有理数乘方及混合运算(乘方)(人教版)(含答案)
- 格式:docx
- 大小:64.93 KB
- 文档页数:4
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
专题04 有理数的乘方及混合运算知识网络重难突破知识点一有理数的乘方1.乘方:求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在n a中,a叫做底数,n叫做指数.2. 乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0【典例1】(2019秋•瑞安市校级月考)下面各式中,计算正确的是()A.﹣22=4 B.(﹣2)2=4 C.(﹣3)2=6 D.(﹣1)3=﹣3【点拨】根据乘方的运算法则计算即可.【解析】解:A.﹣22=﹣4≠4,故该选项错误;B.(﹣2)2=4,故该选项正确;C.(﹣3)2=9≠6,故该选项错误;D.(﹣1)3=﹣1≠﹣3,故该选项错误;故选:B.【点睛】本题考查了有理数的乘方,熟记乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0,是解题的关键.【变式训练】1.(2019秋•拱墅区校级月考)下列各组数中,相等的一组是()A.(﹣2)2和|﹣2|2B.(﹣3)4和﹣34C.(﹣4)3和|﹣4|3D.(﹣3)4和﹣(﹣3)4【点拨】根据乘方的定义和绝对值的性质逐一计算即可判断.【解析】解:A、(﹣2)2=4、|﹣2|2=4,故此选项正确;B、(﹣3)4=81、﹣34=﹣81,故此选项错误;C、(﹣4)3=﹣64、|﹣4|3=64,此选项错误;D、(﹣3)4=81、﹣(﹣3)4=﹣81,此选项错误;故选:A.【点睛】本题主要考查有理数的乘方,解题的关键是熟练掌握有理数乘方的定义和绝对值的性质.2.(2019秋•永定区期中)一个有理数的平方等于它本身,那么这个有理数是() A.0 B.1 C.±1 D.0或1【点拨】直接利用有理数的乘方运算法则得出答案.【解析】解:∵一个有理数的平方等于它本身,∴这个有理数是:0或1.故选:D.【点睛】此题主要考查了有理数的乘方运算,正确掌握相关运算法则是解题关键.3.(2019春•西湖区校级月考)下列说法中正确的是()A.﹣a n和(﹣a)n一定是互为相反数B.当n为奇数时,﹣a n和(﹣a)n相等C.当n为偶数时,﹣a n和(﹣a)n相等D.﹣a n和(﹣a)n一定不相等【点拨】根据有理数的乘方的定义,分n是奇数和偶数两种情况讨论求解即可.【解析】解:当n为奇数时,﹣a n和(﹣a)n相等,当n为偶数时,﹣a n和(﹣a)n一定互为相反数.故选:B.【点睛】本题考查了有理数的乘方,难点在于分n是偶数和奇数讨论.知识点二科学记数法1.把一个数表示成a×10n(1≤|a|<10,n为整数)的形式叫做科学记数法..2.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【典例2】(2019秋•诸暨市期中)在今年的十一黄金周期间,五泄景区共接待海内外游客约11.2万人次,则数据11.2万用科学记数法可表示为()A.11.2×104B.11.2×105C.1.12×104D.1.12×105【点拨】先还原成112000,再用科学记数法表示出来即可.【解析】解:11.2万=112000=1.12×105,故选:D.【点睛】本题考查了科学记数法,知道任何绝对值大于10的数都可以表示成a×10n的形式(1≤a<10,n为正整数)是解此题的关键.【变式训练】1.(2019秋•南浔区期中)据统计,2019年十一期间,湖州市共接待国内外游客约585万人次,数据585万用科学记数法表示为()A.5.85×105B.5.85×106C.0.585×107D.585×106【点拨】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:585万=5850000=5.85×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.(2019秋•富阳区期中)计算机的计算速度为每秒384000000000次,这个速度用科学记数法表示为每秒()A.384×109次B.38.4×1010次C.3.84×1011次D.0.384×1012次【点拨】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:384000000000用科学记数法表示为:3.84×1011.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2016•富阳市模拟)﹣4.5×10﹣5表示()A.﹣000045 B.﹣0.000045 C.﹣450000 D.﹣45000【点拨】根据将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.【解析】解:﹣4.5×10﹣5表示﹣0.000045,故选:B.【点睛】本题考查写出用科学记数法表示的原数,将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.知识点三近似数1.准确数与近似数:与实际完全符合的数称为准确数;与实际接近的数称为近似数.2.一个近似数的精确度可用四舍五入法表述.一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位. 【典例3】(2018秋•桥西区期末)下列说法错误的是()A.0.350是精确到0.001的近似数B.3.80万是精确到百位的近似数C.近似数26.9与26.90表示的意义相同D.近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195≤a<2.205【点拨】根据近似数的精确度对各选项进行判断.【解析】解:A、0.350是精确到0.001的近似数,所以A选项的说法正确;B、3.80万是精确到百位的近似数,所以B选项的说法正确;C、近似数26.9精确到十分位,26.90精确到百分位,所以C选项的说法错误;D、近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195≤a<2.205,所以D选项的说法正确.故选:C.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.【变式训练】1.(2019秋•慈溪市期中)用四舍五入法对0.4249取近似数,精确到百分位的结果是() A.0.425 B.0.43 C.0.42 D.0.420【点拨】取近似数,看千分位满5进1,不满5舍去即可.【解析】解:0.4249≈0.42,故选:C.【点睛】本题考查了近似数,能理解四舍五入的意义是解此题的关键.2.(2019秋•义乌市期中)由四舍五入得到的近似数3.50万,精确到()A.十分位B.百位C.十位D.百分位【点拨】先将3.50万还原,然后确定0所表示的数位即可;【解析】解:3.50万=35000,近似数3.50万精确到百位,故选:B.【点睛】此题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度.3.(2019秋•乐清市期中)数4是4.3的近似值,其中4.3叫做真值,若一个数经四舍五入得到的近似数是12,则下列各数中不可能是12的真值的是()A.12.38 B.12.66 C.11.99 D.12.42【点拨】先找到所给数的十分位,根据四舍五入不能得到12的数即可.【解析】解:∵12.38≈12,12.66≈13,11.99≈12,12.42≈12,∴下列各数中不可能是12的真值的是选项B.故选:B.【点睛】本题主要考查了知道近似数,求真值,只需看近似数的最末位的下一位,采用的方法是四舍五入.4.