相似三角形中考真题试题汇编
- 格式:doc
- 大小:1.13 MB
- 文档页数:42
专题14.相似三角形一、单选题1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ',B '.若6AB =,则A B ''的长为( )A .8B .9C .10D .152.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 23.(2021·重庆中考真题)如图,△ABC 与△BEF 位似,点O 是它们的位似中心,其中OE =2OB ,则△ABC 与△DEF 的周长之比是( )A .1:2B .1:4C .1:3D .1:94.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D5.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CE AD的值为( )A .32BCD .26.(2021·重庆中考真题)如图,在平面直角坐标系中,将OAB 以原点O 为位似中心放大后得到OCD ,若()0,1B ,()0,3D ,则OAB 与OCD 的相似比是( )A .2:1B .1:2C .3:1D .1:37.(2020·广西贵港市·中考真题)如图,在ABC 中,点D 在AB 边上,若3BC =,2BD =,且BCD A ∠=∠,则线段AD 的长为( )A .2B .52C .3D .928.(2020·云南昆明市·中考真题)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE (不含△ABC ),使得△ADE ∽△ABC (同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有( ) A .4个 B .5个 C .6个 D .7个9.(2020·湖南益阳市·中考真题)如图,在矩形ABCD 中,E 是CD 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是( )A .30DAE ∠=B .45BAC ∠= C .12EF FB =D .2AD AB =10.(2020·湖南永州市·中考真题)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A .913B .25C .35D .6311.(2020·海南中考真题)如图,在矩形ABCD 中,6,10,AB BC ==点E F 、在AD 边上,BF 和CE 交于点,G 若12EF AD =,则图中阴影部分的面积为( ) A .25 B .30 C .35 D .4012.(2020·广西中考真题)如图,在ABC 中,120BC =,高60AD =,正方形EFGH 一边在BC 上,点,E F 分别在,AB AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .3013.(2020·海南中考真题)如图,在ABCD 中,10,15,AB AD BAD ==∠的平分线交BC 于点,E 交DC 的延长线于点,F BG AE ⊥于点G ,若8BG =,则CEF △的周长为( )A .16B .17C .24D .2514.(2020·云南中考真题)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 是CD 的中点,则DEO 与BCD △的面积的比等于( )A .12B .14C .16D .1815.(2020·山西中考真题)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。
相似1.(2008江苏盐城15)如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足 条件(写出一个即可)时,ADE ACB △∽△.2.(08盐城22)如图,在1212⨯的正方形网格中,TAB △的顶点分别为(11)T ,,(23)A ,,(42)B ,.(1)以点(11)T ,为位似中心,按比例尺(:)3:1TA TA '的位似中心的同侧将TAB 放大为TA B ''△,放大后点A B ,的对应点分别为A B '',,画出TA B ''△,并写出点A B '',的坐标;(2)在(1)中,若()C a b ,为线段AB 上任一点,写出变化后点C 的对应点C '的坐标.3.(2008江苏扬州26)已知:矩形ABCD 中,AB=1,点M 在对角线AC 上,直线l 过点M 且与AC 垂直,与AD 相交于点E 。
(1)如果直线l 与边BC 相交于点H (如图1),AM=31AC 且AD=A ,求AE 的长;(用含a 的代数式表示)(2)在(1)中,又直线l 把矩形分成的两部分面积比为2:5,求a 的值;(3)若AM=41AC ,且直线l 经过点B (如图2),求AD 的长; (4)如果直线l 分别与边AD 、AB 相交于点E 、F ,AM=41AC 。
设AD 长为x ,△AEF 的面积为y ,求y 与x 的函数关系式,并指出x 的取值范围。
(求x 的取值范围可不写过程)第15题图4.(08泰州12)在平面上,四边形ABCD 的对角线AC 与BD 相交于O ,且满足AB CD =.有下列四个条件:(1)OB OC =;(2)AD BC ∥;(3)AO DO CO BO =;(4)OAD OBC ∠=∠.若只增加其中的一个条件,就一定能使BAC CDB ∠=∠成立,这样的条件可以是( )A .(2)、(4)B .(2)C .(3)、(4)D .(4)5.(08南京7)小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m6.(08连云港14)如图,一落地晾衣架两撑杆的公共点为O ,75OA =cm ,50OD =cm .若撑杆下端点A B ,所在直线平行于上端点C D ,所在直线,且90AB =cm ,则CD = cm .7.(2008苏州26)如图,在等腰梯形ABCD 中,AD BC ∥,5AB DC ==,6AD =,12BC =.动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点出发沿CB 以每秒2个单位的速度向B 点运动.两点同时出发,当P 点到达C 点时,Q 点随之停止运动.(1)梯形ABCD 的面积等于 ;(2)当PQ AB ∥时,P 点离开D 点的时间等于 秒;(3)当P Q C ,,三点构成直角三角形时,P 点离开D 点多少时间?(第14题图) A C D PB(第26题)8.(2008年江苏省无锡市,20T )如图,已知E 是矩形ABCD 的边CD 上一点,BF AE 于F ,试说明:ABF EAD △∽△.9.(2008年江苏省南通市,17T ,4分)已知△ABC 和△A ′B ′C ′是位似图形. △A ′B ′C ′的面积6cm 2,周长是△ABC 的一半.AB =8cm ,则AB 边上的高等于( )A .3cmB .6cmC .9cmD .12cm 答案17.B10.(2008年江苏省南通市,26T ,12分)如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E. (1)求证:AB ·AF =CB ·CD(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点.设DP =xcm (x >0),四边形BCDP 的面积为ycm 2.①求y 关于x 的函数关系式; ②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.D PE FC B。
一、选择题(每题4分,共20分)1. 下列各组图形中,能够构成相似三角形的是()A. 两个等腰三角形B. 两个等边三角形C. 两个直角三角形D. 两个锐角三角形2. 已知两个三角形ABC和DEF,若∠A=∠D,∠B=∠E,则下列说法正确的是()A. 三角形ABC与三角形DEF相似B. 三角形ABC与三角形DEF不一定相似C. 三角形ABC与三角形DEF一定不相似D. 无法判断三角形ABC与三角形DEF是否相似3. 在相似三角形中,对应边的比称为()A. 相似比B. 对应角C. 相似中心D. 相似轴4. 若一个三角形的边长分别为3、4、5,那么与这个三角形相似的三角形的边长可能是()A. 6、8、10B. 6、9、12C. 7、10、14D. 8、12、165. 在相似三角形中,若相似比为2:1,则周长比是()A. 2:1B. 1:2C. 4:1D. 1:4二、填空题(每题4分,共16分)6. 如果两个相似三角形的相似比是3:2,那么它们的面积比是_______。
7. 在相似三角形中,如果相似比是5:3,那么对应高的比是_______。
8. 若三角形ABC与三角形DEF相似,且AB=6cm,DE=4cm,那么BC与EF的比是_______。
9. 在相似三角形中,若一个三角形的周长是另一个三角形的3倍,则它们的相似比是_______。
10. 两个相似三角形的相似比为1:2,那么它们的面积比是_______。
三、解答题(每题10分,共30分)11. (10分)已知三角形ABC中,∠A=45°,∠B=90°,∠C=45°,点D、E分别在边AB、BC上,且AD=DE=EC。
求证:三角形ADE与三角形ABC相似。
12. (10分)已知两个相似三角形ABC和DEF,其中∠A=30°,∠D=45°,∠B=∠E=75°。
求证:三角形ABC与三角形DEF相似。
