实验一电基本阵子及对称阵子辐射分析
- 格式:doc
- 大小:312.50 KB
- 文档页数:5
对称阵子天线:构成:有两根粗线和长度都相同的导线构成,中间为俩个馈电端原理: 若电线上的电流分布已知,则由电基本阵子的辐射场沿整个导线的积分,便得到对称振子的辐射场。
实际上,西振子天线可看成是开路传输线逐渐张开而成,而其电流分布与无耗开路传输线的完全一致,即按正弦驻波分布。
用途:对称振子分为半波对称振子和全波对称振子,半波对称振子广泛的应用于短波和超短波波段,它既可以作为独立天线使用,也可以作为天线阵的阵元,在微波波段还可以作为抛物面天线的馈源。
特点: 方向性比基本振子的方向性稍强一些,平均特性阻抗Z越低R和X随频率的变化越缓慢,其频率特性越好。
所以,欲展开对称振子的工作频带,常利用加粗振子直径的方法。
当h=λ/4n时,其输入阻抗是一个不大的纯电阻具有很好的频率特性,也有利于同馈线匹配,而在并联谐振点附近是一个高阻抗且输入阻抗随频率变化剧烈,特性阻抗不好。
阵列天线:构成:将若干辐射单元按某种方式排列所构成的系统。
构成天线阵地辐射单元,成为天线原或阵元原理:天线的辐射场是各天线元所产生的矢量叠加,只要各天线元上的电流,振幅和相位分布满足适当的关系,就可以得到所需要的辐射特性特点:天线阵的主瓣宽度和旁瓣电平是即相互依赖又相互对立的一对矛盾,天线阵方向图的主瓣宽度小,则旁瓣电平就高,反之,主瓣宽度大则旁瓣电平就低。
均匀直线阵的主瓣很窄,但旁瓣数目多,电平高,二项式直线振的主瓣很宽旁瓣就消失了,旁瓣分散了天线的辐射能量,增加量接受的信噪比,但旁瓣又起到了压缩主瓣宽度的作用。
直立阵子天线:构成:垂直于地面或导电平面架设的天线称为直立阵子天性原理:单级天线可等效为一对对称振子,对称阵子可等效为一二元阵,但此时等效只是在地面或导体的上半空间成立。
理想导电平面上的单级天线的辐射场可直接应用到自由空间对称振子的公式进行计算。
用途:广泛应用于长,中,短波及超短波段。
特点: 当h《λ时辐射电阻很低。
单级天线效率也很低改善方法是提高辐射电阻降低损耗电阻。
电磁场理论 实验示例实验1. 利用Matlab 模拟点电荷电场的分布一、实验目的1.熟悉单个点电荷及一对点电荷的电场分布情况;2.学会使用Matlab 进行数值计算,并绘出相应的图形;二、实验原理根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F 满足:R R Q Q kF ˆ212= (式1) 由电场强度E 的定义可知:R RkQ E ˆ2= (式2) 对于点电荷,根据场论基础中的定义,有势场E 的势函数为 R kQ U =(式3) 而 U E -∇= (式4)在Matlab 中,由以上公式算出各点的电势U ,电场强度E 后,可以用Matlab自带的库函数绘出相应电荷的电场分布情况。
三、实验内容(1) 画单个点电荷的平面电场线与等势线,正点电荷与负点电荷任选一个作图;(2) 画一对点电荷的平面电场线与等势线,可以在一正一负,两个负电荷和两个正电荷之中任选一组;(3) 画出(1)中的三维图形。
四、实验步骤1.对于单个点荷的电力线和等势线:真空中点电荷的场强大小是:2r kq E = (式5) 其中k=9109⨯为静电力恒量,q 为点电荷的电量,r 为点电荷到场点P (x,y)的距离。
电场呈球对称分布,本实验中,取点电荷为正电荷,电力线是以电荷为起点的射线簇。
以无穷远处为零势点,点电荷的电势为:rkq U = (式6) 当U 取常数时,此式就是等势面方程。
等势面是以电荷中心,以r 为半径的球面。
(1) 平面电力线的画法:在平面上,电力线是等角平分布的射线簇,取射线的半径为0r =0.12。