(2018秋•拱墅区期末)下列由四舍五入法得到的近似数,对其描述正确的是()A.1.20精确到十分位B.1.20万精确到百分位C.1.20万精确到万位D.1.20×105精确到千位【点拨】根据近似数的精确度分别进行判断.【解析】解:A、1.20精确到百分位,所以A选项的说法不正确;B、1.20万精确到百位,所以B选项的说法不正确;C、1.20万精确到百位,所以C选项的说法不正确;D、1.20×105精确到千位,所以D选项的说法正确.故选:D.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.知识点四有理数的混合运算有理数混合运算法则:1.先算乘方,再算乘除,最后算加减;2. 如果有括号,先进行括号里的运算3. 同级运算,应按从左到右的顺序进行计算;4.如果有绝对值,要先做绝对值内的运算.【典例4】(2019秋•慈溪市期中)计算:(1)(﹣7)×5﹣(﹣36)÷4;(2)﹣12020﹣(﹣)×6+32【点拨】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】解:(1)原式=﹣35+9=﹣26;(2)原式=﹣1﹣(2﹣3)+9=﹣1﹣2+3+9=9.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【变式训练】1.(2019秋•瑞安市期中)下列运算中正确的个数有()①(﹣5)+5=0,②﹣3+2=﹣1,③﹣6÷3×=﹣6,④74﹣22÷70=1A.1个B.2个C.3个D.4个【点拨】①根据互为相反数的两个数和为0即可判断正误;②根据有理数的加法运算即可判断正误;③根据有理数的乘除运算顺序进行计算即可判断正误;④根据先算乘方、再算除法、最后算加减的运算顺序进行计算即可判断正误.【解析】解:①(﹣5)+5=0,正确;②﹣3+2=﹣1,正确;③﹣6÷3×=﹣6,错误.原式=﹣2×=﹣.④74﹣22÷70=1,错误.原式=74﹣=.故选:B.【点睛】本题考查了有理数的混合运算,解决本题的关键是严格按照有理数的混合运算顺序进行计算.2.(2018秋•拱墅区期末)计算:(1)﹣7﹣3+8(2)【点拨】(1)原式利用加减法则计算即可求出值;(2)原式先计算乘除运算,再计算加减运算即可求出值.【解析】解:(1)原式=﹣10+8=﹣2;(2)原式=﹣×6+4﹣30=﹣30.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2019秋•奉化区期中)计算:(1)(﹣18)+(+12)(2)(3)(4)12÷()【点拨】(1)根据有理数的加法法则计算;(2)先算乘,再算乘除,最后计算加法;(3)根据乘法分配律计算;(4)先算小括号里面的减法,再算括号外面的除法.【解析】解:(1)(﹣18)+(+12)=﹣6;(2)=﹣4×(﹣)+8÷4=2+2=4;(3)=(﹣100+)×26=﹣100×26+×26=﹣2600+4=﹣2596;(4)12÷()=12÷=72.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.巩固训练1.(2018秋•西湖区期末)计算:|﹣2019|=2019,(﹣1)2019=﹣1.【点拨】根据绝对值的性质和有理数乘方的运算法则计算可得.【解析】解:|﹣2019|=2019,(﹣1)2019=﹣1,故答案为:2019,﹣1.【点睛】本题主要考查有理数的乘方,解题的关键是熟练掌握有理数乘方的定义与运算法则及绝对值的性质.2.(2019秋•瑞安市校级月考)把5×5×5写成乘方的形式53.【点拨】根据有理数乘方的定义解答即可.【解析】解:5×5×5=53.故答案为:53.【点睛】本题考查了有理数的乘方的定义,注意指数是底数的个数是解题的关键.3.(2018秋•三门县期中)下列各数|﹣2|,﹣22,﹣(﹣2),(﹣2)3中,负数的个数有2个.【点拨】先对每个数进行化简,然后再确定负数的个数.【解析】解:∵|﹣2|=2,﹣22=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,∴负数有﹣22和(﹣2)3这2个数,故答案为:2.【点睛】本题考查正数和负数,解题的关键是明确负数的定义及乘方运算法则与相反数的定义.4.(2019秋•吴兴区期中)0.0617(精确到千分位)0.062.近似数3.7×105精确到万位.【点拨】根据近似数的精确度求解.【解析】解:0.0617精确到千分位为:0.062;近似数3.7×105精确到万位.故答案为:0.062;万.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.5.(2019秋•温岭市期中)已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则﹣2mn+﹣x=﹣4或0.【点拨】根据题意得a+b=0,mn=1,x=2或x=﹣2,代入原式计算可得.【解析】解:∵a、b互为相反数,m、n互为倒数,x的绝对值为2,∴a+b=0,mn=1,x=2或x=﹣2,当x=2时,原式=﹣2×1+0﹣2=﹣4;当x=﹣2时,原式=﹣2×1+0﹣(﹣2)=0.综上所述,﹣2mn+﹣x=﹣4或0.故答案为:﹣4或0.【点睛】本题主要考查了有理数的混合运算,相反数、倒数、绝对值的性质及代数式求值的能力,根据题意得出a+b、mn、x的值是关键.6.(2018秋•慈溪市期中)大于1的正整数m的三次方可“分裂”成若干个连续奇数的和,23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是1007,则m的值是32.【点拨】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1007的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.【解析】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=1007,n=503,∴奇数1007是从3开始的第503个奇数,∵=495,=527,∴第503个奇数是底数为32的数的立方分裂的奇数的其中一个,即m=32.故答案为:32.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.7.(2018秋•余杭区期末)计算:(1)7.8+(﹣1.2)﹣(﹣0.2)(2)﹣÷﹣×(﹣3)2+32【点拨】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解析】解:(1)7.8+(﹣1.2)﹣(﹣0.2)=7.8+(﹣1.2)+0.2=6.8;(2)﹣÷﹣×(﹣3)2+32==﹣3+9=.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.(2019秋•拱墅区校级月考)(1)(﹣﹣+)÷(2)﹣22×+8÷(﹣2)2(3)(﹣)×(﹣4)2﹣0.25×(﹣5)×(﹣4)3.(4)8×(﹣)÷|﹣16|;(5)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣).(6)﹣22﹣(﹣3)3×(﹣1)4﹣(﹣1)5;【点拨】(1)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加法可以解答本题;(3)根据有理数的乘方、有理数的乘法和减法可以解答本题;(4)根据有理数的乘除法可以解答本题;(5)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(6)根据有理数的乘方、有理数的乘法和减法可以解答本题.【解析】解:(1)(﹣﹣+)÷=(﹣﹣+)×36=(﹣27)+(﹣20)+21=﹣26;(2)﹣22×+8÷(﹣2)2=﹣4×+8÷4=2+2=4;(3)(﹣)×(﹣4)2﹣0.25×(﹣5)×(﹣4)3=(﹣)×16﹣×(﹣5)×(﹣64)=(﹣10)﹣80=﹣90;(4)8×(﹣)÷|﹣16|=8×(﹣)×=﹣;(5)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣)=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63;(6)﹣22﹣(﹣3)3×(﹣1)4﹣(﹣1)5=﹣4﹣(﹣27)×1﹣(﹣1)=﹣4+27+1=24.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。
