整式的运算法则
- 格式:docx
- 大小:152.45 KB
- 文档页数:19
整式运算去括号法则1.单项式展开法则:对于一个括号中是单项式之和或差的整式,可以使用单项式展开法则,将括号内每个单项式与外面的系数相乘,并将结果进行合并。
例如,对于一个整式$(3x+2y)(4x-5y)$,我们可以先将括号内的两个单项式相乘,得到$12x^2-15xy+8xy-10y^2$,然后将相同的项合并得到最终结果$12x^2-7xy-10y^2$。
2.双括号展开法则:如果整式中有双括号,可以将括号内的整式运用去括号法则进行展开。
例如,对于一个整式$(2x-3y)(5x+4y)(3x-2y)$,可以先将两个括号内的整式展开得到$10x^2-8xy+15xy-12y^2$和$15x^2-10xy-12xy+8y^2$,然后将三个整式相乘得到最终结果$150x^4-140x^3y-226x^2y^2+200xy^3+96y^4$。
3.混合括号展开法则:如果整式中既有单括号又有双括号,可以先运用单括号展开法则,然后再运用双括号展开法则。
例如,对于一个整式$(2x+3y)(4x^2+5x+6y)$,可以先将单括号内的整式展开得到$8x^3+10x^2+12xy+12yx+15y^2+18y^2$,然后将双括号内的整式展开得到$8x^3+10x^2+12xy+15y^2+18y^2$,最后将两个整式相加得到最终结果$8x^3+10x^2+12xy+33y^2+18y^2$。
除了以上基本的整式运算去括号法则,还有一些特殊情况需要注意:1.如果括号前有负号,需要将括号内每一项的符号取反。
例如,对于一个整式$-(3x-2y)$,需要先将括号内的每一项取反得到$-3x+2y$。
2.如果括号前有一个整数系数,需要将括号内每一项与整数系数相乘。
例如,对于一个整式$2(3x-2y)$,需要先将括号内的每一项乘以2得到$6x-4y$。
综上所述,整式运算去括号法则是对整式中的括号进行展开和化简的运算法则。
通过运用单项式展开法则、双括号展开法则、混合括号展开法则以及对特殊情况的处理,可以对整式进行简化和合并,从而得到最终结果。
整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。
一、整式的定义整式由单项式或多项式组成。
单项式是一个数字或变量的乘积,也可以包含指数。
例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。
多项式是多个单项式的和。
例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。
二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。
2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。
3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。
在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。
例如,(2x^2)×(3y)=6x^2y。
三、整式的除法整式的除法是乘法的逆过程。
除法运算中,被除数除以除数得到商。
以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。
例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。
例如,5/0没有意义。
在进行整式的除法运算时,要注意约分和消去的原则。
例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。
四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。
常见的运算顺序规则如下:1.先解决括号内的运算。
2.然后进行乘法和除法的运算。
3.最后进行加法和减法的运算。
五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。
对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。
整式与分式的运算法则在数学中,整式和分式是常见的数学表达式形式。
这两种形式在进行数值计算和推导时,有着各自的运算法则。
本文将介绍整式和分式的运算法则,帮助读者更好地理解和应用这些规则。
整式运算法则整式是由数字、字母和运算符号组成的代数表达式,通常包含加法、减法和乘法运算。
对于整式的运算,我们有以下几个重要法则:加法法则:对于整式a和b,我们有a + b = b + a。
也就是说,整式的加法满足交换律。
减法法则:对于整式a和b,我们有a - b = a + (-b)。
也就是说,整式的减法可以转化为加法运算。
乘法法则:对于整式a、b和c,我们有a(b + c) = ab + ac。
也就是说,整式的乘法满足分配律。
乘方法则:对于整式a和n,我们有an = a × a × ... × a (n个a相乘)。
也就是说,整式的乘方是多次乘法的简化形式。
除法法则:对于整式a和b (b ≠ 0),我们有a ÷ b = a × (1/b)。
也就是说,整式的除法可以转化为乘法运算。
分式运算法则分式是由分子和分母组成的表达式,通常以a/b的形式表示,其中a和b为整数。
对于分式的运算,我们有以下几个重要法则:分子分母法则:对于分式a/b,a和b都是整式。
我们可以对分子和分母分别应用整式的运算法则。
加减法法则:对于分式a/b和c/d,我们有a/b + c/d = (ad + bc)/(bd)。
也就是说,分式的加法和减法都需要对分子和分母进行相应的运算。
乘法法则:对于分式a/b和c/d,我们有(a/b) × (c/d) = (ac)/(bd)。
也就是说,分式的乘法需要将分子和分母分别相乘。
除法法则:对于分式a/b和c/d (c/d ≠ 0),我们有(a/b) ÷ (c/d) = (a/b)× (d/c) = (ad)/(bc)。
也就是说,分式的除法可以转化为乘法运算。
整式的加减乘除整式是数学中重要的概念之一,它在代数表达式中起着重要的作用。