其程序如下:r0=0.12; % 射线的半径th=linspace(0,2*pi,13); % 电力线的角度[x,y]=pol2cart(th,r0); % 将极坐标转化为直角坐标x=[x;0.1*x]; % 插入x 的起始坐标y=[y;0.1*y]; % 插入y 的起始坐标plot(x,y,'b') % 用蓝色画出所有电力线grid on % 加网格Hold on % 保持图像plot(0,0,'o','MarkerSize',12) % 画电荷xlabel('x','fontsize',16) % 用16号字体标出X 轴ylabel('y','fontsize',16) % 用16号字体标出Y 轴title('正电荷的电力线','fontsize',20) % 添加标题图1 正电荷的电力线(2) 平面等势面的画法在过电荷的截面上,等势线就是以电荷为中心的圆簇。
天线原理课程知识点汇总【A——了解,B——理解,C——掌握(深刻理解,熟练应用)】附表1常见天线的方向性系数附表2三种常见的均匀直线阵波瓣特性及方向性系数D(Nd>>λ)附表3 口径场分布及其辐射特性附表4口径场相差对辐射的影响【例题1】 在给定了增益和工作波长的情况下,设计由理想导体制作的最佳喇叭天线的口径尺寸的求解过程如下:(1)首先确定喇叭波导的尺寸a 和b ,请写出单模传输时a 和b 与波长λ满足的关系: a<λ<2a λ>2b(2)确定了a 和b 以后,依次列写最佳喇叭所满足的两个关系式(不要求):x x R D λ3=①y y R D λ2=②(3)根据给定的增益G 和工作波长λ,结合最佳喇叭的口面利用系数ν就可以确定D x 和D y 的关系式,请写出这个关系式:πνλ42GD D y x =(4)请写出ν的值:ν=0.51【例题2】 某圆锥喇叭天线A 口面直径为20cm ,工作波长为3.0cm ,H 面主瓣内的方向性函数可以用公式3||100()10F ϕϕ-=表示,φ以度为单位,取值范围|φ|≤5º。
若采用该喇叭A 作为发射天线,测试另一个口面直径为10cm 的相同波段的圆锥喇叭B 的方向图,请计算: [1]仅满足相位条件(接收天线中心和边缘处的最大相差不超过π/8)的最小测试距离; [2]仅满足幅度条件(接收天线中心和边缘处的最大幅度比不超过0.25dB )的最小测试距离; [3]设发射天线A 的发射功率为10mW ,增益为23dB ,不计线缆损耗,若接收天线B 的口面利用系数为0.56,则B 天线按照[1]、[2]确定的最小测试距离摆放所能获得的最大接收功率是多少? 【解】 [1] ()cm 6002221min =+=λD D r[2] 3||100()10F ϕϕ-=,|φ|≤5º,20lg ()0.6||0.25dB F ϕϕ=-≥- 4167.0||≤ϕ实际上要求)4167.0tan(2/min2 ≤r D ,得cm 5.687min ≥r [3]取r min =687.5cm ,t r t r G G r P P 2min 4⎪⎪⎭⎫ ⎝⎛=πλP t =10mW=10×10-3W ,G t =23dB=200, ν=0.56νλππ22244⎪⎭⎫ ⎝⎛=D G r∴P r =14.8 μW附图1 利用矢量网络分析仪、自动测试转台、辅助天线和计算机测试天线方向图和增益的基本原理框图演示实验问题汇总1、微波暗室包括吸收层和屏蔽层两部分组成,请回答这两部分是用什么材料实现的?2、请分析一下微波暗室的吸收层的工作原理。
实验三动画技术:电偶极子辐射的动态仿真一、实验目的物理过程或物理现象通常都是动态过程,因此对于物理过程的仿真或模拟应该也是动态。
通过对物理过程的动态仿真能够近似地还原物理过程,帮助我们更好的理解物理现象和物理过程,揭示蕴藏其中的规律性东西。
本次实验将以电偶极子天线的电磁波辐射动态仿真为例,介绍MA TLAB的动画技术,以期实现如下目的:1.掌握两种MA TLAB的动画制作的技术:影片动画和实时动画;2.掌握矢量场力线图的制作方法,并了解电偶极子辐射的规律,以便更好的理解《电磁场与电磁波》课程中的相关知识点,也为进一步学习其他专业课程(如天线原理、天线技术)建立基础。