有理数的乘方及混合运算一、有理数的乘方 一)乘方的慨念边长为a 的正方形的面积是a·a ,棱长为a 的正方体的体积是a·a·a . a·a 简记作a 2,读作a 的平方(或二次方). a·a·a 简记作a 3,读作a 的立方(或三次方).一般地,几个相同的因数a 相乘,记作a n .即a·a ……a . 这种求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可以读作a 的n 次幂.问题:1.在94中,底数是,指数是,94读作,或9的4次幂,它表示个相乘; 2.(-2)4的底数是,指数是,读作(或-2的4次幂),它表示. 思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?()2与呢?注意: 一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.因为a n 就是n 个a 相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算. 二)、典型例题 例1:计算:(1)(-4)3; (2)(-2)4; (3)(-)5; (4)33; (5)232⎪⎭⎫⎝⎛;解:3523512因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.强调:乘方的意义,a n 表示n 个a 相乘的积.注意(-a )n 与-a n •两者的区别及相互关系:(-a )n 的底数是-a ,表示n 个-a 相乘的积;-a n 底数是a ,表示n 个a 相乘的积的相反数.当n 为偶数时,(-a )n 与-a n 互为相反数,当n 为奇数时,(-a )n 与-a n 相等.211、212……219;31、32……39.三)、当堂练习(1)在式子n a 中,a 叫做,n 叫做. (2)式子n a 表示的意义是.(3)从运算上看式子n a ,可以读作, 从结果上看式子n a ,可以读作. (4)你能根据乘方的概念填写下表吗?(5)你能指出4)3(-和43-、65⎪⎭⎫⎝⎛和265的异同..吗?(从写法、读法、意义、结果上看)(6)将下列各式写成乘方(即幂)的形式:1) (–2.3)×(–2.3)×(–2.3)×(–2.3)×(–2.3)=2)=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-414141413)=⋅⋅⋅⋅ 个2014x x x x(7)计算.1)34 2)()51- 3)()310- 4)231-((8)求下列各式的值并找规律.()=-23,()=-81,()=-52,=⎪⎭⎫⎝⎛-321.规律:当指数是数时,负数的次幂是数. 当指数是数时,负数的次幂是数.思考:正数的奇次幂是什么数?正数的偶次幂是什么数?0呢?二、有理数的混合运算一)、知识回顾1、我们已经学习了哪几种有理数的运算?2.有理数的运算循序是什么? 1).先乘方,再乘除,最后加减; 2).同级运算,从左往右进行;3).如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 二)、有理数的混合运算1、问题:下面的算式里有哪几种运算?3+50÷22×(-)-1这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算?3+50÷22×(-)-1=3+50÷4×(-)-1=3+50××(-)-11515151415=3--1 =- 2、典型例题例1:计算:(1). 2×(-3)3-4×(-3)+15;(2).(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减.计算时,特别注意符号问题. 解:例2.计算: (1)、(-3)2×〔-32+(-95)〕 (2)、-14-〔(-2)3-4×(-1)5〕例3:观察下面三行数:-2,4,-8,16,-32,64,…① 0,6,-6,18,-30,66,… ② -1,2,-4,8,-16,32,… ③ (1)第①行数按什么规律排列?(2)第②、③行数与第①行数分别有什么关系? (3)取每行数的第10个数,计算这三个数的和.分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,•从绝对值看,它们都是2的乘方. 解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,…5212(2)对比①②两行中位置对应的数,你有什么发现?第②行数是第①行相应的数加2.即 -2+2,(-2)2+2,(-2)3+2,(-2)4+2,… 对比①③两行中位置对应的数,你有什么发现? 第③行数是第①行相应的数的一半,即-2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,…(3)根据第①行数的规律,得第10个数为(-2)10,那么第②行的第10个数为(-2)10+2,第③行中的第10个数是(-2)10×0.5. 所以每行数中的第10个数的和是: (-2)10+[(-2)10+2]+[(-2)10×0.5] =1024+(1024+2)+1024×0.5 =1024+1026+512=2562三、巩固练习1.331⎪⎭⎫⎝⎛-读作,其中底数是,指数是,结果是. 2.54表示( )A. 4个5相乘B. 5个4相乘C. 5与4的积D. 5个4相加的和 3. 下列计算中,正确的是( )A. 11-1-11=)( B. 255-2= C. 2516542= D.41212=⎪⎭⎫ ⎝⎛- 4. 用乘方的意义计算下列各式:(1)42 (2)42- (3)3)5(- (4)7)1(- (5)332- (6)22.0222220,46,86,1618,..++++-−−→−−→-−−→-−−→5.在2+32×(-6)这个式子中,存在着种运算,这个式子应该先算、再算、最后算。