中考相似三角形经典练习题(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA 所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
中考数学专题练习:相似三角形一、选择题1.如图,将图形用放大镜放大,应该属于()A .平移变换B .相似变换C .旋转变换D .对称变换2.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .若BD =2AD ,则()A.AD AB =12B.AE EC =12C.AD EC =12D.DE BC =123.(2019•雅安)若34a b =∶∶,且14a b +=,则2a b -的值是A .4B .2C .20D .144.(2020·河南)如图,在△ABC 中,∠ACB=90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(-2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为()A.(32,2) B.(2,2) C.(114,2) D.(4,2)5.(2019•重庆)下列命题是真命题的是A .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为2∶3B .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9C .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为2∶3D .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为4∶96.(2019•巴中)如图 ABCD ,F 为BC 中点,延长AD 至E ,使13DE AD =∶∶,连接EF 交DC 于点G ,则:DEG CFG S S △△=A .2∶3B .3∶2C .9∶4D .4∶97.(2020·威海)如图,矩形ABCD 的四个顶点分别在直线l 3,l 4,l 2,l 1上.若直线l 1∥l 2∥l 3∥l 4且间距相等,AB =4,BC =3,则tan α的值为()A .B .C .D .8.(2020·昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE ∽△ABC(同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有()个 D.7个B二、填空题9.(2020·盐城)如图,//,BC DE 且,4,10BCDE AD BC AB DE <==+=,则AEAC的值为.10.(2020·吉林)如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE的面积为12.则四边形DBCE 的面积为_______.11.(2019•大庆)如图,在△ABC 中,D 、E 分别是BC ,AC 的中点,AD 与BE相交于点G ,若DG=1,则AD=__________.12.(2020·临沂)如图,在ABC ∆中,D ,E 为边AB 的三等分点,////EF DG AC ,H 为AF 与DG 的交点.若6AC =,则DH =_________.13.(2020·绥化)在平面直角坐标系中,△ABC和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是______.14.如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15.(2019•辽阳)如图,平面直角坐标系中,矩形ABOC 的边BO CO ,分别在x 轴,y 轴上,A 点的坐标为(86)-,,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE △∽CBO △,当APC △是等腰三角形时,P 点坐标为__________.16.(2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE △是直角三角形时,则CD 的长为__________.三、解答题17.如图,过☉O 外一点P 作☉O 的切线PA ,切☉O 于点A ,连接PO 并延长,与☉O 交于C ,D 两点,M 是半圆CD 的中点,连接AM 交CD 于点N ,连接AC ,CM.(1)求证:CM 2=MN ·MA ;(2)若∠P=30°,PC=2,求CM 的长.18.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,且DM 交AC 于F ,ME 交BC 于G.(1)写出图中两对相似三角形,并证明其中的一对;(2)请连接FG ,如果α=45°,AB =42,AF =3,求FG 的长.19.(2020·杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,DAE ∠的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设()0CEEBλλ=>.(1)若2AB =,λ=1,求线段CF 的长.(2)连接EG ,若EG AF ⊥,①求证:点G 为CD 边的中点.②求λ的值.20.(2020·攀枝花)三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G 是ABC ∆的重心.求证:3AD GD =.21.(2020·江苏徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果BC ABAB AC=,那么称点B为线段AC的黄金分割点..(1)在图①中,若AC=20cm,则AB的长为cm;(2)如图②,用边长为20cm的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将CB折叠到CE上,点B的对应点H,得折痕CG.试说明:G是AB的黄金分割点;(3)如图③,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E (AE>DE),连接BE,作CF⊥BE,交AB于点F,延长EF、CB交于点P.他发现当PB与BC满足某种关系时,E、F恰好分别是AD、AB的黄金分割点.请猜想小明的发现,并说明理由.图①图②图③22.(2020•丽水)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.如图,AB是⊙O的直径,点E为线段OB上一点(不与O、B重合),作EC⊥OB 交⊙O于点C,作直径CD过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE·CP;(3)当AB=43且CFCP=34时,求劣弧BD︵的长度.24.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图①);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n既为该方程的另一个实数根.(1)在图②中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图①,请证明“第三步”操作得到的m就是方程x2-5x+2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1).Q(m2,n2)就是符合要求的一对固定点?答案一、选择题1.【答案】B2.【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∵BD =2AD ,∴AD AB =AEAC=13,∴AE EC =12,故选B .3.【答案】A【解析】由a ∶b =3∶4知34b a =,所以43a b =.所以由14a b +=得到:4143aa +=,解得6a =.所以8b =.所以22684a b -=⨯-=.故选A .4.【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7,∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2,∴EF BF AC BC =,即269BF=,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴D 点的横坐标为2,∴点D 的坐标为(2,2).5.【答案】B【解析】A 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9,是假命题;B 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9,是真命题;C 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为16∶81,是假命题;D 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为16∶81,是假命题,故选B .6.【答案】D【解析】设DE x =,∵13DE AD =∶∶,∴3AD x =,∵四边形ABCD 是平行四边形,∴AD BC ∥,3BC AD x ==,∵点F 是BC 的中点,∴1322CF BC x ==,∵AD BC ∥,∴DEG CFG △∽△,∴224()()392DEG CFG S DE x S CF x ===△△,故选D .7.