个实数。
设向量A的坐标为(Ax, Ay, Az),实数k,则向量A乘以实数k的坐标为(kAx, kAy, kAz)。
例如,设A = (1, 2, 3),k = 2,则kA = (2*1, 2*2, 2*3) = (2, 4,6)。
四、向量的内积向量的内积又称为点乘,它是两个向量之间的一种运算。
设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A与向量B的内积为Ax*Bx + Ay*By + Az*Bz。
例如,设A = (1, 2, 3)和B = (4, 5, 6),则A·B = 1*4 + 2*5 +3*6 = 32。
向量的内积有以下几个性质:1. 交换律:A·B = B·A;2. 分配律:(A+B)·C = A·C + B·C;3. 数乘结合律:(kA)·B = k(A·B) = A·(kB)。
空间向量坐标运算空间向量是指具有大小和方向的直线段,在三维空间中通常用坐标表示。
空间向量的坐标运算包括向量的加法、减法、数量乘法、点乘和叉乘等。
下面将详细介绍这些运算。
1. 向量的加法和减法向量的加法和减法是指将两个向量相加或相减得到一个新的向量,其坐标运算规律如下:- 加法:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的和的坐标为(u1+v1, u2+v2, u3+v3);- 减法:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的差的坐标为(u1-v1, u2-v2, u3-v3)。
2. 向量的数量乘法向量的数量乘法是指将一个向量乘以一个实数得到一个新的向量,其坐标运算规律如下:- 数量乘法:若向量u的坐标为(u1, u2, u3),实数k,则向量u 乘以k的坐标为(k*u1, k*u2, k*u3)。
3. 向量的点乘向量的点乘又称为内积,是指将两个向量进行乘法运算得到一个标量(实数),其计算公式如下:- 点乘:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的点乘的结果为u1*v1 + u2*v2 + u3*v3。
4. 向量的叉乘向量的叉乘又称为外积,是指将两个向量进行乘法运算得到一个新的向量,其计算公式如下:- 叉乘:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的叉乘的坐标为((u2*v3 - u3*v2), (u3*v1 -u1*v3), (u1*v2 - u2*v1))。
通过以上的描述可以看出,向量的加法、减法、数量乘法都是按照对应位置进行运算,只要对应坐标进行相加、相减或乘以相同的实数即可。
点乘和叉乘则需要对应坐标进行特定的运算。
需要注意的是,向量的坐标运算不关心向量的起点和终点,只关心向量的大小和方向。
9.6空间向量的坐标运算亠、空间直角坐标系:如果空间的一个基底的三个基向量互相垂直,且长都为1,这个基底叫做单位正交基底,常用{i, j,k}表示。
r r u 在空间选定一点0和一个单位正交基底{i, j,k},r r u J 以点O为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴。
这时我们称建立了一个空间直角坐标系O- xyz,点0叫r r u做原点,向量i、j、k都叫做坐标向量。
通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz 平面,zOx平面。
u注意:①作空间直角坐标系O- xyz时,一般使? xOy 135 °(或45 °), ? yOz 90 °。
②在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系。
说明右手直角坐标系的特点是:从Ox到Oy是逆时针方向。
③如无特别说明,以后建立的坐标系都是右手直角坐标系。
给定一个空间直角坐标系和向量a,且设i、j、k 为坐标向量,根据空间向量基本定理可知:存在唯一的有序实数组(a i,a2, a3),使r r r ua = a i i + a2 j + a3 k有序实数组(a i,a2,a3)叫做向量\在空间直角坐标系O- xyz中的坐标,可简记作ra = (a i, a2, a3)z在空间直角坐标系O- xyz中,对空间任一点A,r对应一个向量OA,于是存在唯一的有序实数组x、y、z,使um r r uOA = xi + yj + zk有序实数组(x, y, z)叫做点A的坐标,记作A (x,y,z ),其中x 叫做点A 的横坐标,y 叫做点A 的 纵坐标,z 叫做点A 的竖坐标。
二、空间向量的直角坐标运算:r rI •设 a = (a i , a 2, a 3)? b = (bi ,6 ,b s ),则 ① a + b = (a i + b,a 2 + 6,a 3+ b 3); r r② a - b = (a i - b i ,a 2- b 2,a 3- b s );r③ I a = (l a i ,l a 2,l a 3)(l ? R );r r④ a ?b a i b i + a 2 b 2 + a 3 b s ;r r⑤ a 八 b ? a i b i a 26+ a 3b s = 0;l a i = l bi ^a 2 l b 2(l ? R ) =l b 3①AB 的中点坐标是 严产,皿产,电产); uuur uuur uuur② AB = OB - OA =(X 2- x i , y 2- y i 卫-Z i )。