人教版七年级上册第一章有理数1.5.1.1有理数的乘方同步测试一.选择题(共10小题,3*10=30)1.关于式子(-5)4,下列说法错误的是( )A.表示(-5)×(-5)×(-5)×(-5)B.-5是底数,4是指数C.-5是底数,4是幂D.4是指数,(-5)4是幂2.任何一个有理数的偶数次幂( )A.一定是正数B.一定是负数C.一定不是负数D.一定大于它的绝对值3.当n是正整数时,(-1)2n+1-(-1)2n的值是( )A.2 B.-2C.0 D.2或-24.a是任意有理数,下列说法正确的是( )A.(a+1)2的值总是正数B.a2+1的值总是正数C.-(a+1)2的值总是负数D.a2+1的值中最大的是15.下列各组数互为相反数的是( )A.32与-23B.32与(-3)2C.32与-32D.-23与(-2)36. 下列式子正确的是( )A.(-6)×(-6)×(-6)×(-6)=-64B.(-2)3=(-2)×(-2)×(-2)C .-54=(-5)×(-5)×(-5)×(-5)D.25×25×25=2357. 计算(-3)2的结果等于( )A .5B .-5C .9D .-98.下列各算式中,计算结果得0的是( )A .-22+(-2)2B .-22-22C .-22-(-2)2D .(-2)2-(-22)9.若|m|=4,|n|=2,且m>n ,则n m 的值为( )A .16B .16或-16C .8或-8D .810.下列一组数按规律排列依次为:2,-4,8,-16,…,第2020个数是( )A .22020B .-22020C .-22019D .以上都不对二.填空题(共8小题,3*8=24)11.计算: (-25)2=____,-(-25)2=_____; (-3)3=_____,-(-3)3=____. 12.一个数的平方等于它本身,则这个数是_____;一个数的立方等于它本身,则这个数是_______.13. 若a <0,则下列各式:①a 2>0;②a 2=(-a)2;③a 3=(-a)3;④a 3=-a 3.其中一定成立的有_____.(填序号)14.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…猜想13+23+33+…+103=____.15.(1)已知x 2=(-3)2,则x =________;(2)已知(x +2)2+|y -3|=0,则x y =____.16.你吃过拉面吗?拉面是把一根很粗的面条对折成2根拉开,第二次对折成4根拉开,…,依次这样进行对折6次是多少根面条?当对折成256根面条时,你知道这时对折了_____次.17. 若|a -1|与(b +2)2互为相反数,則a 2020+(a +b)2019=________.18. 定义一种新的运算,a&b =a b ,如2&3=23=8,那么(3&2)&2=____.三.解答题(共7小题,46分)19. (6分) 计算:(1)(-7)3; (2)(-12)2;(3)(-0.2)3; (4)-26;(5)-(-2)3; (6)4×(-2)3.20. (6分)若|a -1|与(b +2)2互为相反数,试求(a +b)2019+a 2020的值.21. (6分) 计算:(1)-3223;(2)(-113)3;(3)-42×(-4)2; .(4)(-25)2×(-212)3.22. (6分) 一根1米长的绳子,第一次剪去12,第二次剪去剩下的12,如此剪下去,第六次后剩下的绳子有多长?23. (6分) 某校七(1)班的“数学晚会”上,有8个同学藏在8个大盾牌后面,男同学的盾牌前面写的是一个正数,女同学的盾牌前面写的是一个负数,这8个盾牌如图所示: (-30)31 -5-25|-8| (-1)55 -5(-3)3 -216 4×(-2) (-2)3 请说出盾牌后面男女同学各有多少人?24. (8分)观察与思考:(1)通过计算,比较下列各组中的两个数的大小(填“>”“=”或“<”):①12____21;②23____32;③34____43;④45____54;⑤56____65;…(2)从第(1)题的结果经过归纳,可以猜想出n n +1和(n +1)n 的大小关系是___________________ ___________________________________________________(3)根据上面归纳猜想得到的一般结论,试比较20172020与20182019的大小.25. (8分)填空并猜想.(1)填空:22-2-1=__,23-22-2-1=___,24-23-22-2-1=___,25-24-23-22-2-1=___;(2)猜想:21 000-2999-2998-…-23-22-2-1=___;(3)试根据上面的猜想求212-211-210-29-28-27-26的值.参考答案1-5CCBBC 6-10 BCACB11.425,-425,-27,27 12. 1或0,±1或013. ①②14. 5515. ±3,-816. 817. 018. 8119. 解:(1) (-7)3= (-7) ×(-7) × (-7)=-343(2) (-12)2= (-12)× (-12)=14(3) )(-0.2)3=(-0.2) ×(-0.2) × (-0.2)=0.008(4) -26=-2×2×2×2×2×2=-64(5) -(-2)3=-(-2) ×(-2) × (-2)=8(6) 4×(-2)3=4×(-2) ×(-2) × (-2)=4×(-8)=-3220. 解:依题意得|a -1|+(b +2)2=0,∴a =1,b =-2, ∴(a +b)2019+a 2020=[1+(-2)]2019+12020=021. 解:(1)-3223=-98(2)(-113)3=(-43)3=-6427(3)-42×(-4)2= -16×16=-256(4)(-25)2×(-212)3=425 ×(-1258)= -5222. 解:1×(1-12)×(1-12)×(1-12)×(1-12)×(1-12)×(1-12) =(12)6 =126 =164,则第六次后剩下164米 23. 解:计算结果为正数的有:-5-25,|-8|,-5(-3)3; 计算结果为负数的有:(-30)31,(-1)55,-216,4×(-2),(-2)3, 所以有3个男生,5个女生24. 解:(1)因为12=1,21=2,所以12<21;因为23=8,32=9,所以23<32;因为34=81,43=64,所以34>43;因为45=1 024,54=625, 所以45>54;因为56=15 625,65=7 776,所以56>65.故答案为:< < > > >(2)当n <3时,n n +1<(n +1)n ;当n≥3时,n n +1>(n +1)n .(3)2 0182 019>2 0192 018.25. 解:(1)1,1,1,1(2)1(3)212-211-210-29-28-27-26=(212-211-210-…-23-22-2-1)+(25+24+23+22+2+1) =1+(32+16+8+4+2+1)=64。
人教版七年级数学上册 1.5.1-2 有理数的乘方运算 有理数的混合运算同步练习题精选 附答案一、选择题。
细心择一择,你一定很准! 1.58表示( )A .5个8连乘B .5乘以8C .8个5连乘D .8个5相加 2.下列式子正确的是( )A .(-6)×(-6)×(-6)×(-6)=-64B .(-2)3=(-2)×(-2)×(-2)C .-54=(-5)×(-5)×(-5)×(-5) D .35×35×35=3353.下列各对数中,数值相等的是( )A .-32与-23B .-23与(-2)3C .-32与(-3)2D .(-3×2)2与-3×22 4. 下列各对数互为相反数的是( )A .32与-23B .32与(-3)2C .(-3)2与-32D .-23与(-2)3 5.如果一个有理数的平方等于(-2)2,那么这个有理数等于( )A .-2B .2C .4D .2或-2 6.如果一个有理数的正偶次幂是非负数,那么这个数是( )A .正数B .负数C .非负数D .任何有理数 7. 下列各式:①-(-2);②-|-2|;③-22;④-(-2)2,计算结果为负数的个数有( )A .4个B .3个C .2个D .1个8. 下列计算:①32=3×2;②(-3)2=9;③(-5)3=-53;④(-2)4=24;⑤(3+2)2=32+22;⑥(-32)2=94.其中正确的结果有( )A .1个B .2个C .3个D .4个 9. 下列各式中,一定成立的是( )A .22=(-2)2B .-22=|-22|C .23=(-2)3D .(-2)3=|(-2)3| 10.计算-23-(-3)3×(-1)2-(-1)3的结果为( )A .0B .-30C .-1D .2011.-16÷(-2)3-22×(-12)的值是( )A .0B .-4C .-3D .412.在算式4-|-3 5|中的“ ”所在位置,填入下列哪种运算符号,计算出来的值最小( )A .+B .-C .×D .÷13. 设a =-2×32,b =(-2×3)2,c =-(2×3)2,则a ,b ,c 的大小关系是( )A .a <c <bB .c <a <bC .c <b <aD .a <b <c 14. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252 15. -35÷=35中,在( )内应填上的数是( )A .14B .114C .-214D .-1416. 有一列数a 1,a 2,a 3,…,a n ,从第2个数开始,每个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2016为( )A .2010B .2C .12 D .-1二、填空题。