在整式中,加减乘除是基本的运算法则。
本文将针对整式的加减乘除分别进行讨论,以帮助读者更好地理解和运用这些运算法则。
一、整式的加法整式的加法是指对两个或多个整式进行求和的操作。
在整式的加法中,重点是合并同类项,并按照次数从高到低排列。
以下是一个例子:例:将整式3x²+5x-2和2x²-3x+6进行相加。
解:按照同类项合并的原则,我们可以将该整式进行合并,得到5x²+2x+4。
二、整式的减法整式的减法是指对两个整式进行相减的操作。
在整式的减法中,我们可以利用减法的逆运算性质,将减法转化为加法。
以下是一个例子:例:将整式4x²-3x+2和2x²+5x-1进行相减。
解:利用减法的逆运算,我们可以将减法转化为加法,即4x²-3x+2-(2x²+5x-1)等于4x²-3x+2+(-2x²-5x+1)。
继续整理合并同类项,我们得到2x²-8x+3。
三、整式的乘法整式的乘法是指对两个整式进行相乘的操作。
在整式的乘法中,我们需要将每个整式的项进行相乘,并合并同类项。
下面是一个例子:例:将整式3x²+2x+4和2x²-3x+1进行相乘。
解:按照乘法分配律,我们可以将每一项进行相乘,然后将结果进行合并。
(3x²+2x+4)(2x²-3x+1)等于6x^4-3x^3+2x^3-9x^2+3x^2-4x+2x-3+4,继续整理合并同类项,我们得到6x^4-x^3-4x^2-2x+1。
四、整式的除法整式的除法是指对两个整式进行相除的操作。
在整式的除法中,我们需要找出商和余数。
以下是一个例子:例:将整式5x³-2x²+3x-1除以x-1。
解:按照除法的步骤,我们首先进行第一步骤——比较最高次项。
……………………………………………………………最新资料推荐…………………………………………………
整式的乘除的法则及公式
1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
(、为正整数)
2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
(为正整数)
3、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,在把所得的幂相乘。
(、为正整数)
4、单项式与单项式相乘的法则;单项式与单项式相乘,把它们的系数、同底数幂分别
相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每
一项,再把所得的积相加。
a(b-2a)=ab-2am
6、多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另
一个多项式的每一项,再把所得的积相加,如果有同类项
要合并同类项。
(a+n)(b+m)=ab+an+nb+nm
7、平方差公式:两数和与这两数差的积等于这两数的平方差。
8、两数和(差)完全平方公式:两数和(差)的平方,等于这两数的平方和(差),
加上(减去)这两数积的2倍。
9、整式化简:应遵循先乘方,再乘除,最后算加减的顺序,能运用乘法公式的则运
用乘法公式。
1 / 11 / 11 / 1。
整式加减法的运算法则
整式加减法的运算法则主要包括以下几个规则:
1.同类项的合并:在整式加减法中,首先要将具有相同字母
部分的项合并在一起。
对于同类项,将它们的系数相加
(或相减),字母部分不变。
例如,2x + 3x 可以合并为5x;
4y^2 - 2y^2 可以合并为 2y^2。
2.常数项的合并:将整式中的常数项合并在一起,将它们的
数值相加(或相减)。
例如,3 + 5 可以合并为 8。
3.加减法的结合律:整式的加减法满足结合律,即可以通过
改变加减法的顺序来进行计算。
例如,(2x + 3y) - z = 2x +
(3y - z)。
4.减法的运算:减法可以转化为加法运算,即将减数取相反
数,然后按照加法的规则进行计算。
例如,a - b 可以转化
为 a + (-b)。
需要注意的是,在整式加减法中,根据计算规则,待加减的整式必须具有相同的字母部分,才能进行合并运算。
字母部分不同的项无法进行合并运算,需要保持原样。
此外,还需要注意符号的运用,正负号的配对和运算符的正确使用,以确保运算结果正确无误。
综上所述,整式加减法的运算法则主要包括同类项的合并、常数项的合并、加减法的结合律以及减法的运算规则。
掌握这些规则可以帮助我们进行整式的正确运算和简化。
整式的加减乘除法则总结一、整式的定义整式是由数字、字母和运算符号(加号、减号、乘号)通过运算得出的式子。
例如,2x - 5y + 3 是一个整式。
二、整式的加法法则整式加法法则可以总结为下列两条规则:1.对于整式的同类项进行合并,即将相同字母的幂次相同的项合并。
例如:2x - 3x + 4x + 5 可以合并为 3x + 5。
2.对合并后的同类项进行系数相加。
例如:3x - 2y + 4x - 5y 可以合并为 7x - 7y。
三、整式的减法法则整式减法法则是整式加法法则的特例,即将减号后面的各项取相反数后,按整式加法法则进行运算。
例如:5x^2 - 3x + 2y - (2x^2 - 4x + 3y) = 5x^2 - 3x + 2y - 2x^2 + 4x - 3y = 3x^2 + x - y。
四、整式的乘法法则整式乘法法则可以总结为下列规则:1.将两个整式的每一项按照乘法分配律进行相乘。
例如:(2x - 3)(4x + 5) 可以按乘法分配律展开为 2x(4x + 5) - 3(4x + 5) = 8x^2 + 10x - 12x - 15 = 8x^2 - 2x - 15。
2.将展开后的各项进行合并。
例如:3x(2x - 1) + 5y(3x + 2y) 可以合并为 6x^2 - 3x^2 + 15xy + 10y^2。
五、整式的除法法则整式除法法则可以总结为下列规则:1.将除法转化为乘法。
即将被除数乘以除数的倒数。
例如:(4x^2 + 8x) / 2x 可以转化为 (4x^2 + 8x) * (1 / 2x)。
2.化简分式。
例如:(4x^2 + 8x) * (1 / 2x) 可以化简为 2x + 4。
六、整式的总结通过以上的总结,可以得出整式的加减乘除法则:1.加法法则:合并同类项后,进行系数相加。