【答案】:作CF ⊥l 4于点F ,交l 3于点E ,设CB 交l 3于点G ,由已知可得,GE∥BF ,CE =EF ,∴△CEG ∽△CFB ,∴,∵,∴,∵BC =3,∴GB,∵l 3∥l 4,∴∠α=∠GAB ,∵四边形ABCD 是矩形,AB =4,∴∠ABG =90°,∴tan ∠BAG ,∴tan α的值为,故选:A.8.【答案】A【解析】本题考查了相似三角形的判定.符合条件的三角形有四个,如图所示:B因此本题选A .二、填空题9.【答案】2【解析】∵BC ∥DE ,∴△ADE ∽△ABC ,∴AE AD DEAC AB BC ==,设DE =x ,则AB =10-x ∵AD =BC =4,∴4104AE x AC x ==-,∴x 1=8,x 2=2(舍去),824AE AC ==,此本题答案为2.10.【答案】32【解析】 点D ,E 分别是边AB ,AC 的中点,1//,2DE BC DE BC ∴=ADE ABC∴ 21()4ADE ABC S DE S BC ∴==△△,即4ABC ADES S =△△又12ADE S =,1422ABC S ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= .故答案为:32.11.【答案】3【解析】∵D 、E 分别是BC ,AC 的中点,∴点G 为△ABC 的重心,∴AG=2DG=2,∴AD=AG+DG=2+1=3.故答案为:3.12.【答案】1【解析】∵D 、E 为边AB 的三等分点,∴BE=ED=AD=13AB.∵////EF DG AC ,∴123EF AC ==∴112DH EF ==.13.【答案】(-4,-8)或(4,8)【解析】∵△ABC 和△A1B1C1的相似比等于12,∴△A1B1C1和△ABC 的相似比等于2.因此将点A(2,4)的横、纵坐标乘以±2即得点A1的坐标,∴点A1的坐标是(-4,-8)或(4,8).14.【答案】78【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15.【答案】326()55-,或(43)-,【解析】∵点P 在矩形ABOC 的内部,且APC △是等腰三角形,∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上;①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示,∵PE BO ⊥,CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,,∴点P 横坐标为﹣4,6OC =,8BO =,4BE =,∵PBE △∽CBO △,∴PE BE CO BO =,即468PE =,解得:3PE =,∴点(43)P -,.②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,如图2所示,∵CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,,∴8AC BO ==,8CP =,6AB OC ==,∴22228610BC BO OC =+=+=,∴2BP =,∵PBE △∽CBO △,∴PE BE BP CO BO BC ==,即:26810PE BE ==,解得:65PE =,85BE =,∴832855OE =-=,∴点326(55P -,,综上所述:点P 的坐标为:326(55-,或(43)-,,故答案为:326()55-,或(43)-,.16.【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠,∴AEF EBD △∽△,∴AF EFED BD=,设CD x =,则EF DF x ==,6AF x =-,8BD x =-,∴68x x x x -=-,解得247x =,∴247CD =,综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17.【答案】解:(1)证明:∵在☉O 中,点M 是半圆CD 的中点,∴∠CAM=∠DCM ,又∵∠CMA 是△CMN 和△AMC 的公共角,∴△CMN ∽△AMC ,∴=,∴CM 2=MN ·M A .(2)连接OA ,DM ,∵PA 是☉O 的切线,∴∠PAO=90°,又∵∠P=30°,∴OA=PO=(PC +CO ).设☉O 的半径为r ,∵PC=2,∴r=(2+r ),解得r=2.又∵CD 是直径,∴∠CMD=90°,∵点M 是半圆CD 的中点,∴CM=DM ,∴△CMD 是等腰直角三角形,∴在Rt △CMD 中,由勾股定理得CM 2+DM 2=CD 2,∴2CM 2=(2r )2=16,∴CM 2=8,∴CM=2.18.【答案】解:(1)△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM 等.(写出两对即可)以下证明△AMF ∽△BGM.由题知∠A =∠B =∠DME =α,而∠AFM =∠DME +∠E ,∠BMG =∠A +∠E ,∴∠AFM =∠BMG ,∴△AMF ∽△BGM.(2)当α=45°时,可得AC ⊥BC 且AC =BC ,∵M 为AB 中点,∴AM =BM =2 2.由△AMF ∽△BGM 得,AF·BG =AM·BM ,∴BG =83.又AC =BC =42cos 45°=4,∴CG =4-83=43,CF =4-3=1,∴FG =(43)2+12=53.19.【答案】解:(1)∵四边形ABCD 是正方形,∴AD ∥BC ,AB =BC =2,∴∠DAF =∠F .∵AG 平分∠DAE ,∴∠DAF =∠EAF ,∴∠EAF =∠F ,∴EA =EF .∵λ=1,∴BE =EC =1.在Rt △ABE 中,由勾股定理得EA ,∴CF =EF -EC -1.(2)①∵EA =EF ,EG ⊥AF ,∴AG =GF .又∵∠AGD =∠FGC ,∠DAG =∠F ,所以△DAG ≌△CFG ,∴DG =CG ,∴点G 为CD 边的中点.②不妨设CD =2,则CG =1.由①知CF =AD =2.∵EG ⊥AF ,∴∠EGF =90°.∵四边形ABCD 是正方形,∴∠BCD =90°,∴∠BCD =∠FCG ,∠EGC +∠CGF=90°,∠EGC +∠GEC =90°,∴∠CGF =∠GEC ,∴△EGC ∽△GFC ,∴ECCG =CG CF =12,∴EC =12,∴BE =32,∴λ=13.20.【答案】证明:连接DE ,∵点G 是△ABC 的重心,∴点E 和点D 分别是AB 和BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC 且DE=12AC ,∴△DEG ∽△ACG ,∴2AG AC DG ED ==,∴2AG GD =∴AD=3DG ,即AD=3GD .21.【答案】解:(1)10-.解:∵ABAC=,AC=20,∴AB=10-.(2)延长CG 交DA 的延长线于点J ,由折叠可知:∠BCG=∠ECG ,∵AD ∥BC ,∴∠J=∠BCG=∠ECG ,∴JE=CE.由折叠可知:E 、F 为AD 、BC 的中点,∴DE=AE=10,由勾股定理可得:==,∴EJ=AJ=JE-AE=-10,∵AJ ∥BC ,∴△AGJ ∽△BGC,∴AG AJ BG BC ===,∴G 是AB 的黄金分割点.(3)PB=BC ,理由如下:∵E 为AD 的黄金分割点,且AE>DE ,∴AE=12 a.∵CF ⊥BE ,∴∠ABE+∠CBE=∠CBE+∠BCF=90˚,∴∠ABE=∠FCB,在△BEA 和△CFB 中,∵90ABE FCB AB BCA FBC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△BEA ≌△CFB ,∴a.∴12AF BF BF AB ==,∵AE ∥BP ,∴△AEF ∽△BPF,∴AE AF BF PB BF AB==,∵AE=BF,∴PB=AB ,∴PB=BC.22.【答案】解:(1)如图1中,过点A 作AD ⊥BC 于D.在Rt △ABD 中,AD =AB•sin45°=44.(2)①如图2中,∵△AEF ≌△PEF ,∴AE =EP ,∵AE =EB ,∴BE =EP ,∴∠EPB =∠B =45°,∴∠PEB =90°,∴∠AEP =180°﹣90°=90°.②如图3中,由(1)可知:AC,∵PF ⊥AC ,∴∠PFA =90°,∵△AEF ≌△PEF ,∴∠AFE =∠PFE =45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,即,∴AF=2,在Rt△AFP,AF=FP,∴AP AF=2.23.【答案】(1)证明:∵PF切⊙O于点C,CD是⊙O的直径,∴CD⊥PF,又∵AF⊥PC,∴AF∥CD,∴∠OCA=∠CAF,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE∽△CPB,∴BCPC=CECB,∴BC2=CE·CP;(3)解:∵AC平分∠FAB,CF⊥AF,CE⊥AB,∴CF=CE,∵CFCP=34,∴CECP=34,设CE=3k,则CP=4k,∴BC2=3k·4k=12k2,∴BC=23k,在Rt△BEC中,∵sin∠EBC=CEBC=3k23k=32,∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.24.