有理数乘方及混合运算(乘方)(人教版)一、单选题(共16道,每道6分)1.213000 000用科学记数法可表示为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:科学记数法2.某年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:科学记数法3.我国是缺水国家,目前可利用淡水资源总量仅约为,则所表示的原数是( )A.8990B.899000C.89900D.8990 000答案:B解题思路:试题难度:三颗星知识点:科学记数法4.表示( )A.-3与4的积B.4个-3的积C.4个-3的和D.3个-4的积答案:B解题思路:试题难度:三颗星知识点:乘方的意义5.表示( )A.5个-3的积的相反数B.5个3的积C.5个-3的和的相反数D.5与-3的积的相反数答案:A解题思路:试题难度:三颗星知识点:乘方的意义6.计算:=______;=______.( )A.-25;49B.10;14C.-10;-14D.25;-49答案:D解题思路:试题难度:三颗星知识点:有理数的乘方7.计算:=______;=______.( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:有理数的乘方8.下列各数中,互为相反数的一对是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:有理数的乘方9.计算的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:有理数的乘方10.计算的结果为( )A.2B.0C.32D.24答案:C解题思路:试题难度:三颗星知识点:有理数的乘方11.计算的结果为( )A.27B.-25C.-29D.答案:B解题思路:试题难度:三颗星知识点:有理数的乘方12.计算的结果为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:有理数的乘方13.计算的结果为( )A.2B.C. D.答案:A解题思路:试题难度:三颗星知识点:有理数的乘方14.计算的结果为( )A.-72B.18C.24D.72答案:D解题思路:试题难度:三颗星知识点:有理数的乘方15.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记水位比前一日下降数).则本周星期( )水位最低.A.二B.三C.五D.六答案:B解题思路:试题难度:三颗星知识点:水位的变化16.某市客运管理部门对“十一”国庆假期七天客流变化量进行了不完全统计,数据如下(用正数表示客流量比前一天上升数,用负数表示比前一天下降数):则七天内游客人数最多的是( )日.A.1B.5C.6D.7答案:A解题思路:试题难度:三颗星知识点:有理数的乘方。
人教版数学七年级上册 同步练习第一章 有理数1.5 有理数的乘方第1课时 乘方的意义及运算1.比较(-4)3和-43,下列说法正确的是( )A .它们底数相同,指数也相同B .它们底数相同,但指数不相同C .它们所表示的意义相同,但运算结果不相同D .虽然它们底数不同,但运算结果相同2.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的个数有( )A .4个B .3个C .2个D .1个3.填空:(1)在73中底数是____,指数是____,读作____;(2)在⎝ ⎛⎭⎪⎫342中底数是________,指数是____,读作____________; (3)在(-5)4中底数是____,指数是____,读作____;(4)在8中底数是____,指数是____.4.计算:(1)(-2)6=____;(2)4×(-2)3=____;(3)-(-2)4=____.5.用带符号键(-)的计算器计算(-6)4的按键顺序是________________________.6.在计算器上,依次按键2x 2=,得到的结果是____.7.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为____.输入x →加上3→平方→减去5→输出8.计算:(1)(-5)4;(2)-54;(3)⎝ ⎛⎭⎪⎫-433;(4)-235;(5)(-1)2 017.9.用计算器计算:(1)(-12)3;(2)-186;(3)9.85;(4)(-7.2)4.10.计算:(1)(-2)2×(-3)2; (2)-32×⎝ ⎛⎭⎪⎫-13;(3)⎝ ⎛⎭⎪⎫-452÷⎝ ⎛⎭⎪⎫253; (4)(-3)2×⎝ ⎛⎭⎪⎫-322×⎝ ⎛⎭⎪⎫232.11.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7712.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成____个.13.拉面师傅制作拉面时,按对折、拉伸的步骤,重复多次.(1)先用乘法计算拉面12次得到的面条数,再改用计算器计算,这两种方法哪种算得快?(2)如果拉面师傅每次拉伸面条的长度为0.8 m,那么他拉12次后,得到的面条的总长度是多少米?14.给出依次排列的一列数:2,-4,8,-16,32,….(1)依次写出32后面的三个数:_____________________________________________________________;(2)按照规律,第n个数为____.参考答案1.D 2.B3.(1)7 3 7的3次方 (2)34 2 34的2次方 (3)-5 4 -5的4次方 (4)8 1 4.(1)64 (2)-32 (3)-16 5.( (-) 6 ) ∧ 4 =6.4 7.208.(1)625 (2)-625 (3)-6427 (4)-85(5)-1 9.(1)-1 728 (2)-34 012 224 (3)90 392.079 68(4)2 687.385 610.(1)36 (2)3 (3)10 (4)911.C 12.25 60013.(1)利用计算器算得快;(2)他拉12次后得到的面条的总长度是3 276.8 m .14.(1)-64,128,-256 (2)(-1)n +12n 或-(-2)n第2课时 有理数的混合运算1.算式-23+49×⎝ ⎛⎭⎪⎫-232的运算顺序是( ) A .乘方、乘法、加法 B .乘法、乘方、加法C .加法、乘方、乘法D .加法、乘法、乘方2.下列计算中正确的是( )A .-14×(-1)3=1B .-(-3)2=9C.13÷⎝ ⎛⎭⎪⎫-133=9 D .-32÷⎝ ⎛⎭⎪⎫-13=-27 3.计算(-1)5×23÷(-3)2÷⎝ ⎛⎭⎪⎫133的结果是( ) A .-26 B .-24 C .10 D .124.