2.减法法则:减号后面的各项取相反数,按照整式加法法则进行运算。
3.乘法法则:按乘法分配律展开,并合并同类项。
整式运算法则公式一、整式的加法和减法。
1. 同类项。
- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,3x^2y与-5x^2y是同类项,4和-7是同类项。
- 合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和指数不变。
即ax + bx=(a + b)x。
例如,3x^2y-5x^2y=(3 - 5)x^2y=-2x^2y。
2. 整式的加减。
- 运算法则:几个整式相加减,如果有括号就先去括号,然后再合并同类项。
- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。
例如,a+(b - c)=a + b - c。
- 如果括号前面是“-”号,去括号时括号里面各项都变号。
例如,a-(b -c)=a - b + c。
二、整式的乘法。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n=a^m + n(m,n 都是正整数)。
例如,2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方。
- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m,n都是正整数)。
例如,(3^2)^3=3^2×3=3^6。
3. 积的乘方。
- 法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
即(ab)^n=a^nb^n(n是正整数)。
例如,(2x)^3=2^3× x^3=8x^3。
4. 单项式与单项式相乘。
- 法则:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如,2x^2y·3xy^2=(2×3)(x^2· x)(y· y^2) = 6x^3y^3。
5. 单项式与多项式相乘。
- 法则:就是用单项式去乘多项式的每一项,再把所得的积相加。
即m(a + b + c)=ma+mb + mc。
整式的运算法则整式是由数字及其系数和字母及其指数通过加减乘除等运算符号连接而成的代数式。
在代数运算中,整式的运算法则是非常重要的,它包括了加法、减法、乘法和除法四种基本运算法则。
本文将分别介绍这四种运算法则,并通过例题进行详细说明。
一、加法法则加法法则是指将同类项相加时,保持其字母部分不变,将其系数相加即可。
例如,对于整式3x^2+5x^2,将其同类项3x^2和5x^2的系数相加,得到8x^2。
二、减法法则减法法则与加法法则相似,也是将同类项相减时,保持其字母部分不变,将其系数相减即可。
例如,对于整式7x^3-4x^3,将其同类项7x^3和4x^3的系数相减,得到3x^3。
三、乘法法则乘法法则是指将整式相乘时,按照分配律和乘法交换律进行计算。
例如,对于整式2x(3x+4),首先将2x分别乘以3x和4,得到6x^2+8x。
四、除法法则除法法则是指将整式相除时,首先进行除数的分解,然后利用乘法的逆运算进行计算。
例如,对于整式6x^2÷2x,首先将6x^2分解为2x*3x,然后进行约分,得到3x。
以上就是整式的四种基本运算法则,下面通过例题进行详细说明。
例题1:计算整式的和已知整式3x^2+5x^2+2x-4x,求其和。
解:根据加法法则,将同类项相加,得到8x^2-2x。
例题2:计算整式的差已知整式7x^3-4x^3-2x^2+5x^2,求其差。
解:根据减法法则,将同类项相减,得到3x^3+3x^2。
例题3:计算整式的积已知整式2x(3x+4),求其积。
解:根据乘法法则,将2x分别乘以3x和4,得到6x^2+8x。
例题4:计算整式的商已知整式6x^2÷2x,求其商。
解:根据除法法则,首先将6x^2分解为2x*3x,然后进行约分,得到3x。
通过以上例题的计算,我们可以看到整式的运算法则是非常简单的,只需要按照规则进行操作即可得到结果。
在代数运算中,整式的运算法则是非常基础的,也是后续学习更复杂代数式和方程的基础。
整式的加减与乘法运算法则整式是指只包含整数、变量和乘幂的代数表达式。
在代数学中,整式的加减与乘法运算是非常基础的操作。
本文将介绍整式加减与乘法运算法则,以便帮助读者更好地理解整式的运算方法。
一、整式的加法运算法则整式的加法运算基本法则是对应项相加。
根据这个法则,我们可以将两个整式相加或多个整式相加时,将同类项对齐进行运算。
例如:3x² + 2x + 1+ 2x² - 3x + 4----------------------5x² - x + 5在上述例子中,我们对应相加了每一项的系数。
同类项是具有相同变量的幂的项,比如x²和x²,x和x。
通过对应项相加,我们可以得到最终的运算结果。
二、整式的减法运算法则整式的减法运算法则和加法类似,也是对应项相减。
所以,当我们进行整式的减法运算时,可以将减法转化为加法,然后按照加法运算法则进行运算。
例如:3x² + 2x + 1- (2x² - 3x + 4)----------------------3x² + 2x + 1 - 2x² + 3x - 4= x² + 5x - 3在上述例子中,我们将减法转化为加法,并且在括号中的整式每一项都要取负号。
然后,我们根据加法运算法则进行运算,最终得到了运算结果。
三、整式的乘法运算法则整式的乘法运算法则是将每一个乘数的每一项与另一个乘数的每一项进行相乘,并将所得项相加。
例如:(2x + 3)(x - 1)= 2x * x + 2x * (-1) + 3 * x + 3 * (-1)= 2x² - 2x + 3x - 3= 2x² + x - 3在上述例子中,我们将每个乘数的每一项相乘,并将所得项相加。
通过这个运算法则,我们可以得到乘法的结果。
综上所述,整式的加减与乘法运算法则是代数学中的基础运算法则。
整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数n m a a a n m n m +=•),(都是正整数)(n m a a m n n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