【答案】【思路分析】(1)因为点C 是x 轴上的一动点,且∠ACB =90°保持不变,所以由圆周角的性质得,点C 必在以AB 为直径的圆上,所以以AB 为直径画圆,与x 轴相交于两点,除点C 的另一点就是所求;(2)因为∠ACB =90°,∠AOC =90°,所以过点B 作BE ⊥x 轴,垂足为E ,则构造了一个“K”字型的基本图形,再由相似三角的性质得出比例式,化简后得m 2-5m +2=0,问题得证;(3)由(2)中的证明过程可知,一个二次项系数为1的一元二次方程,一次项系数是点A 的横坐标与点B 的横坐标的和的相反数;常数项是点A 的纵坐标与点B 的纵坐标的积,先把方程ax 2+bx +c =0,化为x 2+b a x +ca=0,再根据上述关系写出一对固定点的坐标;(4)由(2)的证明中知,本题的关键点在“K”字型的构造,所以本小题解题的关键是要抓住图②中的“K”字型,只要P 、Q 两点分别在AD 、BD 上,过P 、Q 分别作x 轴垂线,垂足为M 、N ,这样就构造出满足条件的基本图形,再应用相似三角形的性质,可得相应的关系式.图①图②(1)解:如解图①,先作出AB 的中点O 1,以O 1为圆心,12AB 为半径画圆.x 轴上另外一个交点即为D 点;(4分)(2)证明:如解图①,过点B 作x 轴的垂线交x 轴于点E ,∵∠ADB =90°,∴∠ADO +∠BDE =90°,∵∠OAD +∠ADO =90°,∴∠OAD =∠BDE ,∵∠AOD =∠DEB =90°,∴△AOD ∽△DEB ,(6分)∴AO DE =OD EB ,即15-m =m2,∴m 2-5m +2=0,∴m 是x 2-5x +2=0的一个实根;(8分)(3)解:(0,1),(-b a,c a )或(0,1a ),(-ba ,c );(10分)(4)解:在解图②中,P 在AD 上,Q 在BD 上,过P ,Q 分别作x 轴的垂线交x轴于M ,N.由(2)知△PMD ∽△DNQ ,∴n 1m 2-x =x -m 1n 2,(12分)∴x 2-(m 1+m 2)x +m 1m 2+n 1n 2=0与ax 2+bx +c =0同解,∴-b a =m 1+m 2;ca=m 1m 2+n 1n 2.(14分)【难点突破】本题是一道考查数形结合思想的题.本题解题的突破口要抓住∠ACB =90°保持不变的特征,构造相似三角形中的基本图形,通过数形结合的方法,以相似三角形的比例式为桥梁,以此获得关于m 的等量关系,从而使问题得以解决.。
相似三角形填空题AD1 、( 2008 江苏盐城)如图,D ,E 两点分别在E△ ABC 的边 AB ,AC 上, DE 与 BC 不平行,当 满 足条件(写出一个即可)时,BC△ ADE ∽△ ACB .2、( 2008 上海市)如果两个相似三角形的相似比是1: 3 ,那么这两个三角形面积的比是 .3、( 2008 上海市)如图 5,平行四边形 ABCD 中, E 是边 BC 上的点, AE交BD 于点 F ,如果 BE 2 ,A D那么BFBC3F.FDBE C4、( 2008 泰州市)在比例尺为图 5 1︰ 2000 的地图上测得 AB 两地间的图上距离为 5cm ,则 AB 两地间的实际距离为m.C5、( 2008 年杭州市)在Rt △ ABC 中,∠ C 为直角, CD ⊥AB 于点 D,BC=3,AB=5, 写出其中的一对相似三角形是 和;并写出它的面积比.ABD6、( 2008 年江苏省南通市)已知∠ A = 40°,则∠ A 的余角等于= ________度 .7、( 08 浙江温州)如图,点 A 1, A 2, A 3, A 4 在射线 OA 上,B B 3点 B 1, B 2, B 3 在射线 OB 上,且 A 1 B 1 ∥ A 2 B 2 ∥ A 3B 3 , B 2 4B 1 1 A 2B 1 ∥ A 3B 2 ∥ A 4 B 3 .若 △ 12,△ 3 2 3 的面积 O A 1A 2 A 3A 4 AA 2BBA B B(第 16 题图)分别为 1, 4,则图中三个阴影三角形面积之和为.A8、( 2008 年荆州)两个相似三角形周长的比为 2:3 ,则其对应的面积比为 ___________.9、( 2008 年庆阳市) 两个相似三角形的面积比S 1:S 2 与它们对应高D EBC图 8之比 h :h2之间的关系为.110、( 2008 年庆阳市)如图 8, D、E 分别是△ABC的边 AB、 AC上的点,则使△ AED ∽△ ABC 的条件是.11、(2008 年 ?南宁市)如图4,已知 AB ⊥ BD ,ED ⊥BD , C 是线段 BD 的中点,且 AC ⊥CE ,ED=1 , BD=4 ,那么 AB=AD EB C(第 12 题)12、(2008 年福建省福州市)12.如图,在△ABC中,D,E分别是AB,AC的中点,若 DE 5 ,则 BC 的长是.13 、(2008 年广东梅州市 ) 如图3,要测量A、B两点间距离,在O点打桩,取 OA 的中点 C,OB 的中点 D ,测得 CD=30 米,则 AB=______米.图314、( 2008 新疆建设兵团)如图,一束光线从y 轴上点 A( 0, 1)发出,经过 x 轴上点 C 反射后,经过点B( 6, 2),则光线从 A 点到 B 点经过的路线的长度为.(精确到0.01)15、如图, △ ABC 中, AB AC , D ,E 两点分别在边AC ,AB 上,且DE 与 BC 不平行.请填上一个 你认为合适的条件:,使..△ ADE ∽△ ABC .(不再添加其他的字母和线段;只填一个条件,多填不给分!)16、( 2008 大连)如图 5,若△∽△,则∠D 的度数为 _____________. .ABC DEF17、(2008 上海市)如果两个相似三角形的相似比是1: 3 ,那么这两个三角形面积的比是.AD18、 ( 2008 上海市)如图,平行四边形ABCD 中, E 是边 BC 上的点, AE 交 BD 于点 F ,如果BE2 ,F那么BFBC3.BECFD一、选择题1、( 2008 湖北襄樊)如图 1, 已知 AD 与 VC 相交于点 O,AB//CD, 如果∠B=40° ,∠ D=30°, 则∠ AOC 的大小为()A.60 °B.70°C.80°D.120 °CDAOD EABB图 1C2、( 2008 湘潭市) 如图,已知 、 E分别是ABC 的 、边上的点,DAB ACDE BC,且 S ADE S四边形 DBCE1那么 AE : AC 等于()A .1:9B .1:3C .1:8D .1:23、 (2008台湾)如图 G 是 ABC 的重心,直线 L 过 A 点与 BC 平行。
E 图5相似三角形填空题1、(2008XXXX )如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足条件(写出一个即可)时,ADE ACB △∽△.2、(2008XX 市)如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.3、 (2008XX 市)如图5,平行四边形ABCD 中,E AE 交BD 于点F ,如果23BE BC =, 那么BFFD=. 4、(2008XX 市)在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为m .5、(2008年XX 市)在Rt △ABC 中,∠C 为直角,CD ⊥ABBC=3,AB=5,写出其中的一对相似三角形是 和;并写出它的面积比.6、(2008年XX 省XX 市)已知∠A =40°,则∠A 的余角等于=________度. 7、(08XXXX )如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和 为.8、(2008年荆州)两个相似三角形周长的比为2:3,则其对应的面积比为___________.D B(第16题图)1 2 3 4图3 (第12题)A BCE D 9、(2008年庆阳市) 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为.10、(2008年庆阳市) 如图8,D 、E 分别是ABC △的边AB 、AC 上的点,则使AED △∽ABC △的条件是.11、(2008年•XX 市)如图4,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=12、(2008年XX 省XX 市)12.如图,在ABC △中,D E ,分别是AB AC,的中点,若5DE ,则BC 的长是.13、(2008年XXXX 市)如图3,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.14、(2008XX 建设兵团)如图,一束光线从y 轴上点A (0,1)发出,经过x 轴上点C 反射后,经过点B (6,2),则光线从A 点到B 点经过的路线的长度为.(精确到0.01)15、如图,ABC △中,AB AC >,D E ,两点分别在边AC AB ,上,且DE 与BC 不平行.请填上一个..你认为合适的条件:,使ADE ABC △∽△.(不再添加其他的字母和线段;只填一个条件,多填不给分!)16、(2008XX )如图5,若△ABC ∽△DEF ,则∠D 的度数为_____________..17、(2008XX 市)如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.18、 (2008XX 市)如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD=. 一、选择题 1、(2008XX 襄樊)如图1,已知AD 与VC 相交于点O,AB//CD,如果∠B=40°, ∠D=30°,则∠AOC 的大小为( )A.60°B.70°C.80°D.120°2、(2008XX 市) 如图,已知D 、E 分别是ABC ∆的AB 、AC 边上的点,,DE BC //且1ADE DBCE S S :=:8,四边形 那么:AE AC 等于( )EAFAB C D O 图1 B A C D EB 第18题图A BC D E F A .1:9 B .1:3 C .1:8 D .1:23、(2008 )如图G 是❒ABC 的重心,直线L 过A 点与BC 平行。