第3讲 空间向量及其运算的坐标表示知识梳理1.空间向量运算的坐标表示若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则: (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3); (2)a -b =(a 1-b 1,a 2-b 2,a 3-b 3); (3)λa =(λa 1,λa 2,λa 3)(λ∈R ); (4)a ·b =a 1b 1+a 2b 2+a 3b 3;(5)a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); (6)a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0; (7)|a |=a ·a =a 21+a 22+a 23;(8)cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 2.空间中向量的坐标及两点间的距离公式在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则: (1)AB →=(a 2-a 1,b 2-b 1,c 2-c 1); (2)d AB =|AB→|= (a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2 .考点1 空间直角坐标系【例1-1】(武汉期末)点(1P ,2,3)-关于xOz 平面对称的点的坐标是( ) A .(1,2,3)B .(1,2-,3)-C .(1-,2,3)-D .(1-,2-,3)【变式训练1-1】(河南月考)在空间直角坐标系Oxyz 中,点(1,2-,4)关于y 轴对称的点为( ) A .(1-,2-,4)- B .(1-,2-,4) C .(1,2,4)-D .(1,2,4)考点2 空间向量的坐标运算【例2-1】(钦州期末)已知(1a =,2,1),(2b =,4-,1),则2a b +等于( ) A .(4,2-,0)B .(4,0,3)C .(4-,0,3)D .(4,0,3)-【例2-2】(济南模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求k 的值; (3)设|c |=3,c ∥BC→,求c .【变式训练2-1】(菏泽期末模拟)已知a =(2,-1,3),b =(0,-1,2).求:(1)a +b ; (2)2a -3b ; (3)a ·b ;(4)(a +b )·(a -b ).【变式训练2-2】(烟台期末)已知A (1,0,0),B (0,-1,1),若OA →+λOB →与OB →(O 为坐标原点)的夹角为120°,则λ的值为( )A.66 B .-66C .±66D .±6考点3 空间两点间的距离【例3-1】(淄博调研)已知△ABC 的三个顶为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .5【变式训练3-1】(温州期中)点(1M -,2,3)是空间直角坐标系Oxyz 中的一点,点M 关于x 轴对称的点的坐标为 ,||OM = .A 组-[应知应会]1.(安徽期末)空间直角坐标系中,点(2P ,1-,3)关于点(1M -,2,3)的对称点Q 的坐标为(( ) A .(4,1,1)B .(4-,5,3)C .(4,3-,1)D .(5-,3,4)2.(金牛区校级期中)点(3A ,2,1)关于xOy 平面的对称点为( ) A .(3-,2-,1)- B .(3-,2,1)C .(3,2-,1)D .(3,2,1)-3.(东阳市校级月考)已知点(1A ,2-,3),则点A 关于原点的对称点坐标为( ) A .(1-,2,3)B .(1-,2,3)-C .(2,1-,3)D .(3-,2,1)-4.(茂名期末)已知向量(1,1,2)a =--及(4,2,0)b =-则a b +等于( ) A .(3-,1,2)-B .(5,5,2)-C .(3,1-,2)D .(5-,5-,2)5.(高安市校级期末)已知空间向量()()()1,,1,3,1,,,0,0,,(a x b y c z a b c xyz =-==+=则的值为 ) A .2±B .2-C .2D .06.(丰台区期末)已知(2AB =,3,1),(4AC =,5,3),那么向量(BC = ) A .(2-,2-,2)- B .(2,2,2)C .(6,8,4)D .(8,15,3)7.(多选)(三明期末)如图,在长方体1111ABCD A B C D -中,5AB =,4AD =,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为(4,5,3)B .点1C 关于点B 对称的点为(5,8,3)- C .点A 关于直线1BD 对称的点为(0,5,3) D .点C 关于平面11ABB A 对称的点为(8,5,0)8.(公安县期末)在空间直角坐标系中,已知两点(5P ,1,)a 与(5Q ,b ,4)关于坐标平面xOy 对称,则a b += .9.(温州期末)在平面直角坐标系中,点(1,2)A -关于x 轴的对称点为(1,2)A '--,那么,在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为 ,若点(1C ,1-,2)关于xOy 平面的对称点为点C ',则||B C ''= .10.(浙江期中)空间直角坐标系O xyz -中,点(1M ,1-,1)关于x 轴的对称点坐标是 ;||OM = .11.(兴庆区校级期末)已知(2a =,3-,1),(2b =,0,3),(1c =,0,2),则68a b c +-= . 12.(辽阳期末)已知向量(2,3,1)a =-,(1,2,4)b =-,则a b += .13.(越秀区期末)已知点(1A ,2,0)和向量(3a =,4,12)-,若2AB a =,则点B 的坐标是 . 14.(黄浦区校级月考)已知向量(7,1,5),(3,4,7)a b =-=-,则||a b +=15.