一、选择(每题2分,共24分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 3B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 5D .54x n ·25x m =12x m+n2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -1 3.下列运算正确的是( ).A .a 2·a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 6-a 2=a 4 4.下列运算中正确的是( ).A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。
整式乘法运算法则公式在代数中,整式乘法是一种常见的运算,它可以帮助我们简化复杂的代数表达式。
整式乘法运算法则公式是指在乘法运算中使用的规则和公式,通过这些规则和公式,我们可以将复杂的代数表达式化简为简单的形式。
本文将介绍整式乘法运算法则公式的基本概念和具体应用。
一、整式乘法的基本概念在代数中,整式是由数字、变量和运算符(如加法、减法、乘法、除法)组成的表达式。
整式乘法是指两个或多个整式相乘的运算。
例如,给定两个整式x+2和3x-4,它们的乘积可以通过整式乘法运算法则公式进行计算。
二、整式乘法运算法则公式整式乘法运算法则公式包括以下几个基本规则:1. 分配律:对于任意的整式a、b和c,有a*(b+c) = a*b + a*c。
2. 乘法交换律:对于任意的整式a和b,有a*b = b*a。
3. 乘法结合律:对于任意的整式a、b和c,有(a*b)*c =a*(b*c)。
这些基本规则可以帮助我们在整式乘法中进行化简和计算,从而得到最终的乘积结果。
三、整式乘法的具体应用整式乘法运算法则公式在代数中有着广泛的应用,特别是在多项式的乘法中。
多项式是由多个整式相加或相减而成的代数表达式,它们在代数中有着重要的地位。
通过整式乘法运算法则公式,我们可以将复杂的多项式乘法化简为简单的形式,从而更方便地进行计算和分析。
例如,考虑两个多项式(x+2)(3x-4),我们可以利用整式乘法运算法则公式来计算它们的乘积。
首先,我们可以使用分配律将乘法展开:(x+2)(3x-4) = x*(3x-4) + 2*(3x-4)。
然后,我们再利用分配律将每一项再次展开:x*(3x-4) = 3x^2 - 4x,2*(3x-4) = 6x - 8。
最后,将这些展开后的结果相加,得到最终的乘积:(x+2)(3x-4)= 3x^2 - 4x + 6x - 8 = 3x^2 + 2x - 8。
通过以上的计算过程,我们可以看到整式乘法运算法则公式的应用非常简单直观,它可以帮助我们快速地计算多项式的乘积,从而简化代数表达式的计算。
整式运算笔记知识点总结一、整式的基本概念1. 整式的定义整式是由常数和变量按照代数运算法则所组成的式子,包括单项式、多项式和零项式。
例如,3x² + 2xy - 5、a²b + 4ab - 7ab²等都是整式。
2. 单项式和多项式单项式是由常数与变量的乘积所构成的代数式,例如3x²、-4ab、5cd等都是单项式。
而多项式是由多个单项式经过加减运算所得的代数式,例如3x² + 2xy - 5、a²b + 4ab - 7ab²等都是多项式。
3. 同类项同类项是指具有相同字母及其指数的代数式,可以通过合并同类项简化整式的表示形式。
例如,3x²和-5x²就是同类项,可以合并为-2x²。
4. 零项式零项式是不含有任何非零项的多项式,也称为零多项式,通常用0来表示。
5. 整式的次数整式的次数是指整式中变量的最高次幂,如3x² + 2xy - 5的次数是2,a²b + 4ab - 7ab²的次数是3。
二、整式运算的基本法则1. 加法和减法整式的加法和减法遵循交换律和结合律,可以对同类项进行合并,最终得到一个简化的整式。
例如:3x² + 2xy - 5 + 4x² - 3xy + 7 = 7x² - xy + 22. 乘法整式的乘法遵循分配律和结合律,可以通过展开式子,找到各项之间的关系,然后合并同类项。
例如:(3x + 2)(4x - 5) = 12x² - 15x + 8x - 10 = 12x² - 7x - 103. 除法整式的除法通常通过因式分解或长除法来进行,目的是将整式分解成乘法的形式,进而进行简化或化简。
例如:(12x² - 7x - 10) ÷ (3x + 2) = 4x - 5三、整式运算的应用整式运算在代数学中有着广泛的应用,尤其是在解决代数方程、不等式、函数等问题时起着至关重要的作用。
考点一、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数n m a a a n m n m +=∙ ),(都是正整数)(n m a a m n n m = )()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数注意:(1)单项式乘单项式的结果仍然是 。
(2)单项式与多项式相乘,结果是一个 ,其项数与因式中多项式的项数 。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)),0(1);0(10为正整数p a aa a a p p ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商 ,单项式除以多项式是不能这么计算的。