[2017·重庆A 卷]计算:|-3|+(-1)2=__4__.5.计算:(1)||-4+23+3×(-5); (2)⎝ ⎛⎭⎪⎫122÷⎣⎢⎡⎦⎥⎤()-4-⎝ ⎛⎭⎪⎫-34.6.计算:(1)(-2)2×⎝ ⎛⎭⎪⎫1-34; (2)42÷(-4)-54÷(-5)3;(3)-(-2)5-3÷(-1)3+0×(-2.1)7;(4)-32×⎣⎢⎡⎦⎥⎤-32×⎝ ⎛⎭⎪⎫-232-2.7.按照如图所示的操作步骤,若输入的值为3,则输出的值为____.8.刘谦的魔术表演风靡全国,小明也学习刘谦发明了一个魔术盒,当任意有理数对(a ,b )进入其中时,会得到一个新的有理数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-2,-3)放入其中,得到的有理数是_ .9.有一种“24点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J,Q,K分别表示11,12,13,A表示1).小明、小聪两人抽到的4张牌如图所示,这两组牌都能算出“24点”吗?怎样算?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?10.[2016·滨州]观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 016个式子为____.参考答案1.A 2.A 3.B4.4 5.(1)-3(2)-1136.(1)1(2)1(3)35(4)97.558.09.小明、小聪抽到的牌都能算出24点,如(3+4+5)×2=24,11×2+10÷5=24.如果允许包含乘方运算,可列算式如52-4+3=24,52-11+10=24.10.(32 016-2)×32 016+1=(32 016-1)2第3课时科学记数法1.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82 600 000人次,数据82 600 000用科学记数法表示为() A.0.826×106B.8.26×107C.82.6×106D.8.26×1082.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为()A.0.126 3×108B.1.263×107C.12.63×106D.126.3×1053.总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204 000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.用科学记数法表示下列各数:(1)2 730=____;(2)7 531 000=____;(3)-8 300.12=____.6.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16 000立方米,把16 000立方米用科学记数法表示为____立方米.7.用科学记数法表示下列横线上的数.(1)地球的半径约为6__400__000 m;(2)青藏铁路建成后,从青海西宁到西藏拉萨的铁路全长约1__956__000 m;(3)长江每年流入大海的淡水约是10__000亿立方米;(4)太平洋西部的马里亚纳海沟在海平面下约11__000 m 处;(5)地球上已发现的生物约1__700__000种.8.地球上的水的总储量约为1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.010 7×1018m3,因此我们要节约用水.请将0.010 7×1018m3用科学记数法表示是()A.1.07×1016m3B.0.107×1017m3C.10.7×1015m3D.1.07×1017m39.某市2015年底机动车的数量是2×106辆,2016年新增3×105辆,用科学记数法表示该市2016年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆10.写出下列用科学记数法表示的数的原数:(1)长城长约6.3×103 km;(2)太阳和地球的距离大约是1.5×108 km;(3)一双没有洗过的手上大约有8×104万个细菌.11.生物学指出:生态系统中,输入每一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1→H2→H3→H4→H5→H6这条生物链中(H n表示第n个营养级,n=1,2,…,6),要使H6获得10 kJ的能量,则H1需要提供的能量大约为多少千焦?参考答案1.B 2.B 3.C 4.C5.(1)2.73×103(2)7.531×106(3)-8.300 12×1036.1.6×1047.(1)6.4×106(2)1.956×106(3)1×1012(4)1.1×104(5)1.7×1068.A9.C10.(1)6 300(2)150 000 000(3)800 000 00011.H1需要提供的能量大约为1×106kJ.第4课时近似数1.下列数据中为准确数的是()A.上海科技馆的建筑面积约为98 000 m2B.“小巨人”姚明身高2.26 mC.我国的神舟十号飞船有3个舱D.截至去年年底,中国国内的生产总值(GDP)达676 708亿元2.用四舍五入法按要求对0.050 49取近似数,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)3.G20峰会,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人,则近似数9.17×105精确到了()A.百分位B.个位C.千位D.十万位4.小亮用天平称得一个罐头的质量为2.026 kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0C.2.02 D.2.035.下列说法错误的是()A.近似数16.8与16.80表示的意义不同B.近似数0.290 0是精确到0.000 1的近似数C.3.850×104是精确到十位的近似数D.49 564精确到万位是4.9×1046.(1)用四舍五入法,精确到0.1,对5.649取近似数的结果是__5.6__;(2)用四舍五入法,对1 999.508取近似数(精确到个位),得到的近似数是____;(3)用四舍五入法,求36.547精确到百分位的近似数是____.7.圆周率π=3.141 592 6…,取近似数3.142,是精确到__ __位.8.下列由四舍五入法得到的数各精确到哪一位?(1)0.023 3;(2)3.10;(3)4.50万;(4)3.04×104.9.用四舍五入法按括号里的要求对下列各数取近似数.(1)0.001 49(精确到0.001);(2)203 500(精确到千位);(3)49 500(精确到千位).10.我国以2010年11月1日零时为标准计时点进行了第六次全国人口普查,普查得到全国总人口为1 370 536 875人,该数用科学记数法(精确到千万位)表示为()A.13.7 亿B.13.7×108C.1.37×109D.1.4×10911.用四舍五入法,按要求对下列各数取近似数,并用科学记数法表示:(1)太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000 km;(精确到100 000 000 km)(2)光年是天文学中的距离单位,1光年大约是9 500 000 000 000 km;(精确到100 000 000 000 km)(3)某市全年的路灯照明用电约需4 200万千瓦时.(精确到百万位)12.某次小明乘出租车时看到车内放有一张计价说明,如图1-5-4所示,但后面的几个字已受损.(1)小明乘车行驶4 km的时候,计价器显示的价格为8.6元.问超过部分每千米收费多少元?(2)如果小明这次乘出租车时付了12.2元,求他乘坐路程的范围(计价器每1 km跳价一次,不足1 km按1 km计价).参考答案1.C 2.C 3.C 4.D 5.D6.(1)5.6(2)2 000(3)36.557.千分8.(1)万分位(2)百分位(3)百位(4)百位9.(1)0.001(2)2.04×105(3)5.0×10410.C11.(1)1.22×1010km(2)9.5×1012km(3)4.2×107千瓦时12.(1)1.8元(2)大于5 km且小于或等于6 km。