(青铜峡市校级月考)已知点A ,B 关于点(1P ,2,3)的对称点分别为A ',B ',若(1A -,3,3)-,(3A B ''=,1,5),求点B 的坐标.16.(福建期中)已知空间三点(1A -,2,1),(0B ,1,2)-,(3C -,0,2) (1)求向量AB AC 与的夹角的余弦值,(2)若向量3AB AC AB k AC -+与向量垂直,求实数k 的值.17.(扶余县校级月考)(Ⅰ)设向量(3a =,5,4)-,(2b =,0,3),(0c =,0,2),求:()a b c -+、68a b c +-. (Ⅱ)已知点(1A ,2-,0)和向量(1a =-,2,3)求点B 坐标,使向量AB 与a 同向,且.1.(襄阳期中)已知向量a ,b ,c 是空间的一个单位正交基底,向量a b +,a b -,c 是空间的另一个基底,若向量p 在基底a ,b ,c 下的坐标为(3,2,1),则它在a b +,a b -,c 下的坐标为( )A .15(,,1)22B .51(,1,)22C .15(1,,)22D .51(,,1)222. (安庆质检)已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若AP →∥BC →,且|AP →|=214,求点P 的坐标; (2)求以AB →,AC →为邻边的平行四边形的面积.。
1.3 空间向量及其坐标的运算1.空间向量的坐标表示(1)设e1,e2,e3为有公共起点O的三个两两垂直的单位向量(我们称它们为单位正交基底),以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz,那么对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O重合,得到向量OP=p,由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3,我们把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z),此时向量p的坐标恰是点P在空间直角坐标系Oxyz 中的坐标(x,y,z).(2)向量p的坐标是把向量p的起点平移到坐标原点O,则OP的终点P的坐标就是向量p的坐标,这样就把空间向量坐标化了.2.空间向量的坐标运算3.(1)空间向量a,b,其坐标形式为:a=(a1,a2,a3),b=(b1,b2,b3),则a+b=(a1+b1,a2+b2,a3+b3),a-b=(a1-b1,a2-b2,a3-b3),λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3.(2)a·a=|a|2=222 123 a a a++.3.空间向量的平行、垂直及模、夹角设a=(a1,a2,a3),b=(b1,b2,b3),则【题型精讲】考点一坐标的运算【例1】(1)(2020·宜昌天问教育集团高二期末)设,x y R∈,向量(,1,1),b(1,,1),c(2,4,2)a x y===-,,ca c b⊥,则||a b+=()A.B C.3D.4(2)(2020·宜昌天问教育集团高二期末)已知空间向量()1,0,1a =,()1,1,b n =,3a b ⋅=则向量a 与bλ(0λ≠)的夹角为( )A .6πB .6π或56πC .3πD .3π或23π 【玩转跟踪】1.(2020·全国高二课时练习)下列向量中与向量()010a =,,平行的向量是( )A .()100b =,, B .()010c =-,,C .()111d =--,,D .()001e =-,,2.(2020·全国高二课时练习)已知向量()1,0,1a =,()2,0,2b =-,若()()2ka b a kb +⋅+=,则k 的值等于( )A .1B .35C .25D .153.(2020·广西北流市实验中学高一期中)在空间直角坐标系O ﹣xyz 中,点A (2,﹣1,3)关于yOz 平面对称的点的坐标是( )A .(2,1,3)B .(﹣2,﹣1,3)C .(2,1,﹣3)D .(2,﹣1,﹣3)4.(2020·全国高二课时练习)已知(1,1,2),(6,21,2)a b m λλ=+=-.(1)若//a b ,分别求λ与m 的值;(2)若||5a =,且与(2,2,)c λλ=--垂直,求a .考点二 坐标运算在几何中的运用【例2】(2020·全国高二课时练习)如图,在直三棱柱ABC -A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M ,N 分别是AA1,CB1的中点.(1)求BM ,BN 的长. (2)求△BMN 的面积.【玩转跟踪】1.(2020·天水市第一中学高二月考(理))如图,在空间直角坐标系中有直三棱柱111ABC A B C -,2CA CB=,13CC CB=,则直线1BC 与直线1AB 夹角的余弦值为( ).A. B.C. D .2352.(2020·全国高二课时练习) 在直三棱柱ABOA1B1 O1中,∠AOB =π2 ,AO =4,BO =2,AA1=4,D 为A1B1的中点,在如图所示的空间直角坐标系中,求1,DO A B 的坐标.考点三 最值问题【例3】(2020·全国高二课时练习)已知点()1,1,A t t t --,()2,,B t t ,则A ,B 两点的距离的最小值为( )B. C.D .35【玩转跟踪】1.(2020·江西高安中学高一期中(理))已知()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .241,,33⎛⎫⎪⎝⎭B .448,,333⎛⎫ ⎪⎝⎭C .58,1,33⎛⎫ ⎪⎝⎭ D .258,,333⎛⎫ ⎪⎝⎭2.已知点(1,2,3)A ,(2,1,2)B ,(1,1,2)P ,(0,0,0)O ,点Q 在直线OP 上运动,当QA QB ⋅取得最小值时,点Q 的坐标为________________.。