专题13 相似三角形一.选择题1.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .6【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD ∴ABE CDE ∽ ∴AE BE EC DE= ∵1,2,3AE EC DE ===,∴32BE =∵BD BE ED =+ ∴92BD = 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.2.(2022·广西贺州)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC ,∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,故选:B .【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.(2022·广西梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OA OA =,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .18【答案】D 【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形ABCD 与四边形''''A B C D 相似,由两图形相似面积比等于相似比的平方可知:''''22'1139ABCD A B C D S OA S OA ⎛⎫⎛⎫= ⎪= ⎪= ⎪ ⎪⎝⎭⎝⎭,又四边形ABCD 的面积是2,∴四边形''''A B C D 的面积为18,故选:D .【点睛】本题考察相似多边形的性质,属于基础题,熟练掌握相似图形的性质是解决本题的关键.4.(2022·四川雅安)如图,在△ABC 中,D ,E 分别是AB 和AC 上的点,DE ∥BC ,若AD BD =21,那么DE BC =( )A .49B .12C .13D .23【答案】D【分析】先求解2,3AD AB =再证明,ADE ABC ∽可得2.3DE AD BC AB ==【详解】解: AD BD =21,2,3AD AB ∴= DE ∥BC ,,ADE ABC ∴ ∽ 2,3DE AD BC AB ∴== 故选D 【点睛】本题考查的是相似三角形的判定与性质,证明ADE ABC △△∽是解本题的关键.5.(2022·内蒙古包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE △与CDE △的周长比为( )A .1:4B .4:1C .1:2D .2:1【答案】D 【分析】运用网格图中隐藏的条件证明四边形DCBM 为平行四边形,接着证明ABE CDE ∽,最后利相似三角形周长的比等于相似比即可求出.【详解】如图:由题意可知,3DM =,3BC =, ∴DM BC =,而DM BC ∥,∴四边形DCBM 为平行四边形,∴AB DC ∥,∴BAE DCE ∠=∠,ABE CDE ∠=∠,∴ABE CDE ∽,∴21ABE CDE C AB C CD ===△△.故选:D .【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.6.(2022·黑龙江绥化)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x < .则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A .0个B .1个C .2个D .3个【答案】C 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式;(2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==,∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽,∴AB AM AP AB=,∵2AB =,AP x =,PM y =,∴22x y x -=,解得:4y x x=-,故(1)正确;(2)当4AP =时,541DP AD AP =-=-=,∴12DC DP AP AB ==,又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=,∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽,∴MF PF PM AB AP PB ==,∴24MF PF ==∴MF =PF =∴BF BP PF =-=∴3tan 4MF EBP BF ∠===故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.7.(2022·湖北鄂州)如图,定直线MN ∥PQ ,点B 、C 分别为MN 、PQ 上的动点,且BC =12,BC 在两直线间运动过程中始终有∠BCQ =60°.点A 是MN 上方一定点,点D 是PQ 下方一定点,且AE ∥BC ∥DF ,AE =4,DF =8,ADBC 在平移过程中,AB +CD 的最小值为()A .B .C .D .【答案】C 【分析】如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,可证明四边形CDFH 是平行四边形,得到CH =DF =8,CD =FH ,则BH =4,从而可证四边形ABHE 是平行四边形,得到AB =HE ,即可推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,证明四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,得到EG =BC =12,然后通过勾股定理和解直角三角形求出ET 和TF 的长即可得到答案.【详解】解:如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,∵BC DF FH CD ∥∥,,∴四边形CDFH 是平行四边形,∴CH =DF =8,CD =FH ,∴BH =4,∴BH =AE =4,又∵AE BC ∥,∴四边形ABHE 是平行四边形,∴AB =HE ,∵EH FH EF +≥,∴当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,∵MN PQ BC AE ∥∥,,∴四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,∴EG =BC =12,∴=cos =6=sin GT GE EGT ET GE EGT ⋅⋅∠,∠,同理可求得8GL AL ==,,4KF DK ==,,∴2TL =,∵AL ⊥PQ ,DK ⊥PQ ,∴AL DK ∥,∴△ALO ∽△DKO ,∴2AL AO DK DO==,∴2133AO AD DO AD ====∴24OL OK ===,,∴42TF TL OL OK KF =+++=,∴EF ==故选C .【点睛】本题主要考查了平行四边形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,正确作出辅助线推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF 是解题的关键.8.(2022·广西贵港)如图,在边长为1的菱形ABCD 中,60ABC ∠=︒,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接,AG DF ,若AF BE =,则下列结论错误的是( )A .DF CE =B .120BGC ∠=︒C .2AF EG EC =⋅D .AG【答案】D【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE CE GE BE= ,即可判断C 项答案正确,由120BGC ∠=︒,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG D 项错误.【详解】解:∵四边形ABCD 是菱形,60ABC ∠=︒,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12(180)ABC ⨯︒-∠=60ABC ︒=∠,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE CE GE BE = ,∴2BE GE CE = ,∵AF BE =,∴2AF GE CE = ,故C 项答案正确,∵120BGC ∠=︒,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF AC ⊥,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴2221122AG AG ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 解得AG D 项错误,故应选:D【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.9.