简单1、计算(-3)2的结果是()A.-6 B.6 C.-9 D.9 【分析】根据有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.【解答】(-3)2=(-3)×(-3)=9.故选D.2、关于-(-a)2的相反数,有下列说法:①等于a2;②等于(-a)2;③值可能为0;④值一定是正数.其中正确的有()A.1个B.2个C.3个D.4个【分析】依据相反数和平方的概念及性质进行判断.【解答】①∵-(-a)2=-a2,∴它的相反数是a2.显然是正确的.②∵(-a)2=a2,∴也是正确的.③当a=0时,a2=0,∴原式的值可能为0,也是正确的.④是错误的,没有考虑0.故有3个是正确的.故选C.3、与算式32+32+32的运算结果相等的是()A.33B.23C.36D.38【分析】32+32+32表示3个32相加.【解答】32+32+32=3×32=33.故选A.4、在-(-2)3,(-2)3,-23中,最大的数是____________.【分析】求出每个式子的值,再判断即可.【解答】∵-(-2)3=8,(-2)3=-8,-23=-8,∴最大的数是-(-2)3,故答案为:-(-2)3.5、下列各组数中:①-52与(-5)2;②-33与(-3)3;③0100与0200;④-(-1)2与(-1)3;⑤1与-12.相等的共有()组.A.2 B.3 C.4 D.5【分析】根据有理数的乘方运算依次化简各组的结果.【解答】①-25与25,不相等;②中-27与-27相等;③0与0,相等;④中-1与-1相等;⑤1与-1不相等故选B.6、某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.【解答】2×2×2×2=24=16.故选B.7、若a是负数,则下列各式不正确的是()A.a2=(-a)2B.a2=|a2| C.a3=(-a)3D.a3=-(-a3)【分析】若a是负数,则-a是正数,且a与-a是一对相反数.根据一对相反数的奇次幂互为相反数,一对相反数的偶次幂相等,负数的偶数次幂是正数,进行判断.【解答】∵一对相反数的偶次幂相等,∴a2=(-a)2,故A正确;∵a是负数,负数的偶数次幂是正数,∴|a2|=a2,故B正确;∵一对相反数的奇次幂互为相反数,∴(-a)3=-a3,故C不正确;∵一对相反数的奇次幂互为相反数-(-a)3=-(-a3)=a3,故D正确.故选C.8、已知a、b是实数,且满足(a+2)2+|b-3|=0,则a+b=__________.【分析】根据非负数的性质解答.当两个非负数相加和为0时,必须满足其中的每一项都等于0.【解答】∵(a+2)2+|b-3|=0,∴a=-2,b=3,∴a+b=-2+3=1.9、已知|x+1|=4,(y+2)2=4,且x与y异号.试求x+y的值.【分析】根据绝对值的性质与有理数的乘方求出x、y的值,再根据x、y异号确定出x、y的值,然后代入代数式进行计算即可得解.【解答】∵|x+1|=4,(y+2)2=4,∴x+1=4,或x+1=-4,y+2=2或y+2=-2,解得x=3或x=-5,y=0或y=-4,∵x与y异号,∴x=3,y=-4,∴x+y=3+(-4)=-1.简单题1、-23的意义是()A.3个-2相乘B.3个-2相加C.-2乘以3 D.23的相反数【分析】根据乘方的意义和相反数的定义判断.【解答】-23的意义是3个2相乘的相反数.故选D.2、一个数的7次幂是负数,那么这个数的2011次幂是_________(填“正数”“负数”或“0”).【分析】根据负数的奇数次幂是负数解答.【解答】∵一个数的7次幂是负数,∴这个是负数,∴这个数的2011次幂是负数.故答案为:负数.3、一个有理数的平方是正数,那么这个数的立方是()A.正数B.负数C.整数D.正数或负数【分析】正数的平方是正数,负数的平方也是正数,而正数的立方是正数,负数的立方是负数.【解答】∵一个有理数的平方是正数,∴这个有理数是正数或负数.又∵正数的立方是正数,负数的立方是负数,∴这个数的立方是正数或负数.故选D.4、一个数的偶次幂是正数,这个数是()A.正数B.负数C.正数或负数D.任何有理数【分析】根据负数的偶次幂是正数,正数的偶次幂是正数得出.【解答】一个数的偶次幂是正数,这个数是正数或负数.故选C.5、计算:-43×(−12)2=___________.【分析】先算乘方再算乘法,注意负数的偶次幂为正数.【解答】-43×(-12)2=-64×14=-16.故本题答案为:-16.6、计算:2×(-3)2−5÷12×2.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减.【解答】2×(-3)2−5÷12×2=2×9-5×2×2 =18-20=-2.7、计算:4−8×(−12)3=__________.【分析】先算乘方,再算乘法,最后算减法.【解答】原式=4-8×(-18)=4+1=5.故答案为:5.难题1、下列计算正确的是()A.-2+1=-1 B.-2-2=0 C.(-2)2=-4 D.-22=4 【分析】根据有理数的加减法、有理数的乘方,即可解答.【解答】A、-2+1=-1,正确;B、-2-2=-4,故错误;C、(-2)2=4,故错误;D、-22=-4,故错误;故选A.2、计算-22+(-2)2-(-12)-1的正确结果是()A.2 B.-2 C.6 D.10 【分析】根据负整数指数幂和有理数的乘方计算即可.【解答】原式=-4+4+2=2.故选A.3、下列各组数中,数值相等的是()A.32和23B.-23和(-2)3C.-|23|和|-23| D.-32和(-3)2【分析】根据a n表示n个a相乘,而-a n表示a n的相反数,而(-a)2n=a2n,(-a)2n+1=-a2n+1(n是整数)即可求解.【解答】A、32=9,23=8,故本选项错误;B、-23=(-2)3=-8,正确;C、-|23|=-8,|-23|=|-8|=8,故本选项错误;D、-32=-9,(-3)2=9,故本选项错误.故选B.4、-42计算的结果是()A.-8 B.8 C.16 D.-16【分析】根据乘方的意义得到42=4×4=16,则有-42=-16.【解答】∵42=4×4=16,∴-42=-16.故选D.5、下列各式中.计算结果得0的是()A.-22+(-2)2B.-22-22C.-22-(-2)2D.(-2)2+22【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【解答】A、-22+(-2)2=-4+4=0,故本选项正确;B、-22-22=-4-4=-8,不是0,故本选项错误;C、-22-(-2)2=-4-4=-8,不是0,故本选项错误;D、(-2)2+22=4+4=8,不是0,故本选项错误.故选A.6、关于(-3)4的正确说法是( ) A .-3是底数,4是幂B .-3是底数,4是指数,-81是幂C .3是底数,4是指数,81是幂D .-3是底数,4是指数,81是幂【分析】根据有理数乘方的定义进行解答即可. 【解答】(-3)4中,-3是底数,4是指数,81是幂. 