二、实验预备知识1. MATLAB动画技术MA TLAB提供了两种制作动画的方法:影片动画和实时动画。
(1) 影片动画这种动画技术类似于电影的制作,其原理是首先对仿真的过程按时间次序进行“拍照”,获得一帧一帧的画面(称为帧),并将之存档,然后再按时间顺序以高于视觉暂留的帧频率播放帧,即可获得类似于电影的动画效果。
这种动画技术适用于难以实时快速绘制的复杂画面,计算量大,占用内存较多。
MA TLAB提供了下列几种函数用于实现影片动画:①moviein函数该函数将产生一个结构体数组(structure,以下称帧结构体)来存放动画的帧(即所拍摄的一幅幅画面),每帧画面作为结构体的一个元素保存。
调用格式fmat = moviein (N)产生一个能存放N个帧的(1×N)结构体数组fmat。
该结构体包含两个域cdata和colormap,前者存放帧的图像数据,后者存放帧使用的颜色表。
②getframe函数该函数作用是对当前的图像进行快照(“抓拍”),通常有两种使用格式:getframe “抓拍”当前坐标轴(一种图形对象)里的内容;getframe(h) “抓拍”某个图形窗口或坐标轴里的内容,该图形窗口或坐标轴以句柄h 标识(图形窗口和坐标轴都是一种图形对象,每一种图形对象都有自己特有的句柄handle,即标识,类似于“身份证”)。
西安电子科技大学《天线测量》教学大纲一、课程地位、基本要求以及与其他课程的联系本课程是微波电信专业选修的专业课,通过该课程的学习使学生掌握天线测量的基本理论和方法,培养学生分析和解决实际问题的能力以及实际动手的能力,为学生今后走上工作岗位打下一个良好的基础。
基本要求是通过课程教学、实验、示教等教学环节使学生掌握天线测试场的设计与鉴定准则;掌握天线基本参数的测量原理和方法;学会常规测量仪器和先进测量仪器基本操作方法以及测量原理。
本课程是《天线原理》课程内容的补充与应用。
《天线原理》课程完成天线基本理论的教学;《天线测量》课程完成天线基本参数测量原理和实验的教学。
二、课程内容和学时分配(1)理论教学绪论1学时天线场地设计与鉴定8学时天线方向图的测量2学时天线增益的测量3学时天线极化的测量6学时天线阻抗的测量4学时天线相位方向图的测量4学时天线源场测量2学时天线近场测量6学时用射电源测量天线的电参数和现代天线测量设备与系统介绍2学时(2)实验教学每个实验2小时,共计4个实验,具体内容为:1实验一:对称阵子和无源阵子天线方向图的测量实验二:对称阵子输入阻抗的测量实验三:喇叭天线增益的测量实验四:天线计划参数的测量(3)示教教学用矢量网络分析仪测量天线的阻抗特性;微波暗室的设计与建造三、实验要求(1)实验前必须充分理解实验测量原理,会出测量方框图,熟悉所用仪器的使用方法和注意事项,给出测量参数的理论数值;(2)记录实验数据和实验测量条件,试验现场测量数据必须交在场指导老师审阅后方能离开实验现场;(3)做出实验报告,前一个实验报告未交者不能参加下一个实验,实验报告占总成绩的50%;四、考核方式独立作业或者命题考察;五、教材及参考书《天线测量》林昌禄成都电讯工程学院出版社2。
实验一 电基本阵子及对称阵子辐射分析
一、实验目的:
通过MATLAB 编程,熟悉电基本阵子和对称阵子的辐射特性,了解影响对称阵子辐射的因素及其变化对辐射造成的影响
二、实验环境:MATLAB 软件 三、实验原理:
1.电基本振子的辐射
电基本振子(Electric Short Dipole )又称电流元,它是指一段理想的高频电流直导线,其长度l 远小于波长λ,其半径a 远小于l ,同时振子沿线的电流I 处处等幅同相。
用这样的电流元可以构
成实际的更复杂的天线,因而电基本振子的辐射特性是研究更复杂天线辐射特性的基础。
图3-1 电基本振子的坐标
电基本振子在无限大自由空间中场强的表达式为:
22302
2300
1