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是( )A .B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ===,则可得12AC AD CD AB AC BC ++=++,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC ==,∵12AC AB =,∴12AC AD CD AB AC BC ===,∴12AC AD CD AC AD CD AB AC BC AB AC BC ++====++,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.10.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .【点睛】本题考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.11.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .245【答案】C【分析】由∥DE BC ,23AD DB =,可得2,3AD AE DB EC ==再建立方程即可.【详解】解: ∥DE BC ,23AD DB =,2,3AD AE DB EC ∴== 6AC =,62,3CE CE -∴= 解得:18.5CE =经检验符合题意故选C 【点睛】本题考查的是平行线分线段成比例,证明“23AD AE DB EC ==”是解本题的关键.12.(2022·山东威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(43)3B .(43)7C .(43)6D .(34)6【答案】C【分析】根据题意得出A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,确定与△AOB 位似的三角形为△GOH ,利用锐角三角函数找出相应规律得出OG=6x ,再由相似三角形的性质求解即可.【详解】解:∵∠AOB =∠BOC =∠COD =…=∠LOM =30°∴∠AOG =180°,∠BOH =180°,∴A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,∴与△AOB 位似的三角形为△GOH ,设OA =x ,则OB=1cos30OA x ==︒,∴OC=24cos303OB x x ==︒,∴OD=3cos30OC x ==︒,…∴OG=6x ,∴6OG OA =,∴12643GOH AOB S S ⎛⎫== ⎪⎝⎭ ,∵1AOB S = ,∴643GOH S ⎛⎫= ⎪⎝⎭ ,故选:C .【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.二.填空题13.(2022·贵州黔东南)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm.【答案】53【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明FEG FBM ∆∆ ,利用相似三角形对应边成比例可求出FG .【详解】解:连接,DF 如图,∵四边形ABCD 是正方形,∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=∵点M 为BC 的中点,∴114222BM CM BC ===⨯=由折叠得,2,4,ME CM DE DC ====∠90,DEM C ︒=∠=∴∠90DEF ︒=,90,FEG ∠=︒设,FE x =则有222DF DE EF =+∴2224DF x =+又在Rt FMB ∆中,2,2FM x BM =+=,∵222FM FB BM =+∴FB ==∴4AF AB FB =-=在Rt DAF ∆中,222,DA AF DF +=∴2224(44,x +=+解得,124,83x x ==-(舍去)∴4,3FE =∴410233FM FE ME =+=+=∴83FB ==∵∠90DEM ︒=∴∠90FEG ︒=∴∠,FEG B =∠又∠.GFE MFB =∠∴△FEG FBM∆ ∴,FG FE FM FB=即4310833FG =∴5,3FG =故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.14.(2022·上海)如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AE AC =_____.【答案】12或14【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE1E2是等边三角形,求出E1E2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE 1=DE 2=E1E2=12BC ,∴E1E2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.15.(2022·北京)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC =,∴144AE =,∴1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.16.(2022·江苏常州)如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是______.【答案】28【分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【详解】解:过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如下图:90C ∠=︒ ,9AC =,12BC =,15AB ∴==,在Rt DEF 中,90F ∠=︒,3DF =,4EF =.5DE ∴==,15510AE AB DE =-=-= ,//,EF AF EF AF ''= ,∴四边形AEFF '为平行四边形,10AE FF '∴==,11622DEF S DF EF DE GF =⋅=⋅= ,解得:125GF =, //DF AC ,,DFM ACM FDM CAM ∴∠=∠∠=∠,DFM ACM ∴ ∽,13DM DF AM AC ∴==,1115344DM AM AB ∴===,//BC AF ' ,同理可证:ANF DNC ' ∽,13AF AN BC DN '∴==,345344DN AN AB ∴===,451530444MN DN DM ∴=-=-=,Rt ABC 的外部被染色的区域面积为130121028245MNF F S '⎛⎫=⨯+⨯= ⎪⎝⎭梯形,故答案为:28.【点睛】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.17.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.【答案】12【分析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.【详解】解:设旗杆为AB ,如图所示:根据题意得:ABC DEF ∆∆ ,∴DE EF AB BC= ∵2DE =米, 1.2EF =米,7.2BC =米,∴2 1.2=7.2AB 解得:AB =12米.故答案为:12.【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18.(2022·广东深圳)已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,90HED BCD ∠=∠=︒,从而得出////HE DC AB ,则ABF EHF ∆∆∽,即可解决问题.【详解】解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形,又EDC ∆ 是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,90HED BCD ∠=∠=︒,90EDC ∠=︒ ,90ABC ∠=︒,////HE DC AB ∴,,ABF EHF BAF HEF ∴∠=∠∠=∠,ABF EHF ∴∆∆∽,∴==-AB AF AF EH EF AE AF ,AE =∴35=AF ∴=,【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.19.(2022·广西河池)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN =_____.【答案】58##0.625【分析】先判断出四边形ABEF 是正方形,进而判断出△ABG ≌△BEH ,得出∠BAG =∠EBH ,进而求出∠AOB =90°,再判断出△AOB ~△ABG ,求出OA OB ==△OBM ~△OAN ,求出BM =1,即可求出答案.