故选D .7、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( )米.A .31()2B .51()2C .61()2D .121()2【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为21()2米,那么依此类推得到第六次后剩下的绳子的长度为61()2米.【解答】∵11122-=, ∴第2次后剩下的绳子的长度为21()2米;依此类推第六次后剩下的绳子的长度为61()2米.故选C .8、如果n 是正整数,则(-1)2n +1+(-1)2n =_________. 【分析】根据-1的奇数次幂是-1,-1的偶数次幂是1进行计算. 【解答】(-1)2n +1+(-1)2n =-1+1=0.9、如图是一个数值转换机的示意图,当输入x =3时,则输出的结果为________.【分析】根据题意列出关系式,将x=3代入计算即可求出值.【解答】根据题意列得:3x2-1,将x=3代入得:3×9-1=26.故答案为:26难题1、若(a-3)2+|b+4|=0,则(a+b)2014的值是()A.2014 B.-2014 C.1 D.-1 【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】根据题意得:a-3=0,b+4=0,解得:a=3,b=-4,则原式=1.故选C.2、一个正方体木块粘合成如图所示的模型,它们的棱长分别为1米、2米、4米,要在模型表面涂油漆,如果除去粘合部分不涂外,求模型的涂漆面积(可列式计算).【分析】先分别计算棱长分别为1米、2米、4米的正方体的表面积,再去掉粘合部分的面积即可.【解答】6(1×1+2×2+4×4)-2(1×1+2×2), =6×(1+4+16)-2(1+4), =116m 2,答:模型的涂漆面积116m 2.3、一块面积为1㎡的长方形纸片,第一次裁去它的一半,第二次裁去剩下纸片的一半,如此裁下去,第八次裁完后剩下的纸片的面积是( ) A .132㎡ B .164㎡ C .1128㎡ D .1256㎡ 【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为12m 2,第二次剩下的面积为14m 2,第三次剩下的面积为18m 2,根据规律,总结出一般式,由此可以求出第八次剩下的纸片的面积.【解答】根据题意,第一次剩下的面积为12m 2,第二次剩下的面积为14m 2,第三次剩下的面积为18m 2,则第n 次剩下的面积为12n m 2.则第八次剩下的面积为812m 2,即1256m 2.故选D .4、算式999032+888052+777072之值的十位数字为何?( ) A .1B .2C .6D .8【分析】分别得出999032、888052、777072的后两位数,再相加即可得到答案. 【解答】999032的后两位数为09, 888052的后两位数为25, 777072的后两位数为49,09+25+49=83,所以十位数字为8, 故选D .5、观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32015的末位数字是()A.3 B.9 C.7 D.1 【分析】根据给出的规律,3n的个位数字4个循环一次,用2005去除以4,看余数是几,再确定个位数字.【解答】设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…,∴34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32015=3503+3的个位数字与与32的个位数字相同,应为7.故选C.6、日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33 【分析】由题意知,111012可表示为1×24+1×23+1×22+0×2+1,然后通过计算,所得结果即为十进制的数.【解答】∵11012通过式子1×23+1×22+0×2+1转换为十进制数13,∴111012=1×24+1×23+1×22+0×2+1=29.故选C.7、若a=(-3)13-(-3)14,b=(-0.6)12-(-0.6)14,c=(-1.5)11-(-1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a 【分析】分别判断出a-b与c-b的符号,即可得出答案.【解答】∵121413141214131433 330.60.633055a b-=-----+-=---+()()()()<,∴a<b,∵11131214 111312141.5 1.50.60.61.5 1.50.60.60c b-=-----+-=-+-+()()()()()>,∴c>b,∴c>b>a.故选D.8、某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔__________支.【分析】三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.【解答】320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.。
学生做题前请先回答以下问题
问题1:说一说乘方的相关概念.
问题2:一个数的平方为16,这个数可能是几?一个数的平方可能是0吗?
问题3:什么是科学记数法?用科学记数法表示数据的时候需要注意什么?
问题4:下列各式一定成立吗?①②③④
有理数乘方及混合运算(乘方)(人教版)
一、单选题(共14道,每道7分)
1.213000 000用科学记数法可表示为( )
A. B. C. D.
答案:C
解题思路:
试题难度:三颗星知识点:科学记数法
2.某年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )
A. B. C. D.
答案:C
解题思路:
试题难度:三颗星知识点:科学记数法
3.我国是缺水国家,目前可利用淡水资源总量仅约为,则所表示的原数是( )
A.8 990
B.899 000
C.89 900
D.8 990 000
答案:B
解题思路:
试题难度:三颗星知识点:科学记数法
4.表示( )
A.-3与4的积
B.4个-3的积
C.4个-3的和
D.3个-4的积
答案:B
解题思路:
试题难度:三颗星知识点:乘方的意义
5.表示( )
A.5个-3的积的相反数
B.5个3的积
C.5个-3的和的相反数
D.5与-3的积的相反数答案:A
解题思路:
试题难度:三颗星知识点:乘方的意义
6.计算:=______;=______.( )
A.-25;49
B.10;14
C.-10;-14
D.25;-49
答案:D
解题思路:
试题难度:三颗星知识点:有理数的乘方
7.计算:=______;=______.( )
A. B. C. D.
答案:B
解题思路:
试题难度:三颗星知识点:有理数的乘方
8.下列各数中,互为相反数的一对是( )
A. B. C. D.
答案:C
解题思路:
试题难度:三颗星知识点:有理数的乘方
9.计算的结果为( )
A. B. C. D.
答案:D
解题思路:故选D.
试题难度:三颗星知识点:有理数的乘方
10.计算的结果为( )
A.2
B.0
C.32
D.24
答案:C
解题思路:故选C.
试题难度:三颗星知识点:有理数的乘方
11.计算的结果为( )
A.27
B.-25
C.-29
D.
答案:B
解题思路:故选B.试题难度:三颗星知识点:有理数的乘方
12.计算的结果为( )
A. B. C. D.
答案:A
解题思路:故选A.
试题难度:三颗星知识点:有理数的乘方
13.计算的结果为( )
A.2
B.
C.
D.
答案:A
解题思路:故选A.
试题难度:三颗星知识点:有理数的乘方
14.计算的结果为( )
A.-72
B.18
C.24
D.72
答案:D
解题思路:故选D.试题难度:三颗星知识点:有理数的乘方。