基础1. 判断下列计算是否正确,并说明理由或写出正确答案:(1)a • a 2=a 2; (2)a+a 2=a 3;(3)a 3• a 3=a 9(4)a 3+a 3=a 6 2. ⋅2x =6x ;⋅-)(2y =5y ;93×95=; a 7 • a 8= 35×27= x 2 • x 3 • x 4= 3.计算下列各式:(1)_______25=⋅x x (2)_______66=⋅x x (3)_______66=+x x(4)_______53=⋅⋅-x x x (5)_______)()(3=-⋅-x x (6)_______3423=⋅+⋅x x x x(7)_____)(33=x (8)_____)(52=-x (9)_____)(532=⋅a a(10)________)()(4233=⋅-m m (11)_____)(32=n x4.若a2n+1·ax =a3 那么x 等于( )A.n +2B.2n +2C.4-nD.2-2n巩固1.计算;1、34a a a ⋅⋅2、()()()53222---3、231010100⨯⨯4、()()()352a a a -⋅-⋅--5、254242423a a a a a a a ⋅-⋅⋅+⋅6、()()m m 2224⨯⨯7、xn ·x-xn+1 8、x6·(-x)5-(-x)8 ·(-x)39、-a3·(-a)4·(-a)5 10、-(-10) 2n ×100×(-10) 2n -111、(x -2)(x+3) 12.(3x+2)(x+5)2.计算题:(1)3324)101).(2.(21x xy y x -- (2))7)(5()1(2+-+-a a a a(3)22)5()5(y x y x +-- (4))(]12)1)(1[(22ab b a ab ab -÷+--+3.化简求值:(1) ()()()()3416x x x x ++--+,其中1x =(2)x y x x y x y x y x 2)]2(2)2)(2()2[(2÷--+-+- 其中 6,5-==y x提高1.填空(1)(x-y)2n+1·(x-y)2n+1=(y-x)2·(x-y)( )= (x-y)n+4·(x-y)( )。
整式的加减运算法则在初中数学中,整式的加减运算是一个基础且重要的概念。
通过掌握整式的加减运算法则,我们能够准确、快速地计算各种整式的运算结果。
本文将介绍整式的加减运算法则,并提供一些实例进行演示。
一、整式的定义整式(Polynomial)是一个或多个单项式的代数和,其中每个单项式的指数非负整数,且整式中每个单项式的项相同。
例如,3x^2 + 2xy - 5 是一个整式,其中的三个单项式为3x^2、2xy和-5。
二、加法法则整式的加法法则规定了两个整式相加的操作方式。
具体来说,我们只需要将两个整式的同类项合并即可。
同类项是具有相同的字母部分和相同的指数部分的项。
例如,2x^2和3x^2是同类项,而2x^2和3xy 就不是同类项。
让我们通过一个例子来演示整式的加法运算:例子1:计算 (3x^2 + 2xy + 4) + (2x^2 - 3xy + 1)。
首先,我们合并同类项。
同类项有3x^2和2x^2,它们的和是5x^2;2xy和-3xy,它们的和是-xy;常数项4和1,它们的和是5。
因此,原式可以化简为 5x^2 - xy + 5。
例子2:计算 (5x^3 + 4x^2 - 2x + 7) + (3x^3 - 2x^2 + x - 5)。
合并同类项,得到8x^3 + 2x^2 - x + 2。
通过上述例子,我们可以看到整式的加法运算法则实际上就是将同类项合并。
三、减法法则整式的减法法则与加法法则类似,我们只需要将被减数转化为相反数,然后进行加法运算。
也就是说,a - b 可以通过 a + (-b) 计算得到。
让我们通过一个例子来演示整式的减法运算:例子3:计算 (4x^2 + 3xy - 5) - (2x^2 - xy + 1)。
首先,我们将被减数的每一项转化为相反数。
因此,原式可以重写为 (4x^2 + 3xy - 5) + (-2x^2 + xy - 1)。
接下来,我们合并同类项。
同类项有4x^2和-2x^2,它们的和为2x^2;3xy和xy,它们的和为4xy;常数项-5和-1,它们的和为-6。
整式的乘法法则公式在代数学中,整式的乘法法则公式是指用来计算两个整式相乘的规则和公式。
整式是由数、变量和运算符号(加减乘除)组成的代数表达式。
整式的乘法法则公式是代数学中非常重要的一部分,它能够帮助我们简化复杂的代数表达式,解决各种数学问题。
本文将介绍整式的乘法法则公式,并通过一些例子来说明如何应用这些公式进行计算。
首先,让我们来看一下整式的基本形式。
一个整式通常由若干个单项式相加或相减而成。
例如,3x^2 + 2xy - 5y^2就是一个整式,其中3x^2、2xy和-5y^2分别是三个单项式。
整式的乘法法则公式适用于任意两个整式的相乘,无论它们是单项式还是多项式。
整式的乘法法则公式可以总结为以下几条规则:1. 单项式乘单项式:两个单项式相乘时,只需要将它们的系数相乘,并将它们的字母部分相乘。
例如,3x乘以4y等于12xy。
2. 单项式乘多项式:一个单项式与一个多项式相乘时,只需要将单项式的系数依次与多项式的每一项相乘,并将它们的字母部分相乘。
然后将得到的各项再相加。
例如,2x乘以(3x^2 + 4y)等于6x^3 + 8xy。
3. 多项式乘多项式:两个多项式相乘时,需要将一个多项式的每一项依次与另一个多项式的每一项相乘,并将它们的结果相加。
这其实就是分配律的运用。
例如,(3x + 2y)乘以(4x - 5y)等于12x^2 - 15xy + 8xy - 10y^2,再将相同项合并得到12x^2 - 7xy- 10y^2。
整式的乘法法则公式可以帮助我们快速准确地计算整式的乘法。
通过这些规则,我们可以将复杂的整式相乘的问题简化为一系列简单的乘法运算。
下面我们通过一些例子来演示如何应用整式的乘法法则公式进行计算。
例1:计算(3x + 2)(4x - 5)。
根据整式的乘法法则公式,我们将第一个多项式的每一项依次与第二个多项式的每一项相乘,并将结果相加。
即(3x乘以4x) + (3x乘以-5) + (2乘以4x) + (2乘以-5)。
整式的乘法法则
整式的乘法法则是指将两个或多个整式进行乘法运算时,对于乘积形式,只要按照一定的步骤进行运算,就可以得到一个简化的表达式。
2、乘法法则的种类
(1)和乘积平分法
当两个整式相乘时,如果一个整式内含有多个项,那么这些项可以看成是乘积的因子,其积可以分解成和乘积,这种运算称为和乘积平分法。
举例:
(x-2)(x+3)
= x -2x+3x-6
= x+x-6
(2)分解因子法
当一个整式的每一项都是同一个因子的乘积时,这个整式可以分解成因子的乘积,这种运算称为分解因子法。
举例:
x+2x+4x
= x(x+2x+4)
= x(x+2)(x+2)
(3)重复因子法
当两个整式的系数都是相同的,而其因子也含有相同的因子时,