【详解】解:∵点E ,F 分别是BC ,AD 的中点,∴11,22AF AD BE BC ==,∵四边形ABCD 是矩形,∴∠A =90°,AD ∥BC ,AD =BC ,∴12AF BE AD ==,∴四边形ABEF 是矩形,由题意知,AD =2AB ,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG≌△BEH(SAS),∴∠BAG=∠EBH,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,∴∠AOB=90°,∵BG=EH=25BE=2,∴BE=5,∴AF=5,∴AG==∵∠OAB=∠BAG,∠AOB=∠ABG,∴△AOB∽△ABG,∴OA OB ABAB BG AG==,即52OA OB==∴OA OB==∵OM⊥ON,∴∠MON=90°=∠AOB,∴∠BOM=∠AON,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,∴∠OBM=∠OAN,∴△OBM~△OAN,∴OB BM OA AN=,∵点N是AF的中点,∴1522AN AF==,52BM=,解得:BM=1,∴AM=AB-BM=4,∴552tan48ANAMNAM∠===.故答案为:5 8【点睛】此题主要考查了矩形性质,正方形性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求出BM 是解本题的关键.20.(2022·内蒙古赤峰)如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,然后观测者沿着水平直线BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD =1.7m ,BD =11m ,则旗杆AB 的高度约为_________m . 1.7≈)【答案】17【分析】如图容易知道CD ⊥BD ,AB ⊥BD ,即∠CDO =∠ABO =90°.由光的反射原理可知∠COD =∠AOB =60°,这样可以得到△COD ∽△AOB ,然后利用对应边成比例就可以求出AB .【详解】解:由题意知∠COD =∠AOB =60°,∠CDE =∠ABE =90°,∵CD =1.7m ,∴OD =60CD tan =︒≈1(m),∴OB =11-1=10(m),∴△COD ∽△AOB .∴CD OD AB OB =,即1.7110AB =,∴AB =17(m),答:旗杆AB 的高度约为17m .故答案为:17.【点睛】本题考查了解直角三角形的应用,相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.21.(2022·湖北鄂州)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.【答案】6+【分析】如图所示,过点E 作EF ⊥AB 于F ,先解直角三角形求出AF ,EF ,从而求出BF ,利用勾股定理求出BE 的长,证明△ABD ≌△BCE 得到∠BAD =∠CBE ,AD =BE ,再证明△BDP ∽△ADB ,得到62BP PD==,即可求出BP ,PD ,从而求出AP ,由此即可得到答案.【详解】解:如图所示,过点E 作EF ⊥AB 于F ,∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠BAC =∠BCE =60°,∵CE =BD =2,AB =AC =6,∴AE =4,∴cos 2sin AF AE EAF EF AE EAF =⋅∠==⋅∠=,,∴BF =4,∴BE =又∵BD =CE ,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,AD =BE ,又∵∠BDP =∠ADB ,∴△BDP ∽△ADB ,∴BD BP DP AD AB BD==,62BP PD==,∴BP PD =∴AP AD AP =-=,∴△ABP 的周长=6AB BP AP ++=故答案为:6+【点睛】本题主要考查了等边三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,正确作出辅助线是解题的关键.22.(2022·山东潍坊)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为___________.【答案】【分析】根据正方形ABCD 的面积为4,求出2AB =,根据位似比求出4A B ''=,周长即可得出;【详解】解: 正方形ABCD 的面积为4,∴2AB =,:2:1A B AB ''=,∴4A B ''=,∴A C ''==所求周长=;故答案为:.【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD 的边长.23.(2022·内蒙古包头)如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE的长为___________.【答案】3##3-+【分析】过点D 作DF ⊥BC 于点F ,根据题意得出DC DE =,根据等腰三角形性质得出CF EF =,根据90ACB ∠=︒,3AC BC ==,得出AB =CF x =,则3BF x =-,证明DF AC ,得出BF BDCF AD=,列出关于x 的方程,解方程得出x 的值,即可得出3BE =.【详解】解:过点D 作DF ⊥BC 于点F ,如图所示:根据作图可知,DC DE =,∵DF ⊥BC ,∴CF EF =,∵90ACB ∠=︒,3AC BC ==,∴AB ===∵3BD BC ==,∴3AD =,设CF x =,则3BF x =-,∵90ACB ∠=︒,∴AC BC ⊥,∵DF BC ⊥,∴DF AC ,∴BF BDCF AD =,即3x x -=,解得:x =,∴226CE x ===-,∴3363BE CE =-=-+=.故答案为:3.【点睛】本题主要考查了等腰三角形的性质和判定,勾股定理,平行线分线段成比例定理,平行线的判定,作出辅助线,根据题意求出CF 的长,是解题的关键.24.(2022·江苏泰州)如图上,Δ,90,8,6,ABC C AC BC ∠=== 中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为__________.【答案】2或12##12或2【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作//DE BC ,OF BC OG AB ⊥⊥,,连接OB ,则OD ⊥AC ,∵//DE BC ,∴OBF BOE ∠=∠∵O 为ABC ∆的内心,∴OBF OBE ∠=∠,∴BOE OBE ∠=∠∴BE OE =,同理,CD OD =,∴DE=CD+BE ,10AB ===∵O 为ABC ∆的内心,∴OF OD OG CD ===,∴BF BG AD AG==,∴6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=∴2CD =②如图,作DE AB ⊥,由①知,4BE =,6AE =,∵ACB AED CAB EAD ∠=∠∠=∠,∴ABC ADE ∆∆ ∴AB ADAC AE=∴1061582AB AE AD AC ⋅⨯===∴151822CD AC AD =-=-=∵92DE ===∴19422DE BE CD =+=+=∴12CD =故答案为:2或12.【点睛】本题主要考查三角形内心的性质、勾股定理、三角形的相似,根据题意正确分析出符合题意的情况并应用性质定理进行求解是解题的关键.25.(2022·黑龙江绥化)如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221【分析】解直角三角形分别求得11PK ,22P K ,33P K ,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA ⊥ ,11OPK ∴△是直角三角形,在11Rt OPK 中,60AOB ∠=︒,11OP =,12111tan 60PP PK OP ∴==⋅︒=11PK OA ⊥ ,22P K OA ⊥,1122PK P K ∴∥,2211OP K OPK ∴△∽△,222111P K OP PK OP ∴=,=221P K ∴,同理可得:2331P K =+,3441P K =,……,11n n n P K -∴=,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.26.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =,可得11OA B S =112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【详解】解:当x =1时,y =,∴点(1B ,∴11A B =∴11112OA B S =⨯= ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S = OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴220222202222S ⨯-==故答案为:2【点睛】本题主要考查了图形与坐标的规律题,相似三角形的判定和性质,明确题意,准确得到规律,是解题的关键.27.(2022·广西)如图,在正方形ABCD 中,AB =,对角线,AC BD 相交于点O .点E 是对角线AC 上一点,连接BE ,过点E 作EF BE ⊥,分别交,CD BD 于点F 、G ,连接BF ,交AC 于点H ,将EFH △沿EF 翻折,点H 的对应点H '恰好落在BD 上,得到EFH '△若点F 为CD 的中点,则EGH '△的周长是_________.