sin ()421cos()411sin ()40r jkr
jkr
r jkr H H Il k H j e r r Il k E j e
r r
Il k k E A j j e r r r
E θϕθϕθππωεθπωε---=⎫⎪=⎪⎪=+⎪⎪⎪⎬=-⎪⎪⎪
=+-⎪⎪
=⎪⎭
(2-1) 电基本振子的辐射场可以分为近区场和远区场。
如果kr<<1即(r<<λ/(2π))的区域称为近区,近区场的另一个重要特点是电场和磁场之间存在π/2的相位差,于是坡印廷矢量的平均值为0,能量在电场和磁场以及场与源之间交换而没有辐射,所以近区场也称为感应场,本实验不涉及。
本实验计算的远区场kr>>1(即r>>λ/(2π)的区域称为远区),在此区域内,电基本振子满足条件:
则远区场表达式为:
sin 260sin 0jkr jkr r r Il H j
e r
Il E j e r H H E E ϕθθϕθλπθλ--⎫=⎪⎪
⎪=⎬⎪
====⎪
⎪⎭ (2-2)
可见场强只有两个相位相同的分量(E θ,H φ)。
根据方向函数可定义:
(,,)
(,)60/E r f I r
θϕθϕ=
(2-3)
可得电基本振子的方向函数为:
(,)()sin l
f f πθϕθθλ
==
(2-4) 根据归一化方向函数定义:
max max
(,)(,)
(,)(,)E f F f E θϕθϕθϕθϕ=
=
(2-5) 可得电基本阵子归一化方向函数为:
F(θ,φ)=|sin θ| (2-6)
将方向函数用曲线描绘出来,称之为方向图(Fileld Pattern)。
方向图就是与天线等距离处,天线辐射场大小在空间中的相对分布随方向变化的图形。
依据归一化方向函数而绘出的为归一化方向图。
在实际中,工程上常常采用两个特定正交平面方向图。
在自由空间中,两个最重要的平面方向图是E 面和H 面方向图。
E 面即电场强度矢量所在并包含最大辐射方向的平面;H 面即磁场强度矢量所在并包含最大辐射方向的平面。
方向图可用极坐标绘制,角度表示方向,矢径表示场强大小。
2. 对称阵子的辐射
对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。
一臂的导线半径为a ,长度为l 。
两臂之间的间隙很小,理论上可忽略不计,所以振子的总长度L=2l 。
对称振子的长度与波长相比拟,本身已可以构成实用天线。
图3-2 对称振子结构及坐标图
由教材可知对称阵子辐射场为
cos 6060cos(cos )cos()()sin sin ()sin jkr l jkz jkr
m m l I I e kl kl E j k l z e dz j e
r θθπθθθλλθ
----=-=⎰(2-7)
根据方向函数的定义,对称振子以波腹电流归算的方向函数为 :
()cos(cos )cos()()60/sin m E kl kl f I r θθθθθ
-=
= (2-8)
上式实际上也就是对称振子E 面的方向函数
图3-3 对称振子E 面方向图
四、实验内容及步骤: 内容:
根据电基本阵子和对称阵子的方向函数利用MATLAB 编程并画出其方向图。
步骤一:
编写MATLAB 程序,并保存为*.M 文件(*代表文件名自起),详细程序如下: % 此程序是通过输入偶极子天线的长度及工作波长绘出其方向图 lamda=input('enter the value of wave length= '); %输入波长
l=input('enter your dipole length l= '); %输入偶极子天线长度2L (注意不是单个振子长度L )
ratio=l/lamda; B=(2*pi/lamda);
theta= pi/100:pi/100:2*pi;
0°0°0°l =0.1λl =0.25
λl =0.65
λ
270°
0°270°0°270°0°l =0.75λ
l =1λl =1.5λ。