可以用重复因子法来计算他们的乘积。
举例:
2x+4x(2x-3)
= 2x(2x-3)+4x(2x-3)
= (2x+4x)(2x-3)
(4)完全平方法
当一个整式可以被写成一个常数的平方加上常数,或将一个常数的平方减去常数时,这个整式叫做完全平方式,它的乘积也可以通过完全平方法来计算。
举例:
(x+2)(x-2)
= (x+2)(x-2)
= (x-2)
= x-4
二、乘法法则的应用
1、解绝对值不等式
如果解绝对值不等式时,可以用乘法法则把绝对值不等式化成两个完全平方式,然后再解不等式。
整式乘法法则整式乘法法则是指用代数式相乘的一种运算法则,其主要包括分配律、结合律和乘积法则。
这些法则是我们在解决代数式相乘时经常使用的基本操作方法,下面将逐个进行介绍。
1. 分配律:分配律是整式乘法法则中最基础的法则之一,它适用于两个整式相乘时,将其中一个整式乘以另一个整式的各个项,然后将结果相加。
例如,对于整式a、b和c,我们有:(a + b) * c = ac + bca * (b + c) = ab + ac分配律也适用于多项式之间的乘法。
例如,对于三个整式a、b和c,我们有:(a + b) * c = ac + bc(a + b) * (c + d) = ac + ad + bc + bd2. 结合律:结合律是整式乘法法则中另一个重要的法则,它适用于三个或更多个整式相乘时,可以通过改变加括号的位置来改变计算顺序,而不改变最终结果。
例如,对于整式a、b和c,我们有:a * (b * c) = (a * b) * c结合律也适用于多项式之间的乘法。
例如,对于三个整式a、b和c,我们有:(a * b) * c = a * (b * c)3. 乘积法则:乘积法则是整式乘法法则中的第三个关键法则,它说明了两个整式相乘的结果。
乘积法则可以通过将两个整式的每一项相乘,并将结果相加来实现。
例如,对于整式a、b、c和d,我们有:(a + b) * (c + d) = ac + ad + bc + bd乘积法则在应用中经常与分配律结合使用。
以上就是整式乘法法则的基本内容,通过运用分配律、结合律和乘积法则,我们可以有效地处理和简化整式的乘法运算。
这些法则在解决代数式的乘法过程中起到了重要的作用,也为我们在解决实际问题时提供了有益的参考。
初中数学知识归纳整式的加减乘除运算法则整式是由数和字母的乘积相加或相减而得到的代数式,是数学中常见的一种表达形式。
在初中数学中,我们学习了整式的加减乘除运算法则,本文将对初中数学中整式运算的基本法则进行归纳整理。
一、整式的加法法则整式相加的法则可以简单地概括为:同类项相加,不同类项不能相加。
同类项是指具有相同的字母部分和相同的指数部分,不同类项则是指具有不同的字母部分或不同的指数部分。
在进行整式的加法运算时,我们需要先合并同类项,然后将合并后的同类项相加。
例如:2x + 3x = 5x4a^2b - 2a^2b = 2a^2b二、整式的减法法则整式相减的法则与整式相加的法则相似,基本步骤也是先合并同类项,然后将合并后的同类项相减。
例如:2x - 3x = -x4a^2b - 2a^2b = 2a^2b需要注意的是,减法可以通过加法来实现,即将减法转化为加法运算。
例如,a - b可以改写为a + (-b)来进行运算。
三、整式的乘法法则整式相乘的法则较为复杂,需要将每一个项进行两两相乘,并按指数升序排列。
例如:(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)= 8x^2 - 10x + 12x - 15= 8x^2 + 2x - 15四、整式的除法法则整式相除的法则需要利用因式分解和约分的方法进行。
例如:(6x^3 + 9x^2 - 12x) ÷ 3x = (3x)(2x^2 + 3x - 4) ÷ 3x= 2x^2 + 3x - 4需要注意的是,被除数应能够整除除数,否则除法就无法进行。
综上所述,初中数学中整式的加减乘除运算法则可以归纳整理为:同类项相加,不同类项不能相加;同类项相减,不同类项不能相减;整式相乘,将每一个项进行两两相乘,并按指数升序排列;整式相除,利用因式分解和约分的方法进行。
通过掌握这些法则,我们能够更加熟练地对整式进行操作,解决实际问题,为进一步学习代数提供坚实的基础。
教学内容整式的定义整式的加减法则整式的运算规则教学内容:整式的定义、整式的加减法则、整式的运算规则整式是数学中的一种表达式形式,它由常数与变量的乘积、幂、和差构成。
它是整数和有限项的代数和,用于描述数学问题中的多项式关系。
在本文中,我们将探讨整式的定义、整式的加减法则以及整式的运算规则。
定义:整式是由代数式的常数项、整数项与各种项组成的多项式。
代数式是由常数项与变量的乘积、幂、和差所构成的表达式。
整式的形式如下:F(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀其中,aₙ, aₙ₋₁, ..., a₁, a₀是常数项,x 是变量,n 是非负整数。
整式的加减法则:1. 类似项的合并:在进行整式的加减运算时,首先要将具有相同变量幂次的项进行合并。
具体步骤如下:a₁xⁿ + b₁xⁿ = (a₁ + b₁)xⁿ例如,3x² + 2x² = (3 + 2)x² = 5x²2. 常数项的合并:合并具有相同变量幂次的项后,再对常数项进行合并。
例如,2x³ + 5x² - 3x³ = (2 - 3)x³ + 5x² = -x³ + 5x²3. 零多项式的概念:零多项式是指所有系数均为零的多项式,表示为0。
整式的运算规则:1. 加法运算:将两个整式的各项对应相加,合并具有相同变量幂次的项,并对常数项进行合并。
例如,(3x² - 2x + 1) + (2x² + 3x - 5) = 3x² + 2x² - 2x + 3x + 1 - 5 = 5x²+ x - 42. 减法运算:将被减整式的各项取相反数,然后按照加法运算的规则进行计算。
例如,(3x² - 2x + 1) - (2x² + 3x - 5) = 3x² - 2x + 1 - 2x² - 3x + 5 = (3 -2)x² + (-2 - 3)x + (1 + 5) = x² - 5x + 63. 乘法运算:使用分配律,将每一项乘以另一个整式的每一项,并合并同类项。
整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数n m aa a nm nm+=• 整式的除法:)0,,(≠=÷-a n m aa a nm n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得 的商相加,单项式除以多项式是不能这么计算的。
一、选择(每题2分,共24分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 3B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 5D .54x n ·25x m =12x m+n2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -13.下列运算正确的是().A.a2·a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6-a2=a4 4.下列运算中正确的是().A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy -2)-2x 2y 2+4],其中x=10,y=-125. 六、解答题(每题4分,共12分) 24.已知2x+5y=3,求4x ·32y 的值.25.已知a 2+2a+b 2-4b+5=0,求a ,b 的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。
用式子表示为: n m n ma a a+=⋅(m 、n 是正整数)2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.【典型例题】1.计算(-2)2007+(-2)2008的结果是( )A .22015B .22007C .-2D .-22008 2.当a<0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数 B .负数 C .非正数 D .非负数3.(一题多解题)计算:(a -b )2m -1·(b -a )2m ·(a -b )2m+1,其中m 为正整数. 4.(一题多变题)(1)已知x m =3,x n =5,求x m+n . (2)一变:已知x m =3,x n =5,求x 2m+n ;(3)二变:已知x m =3,x n =15,求x n .二、同底数幂的除法(重点)1、同底数幂的除法同底数幂相除,底数不变,指数相减.公式表示为:()0,m n m n a a a a m n m n -÷=≠>、是正整数,且. 2、零指数幂的意义任何不等于0的数的0次幂都等于1.用公式表示为:()010a a =≠. 3、负整数指数幂的意义任何不等于0的数的-n(n 是正整数)次幂,等于这个数的n 次幂的倒数,用公式表示为()10,n n a a n a-=≠是正整数4、绝对值小于1的数的科学计数法对于一个小于1且大于0的正数,也可以表示成10n a ⨯的形式,其中110,a n ≤<是负整数.注意点:(1) 底数a 不能为0,若a 为0,则除数为0,除法就没有意义了; (2) ()0,a m n m n ≠>、是正整数,且是法则的一部分,不要漏掉.(3) 只要底数不为0,则任何数的零次方都等于1.【典型例题】 一、选择1.在下列运算中,正确的是( )A .a 2÷a=a 2B .(-a )6÷a 2=(-a )3=-a 3C .a 2÷a 2=a 2-2=0 D .(-a )3÷a 2=-a2.在下列运算中,错误的是( )A .a 2m ÷a m ÷a 3=a m -3 B .a m+n ÷b n =a mC .(-a 2)3÷(-a 3)2=-1D .a m+2÷a 3=a m-1二、填空题1.(-x 2)3÷(-x )3=_____. 2.[(y 2)n ] 3÷[(y 3)n ] 2=______. 3.104÷03÷102=_______. 4.(-3.14)0=_____. 三、解答1.(一题多解题)计算:(a -b )6÷(b -a )3. 2.(巧题妙解题)计算:2-1+2-2+2-3+…+2-2008.3、已知a m =6,a n =2,求a 2m-3n 的值.4.(科外交叉题)某种植物的花粉的直径约为3.5×10-5米,用小数把它表示出来.三、幂的乘方(重点)幂的乘方,底数不变,指数相乘. 公式表示为:()()nm mn a a m n =、都是正整数.注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数.(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.【典型例题】1.计算(-a 2)5+(-a 5)2的结果是( )A .0B .2a 10C .-2a 10D .2a 7 2.下列各式成立的是( )πA .(a 3)x =(a x )3B .(a n )3=a n+3C .(a+b )3=a 2+b 2D .(-a )m =-a m 3.如果(9n )2=312,则n 的值是( )A .4B .3C .2D .1 4.已知x 2+3x+5的值为7,那么3x 2+9x -2的值是( ) A .0 B .2 C .4 D .66.计算:(1) (2) 补充:同底数幂的乘法与幂的乘方性质比较:四、积的乘方运算法则:两底数积的乘方等于各自的乘方之积。
用式子表示为:()n n nb a b a ⋅=⋅(n 是正整数)扩展p n m p n m a a a a -+=÷⋅()np mp pn mb a b a= (m 、n 、p是正整数)注意点:(1) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果;(2) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其233342)(a a a a a +⋅+⋅22442)()(2a a a ⋅+⋅中任何一个因式.【典型例题】1.化简(a 2m ·a n+1)2·(-2a 2)3所得的结果为____________________________。
2.( )5=(8×8×8×8×8)(a ·a ·a ·a ·a)3.如果a≠b ,且(a p )3·b p+q =a 9b 5 成立,则p=______________,q=__________________。
4.若,则m+n 的值为( )A .1B .2C .3D .-35.的结果等于( ) A . B . C . D .7.如果单项式与是同类项,那么这两个单项式的积进( )A .B .C .D .8.(科内交叉题)已知(x -y )·(x -y )3·(x -y )m =(x -y )12,求(4m 2+2m+1)-2(2m 2-m -5)的值.课后作业一.选择题(共13小题)1.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为( ) A .0.5×10﹣9米 B .5×10﹣8米C .5×10﹣9米 D .5×10﹣10米2.﹣2.040×105表示的原数为( ) A .﹣204000 B .﹣0.000204C .﹣204.000D .﹣20400()()b a b a b a m n n m 5321221=-++()23220032232312⎪⎭⎫ ⎝⎛-•-•⎪⎭⎫ ⎝⎛--y x y x y x 10103yx 10103-y x 10109y x 10109-y x b a 243--yx ba +331y x 46y x 23-y x 2338-y x 46-3.(2007?十堰)下列运算正确的是()A.a6?a3=a18B.(a3)2a2=a5C.a6÷a3=a2D.a3+a3=2a34.(2007?眉山)下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2?a=﹣a3C.(﹣x)9÷(﹣x)3=x6D.(﹣2a3)2=4a65.下列计算中,正确的是()A.x3?x4=x12B.a6÷a2=a3C.(a2)3=a5D.(﹣ab)3=﹣a3b36.(2004?三明)下列运算正确的是()A.x2?x3=x6B.(﹣x2)3=x6C.(x﹣1)0=1D.6x5÷2x=3x47.若(2x+1)0=1则()A.x≥﹣B.x≠﹣C.x≤﹣D.x≠8.在①(﹣1)0=1;②(﹣1)3=﹣1;③3a﹣2=;④(﹣x)5÷(﹣x)3=﹣x2中,正确的式子有()A.①②B.②③C.①②③D.①②③④9.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>bC.c>a>b D.c>b>a10.通讯卫星的高度是3.6×107米,电磁波在空中的传播速度是3×108米/秒,从地面发射的电磁波被通讯卫星接受并同时反射给地面需要()A.3.6×10﹣1秒B.1.2×10﹣1秒C.2.4×10﹣2秒D.2.4×10﹣1秒11.下列计算,结果正确的个数()(1)()﹣1=﹣3;(2)2﹣3=﹣8;(3)(﹣)﹣2=;(4)(π﹣3.14)0=1 A.1个B.2个C.3个D.4个12.下列算式,计算正确的有①10﹣3=0.0001;②(0.0001)0=1;③3a﹣2=;④(﹣x)3÷(﹣x)5=﹣x﹣2.A.1个B.2个C.3个D.4个13.计算:的结果是()A.B.C.D.二.填空题14.(2005?常州)=_________;=_________.15.已知(a﹣3)a+2=1,则整数a=_________.16.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是_________.17.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的_________倍.(结果保留两个有效数字)18.(2011?连云港)在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为_________.19.若3x+2=36,则=_________.20.已知a3n=4,则a6n=_________.21.多项式﹣5(ab)2+ab+1是_________次_________项式.三.解答填空题22.计算:(1)=_________;(2)(4ab2)2×(﹣a2b)3=_________.23.已知:2x=4y+1,27y=3x﹣1,则x﹣y=_________.24.(2010?西宁)计算:=_________.25.计算:(1)(﹣2.5x3)2(﹣4x3)=_________;(2)(﹣104)(5×105)(3×102)=_________;26.计算下列各题:(用简便方法计算)(1)﹣102n×100×(﹣10)2n﹣1=_________;(2)[(﹣a)(﹣b)2?a2b3c]2=_________;(3)(x3)2÷x2÷x+x3÷(﹣x)2?(﹣x2)=_________;(4)=_________.27.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5= _________.28.如果x m=5,x n=25,则x5m﹣2n的值为_________.29.已知:a n=2,a m=3,a k=4,则a2n+m﹣2k的值为_________.30.比较2100与375的大小2100_________375.因式分解教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式m a+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.m a+mb+mc=m(a+b+c)就是把m a+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是m a+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4a b+2a=2a(4a b-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)x n(x2-x+1)=x n+2-x n+1+x n.典例剖析例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。