【答案】5+【分析】过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,得到BP =CQ ,从而证得BPE ≌EQF △,得到BE =EF ,再利用BC =F 为中点,求得BF ==BE EF ===,再求出2EO ==,再利用AB //FC ,求出ABH CFH △∽△21AH CH ==,求得216833AH =⨯=,18833CH =⨯=,从而得到EH =AH -AE =1610233-=,再求得EOB GOE △∽△得到21242OG ===,求得EG OG =1, 过点F 作FM ⊥AC 于点M ,作FN ⊥OD 于点N ,求得FM =2,MH =23,FN =2,证得Rt FH N '△≌Rt FMH 得到23H N MH '==,从而得到ON =2,NG =1,25133GH '=+=,从而得到答案.【详解】解:过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,∵AD //PQ ,∴AP =DQ ,BPQ CQE ∠=∠,∴BP =CQ ,∵45ACD ∠=︒,∴BP =CQ =EQ ,∵EF ⊥BE ,∴90PEB FEQ ∠+∠=︒∵90PBE PEB ∠+∠=︒∴PBE FEQ ∠=∠,在BPE 与EQF △中BPQ FQE PB EQPBE FEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BPE ≌EQF △,∴BE =EF ,又∵BC AB ==F 为中点,∴CF =∴BF ==∴BE EF ===,又∵4BO ==,∴2EO ==,∴AE =AO -EO =4-2=2,∵AB //FC ,∴ABH CFH △∽△,∴AB AH CF CH=,21AH CH ==,∵8AC ==, ∴216833AH =⨯=,18833CH =⨯=,∴EH =AH -AE =1610233-=,∵90BEO FEO ∠+∠=︒,+90BEO EBO ∠∠=︒,∴FEO EBO ∠=∠,又∵90EOB EOG ∠=∠=︒,∴EOB GOE△∽△∴EG OG OE BE OE OB==,21242OG ===,∴EG OG =1,过点F 作FM ⊥AC 于点M ,∴FM=MC 2=,∴MH =CH -MC =82233-=, 作FN ⊥OD 于点N ,2,FN ==,在Rt FH N '△与Rt FMH 中FH FH FN FM'=⎧⎨=⎩∴Rt FH N '△≌Rt FHM∴23H N MH '==,∴ON =2,NG =1,∴25133GH '=+=,∴10533EGH C EH EG GH EH EG GH '''=++=++=△,故答案为:【点睛】本题考查了正方形的性质应用,重点是与三角形相似和三角形全等的结合,熟练掌握做辅助线是解题的关键.28.(2022·辽宁)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若6AB =,则AEF 的面积为___________.【答案】3【分析】由正方形的性质可知1113222AE AD AB BC ====,//AD BC ,则有AEF CBF ∽△△,然后可得12EF AE BF BC ==,进而问题可求解.【详解】解:∵四边形ABCD 是正方形,6AB =,∴6AD BC AB ===,//AD BC ,∴AEF CBF ∽△△,∴EF AE BF BC=,∵E 为AD 的中点,∴1113222AE AD AB BC ====,∴12EF AE BF BC ==,192ABE S AE AB =⋅= ,∴13EF BE =,∴133AEF ABE S S == ;故答案为3.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.29.(2022·贵州贵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,6cm AC BC ==,90ACB ADB ∠=∠=︒.若2BE AD =,则ABE △的面积是_______2cm ,AEB ∠=_______度.【答案】 36-36- 112.5【分析】通过证明ADE BCE ,利用相似三角形的性质求出23m AE =,263m CE =-,再利用勾股定理求出其长度,即可求三角形ABE 的面积,过点E 作EF ⊥AB ,垂足为F ,证明AEF 是等腰直角三角形,再求出AE CE =,继而证明()Rt BCE Rt BFE HL ≅ ,可知122.52EBF EBC ABC ∠=∠=∠=︒,利用外角的性质即可求解.【详解】90,ACB ADB AED BEC ∠=∠=︒∠=∠ ,ADE BCE ∴ ,AD AE BC BE∴=,6,2BC AC BE AD === ,设,2AD m BE m ==,62m AE m∴=,23m AE ∴=,263m CE ∴=-,在Rt BCE 中,由勾股定理得222BC CE BE +=,22226(6)(2)2m m ∴+-=,解得236m =-或236m =+ 对角线AC ,BD 相交于点E ,236m ∴=-,12AE ∴=-,6CE ∴=,∴(2111263622ABE S AE BC =⋅⋅=⨯-⨯=- ,过点E 作EF ⊥AB ,垂足为F ,90,ACB AC BC ∠=︒= ,45BAC ABC AEF ∴∠=∠=︒=∠,6AE AF AE CE ∴====,BE BE = ,()Rt BCE Rt BFE HL ∴≅ ,122.52EBF EBC ABC ∴∠=∠=∠=︒,112.5AEB ACB EBC ∴∠=∠+∠=︒,故答案为:36-,112.5.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质及三角形外角的性质,熟练掌握知识点是解题的关键.三.解答题30.(2022·河北)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【答案】(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约6.0米【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.(1)解:∵水面截线MN AB∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==,解得 6.8(m)AB ≈.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =,在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈,222OG GM OM ∴+=,即2224(3.4)GM GM +=(),解得0.8GM ≈,= 6.80.86DH OH OD ∴-=-≈,∴最大水深约为6.0米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.31.(2022·吉林)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =⋅ ,12DBC S BC h =⋅△.∴ABC DBC S S = .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:∵ABC S(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM =△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,∴AE ∥ .∴AEM △∽ .∴AE AM DF DM =.由【探究】(1)可知ABC DBC S S =△△ ,∴ABC DBC S AM S DM =△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBC S S △△的值为 .【答案】(1)证明见解析(2)证明见解析(3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅ ,由此即可得证;(2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~ ,根据相似三角形的性质可得AE AM DF DM=,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~ ,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,由此即可得出答案.(1)证明:12ABC S BC h =⋅ ,12DBC BC h S '=⋅ ,ABC DBC S h S h ∴='.(2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴ .AE AM DF DM∴=.由【探究】(1)可知ABC DBC S AE S DF= ,ABC DBC S AM S DM ∴= .(3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴ ,AME DNE ∴~ ,AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==,又12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,73ABCDBC S AM S DN =∴= ,故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.32.(2022·山东青岛)如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)16s 5(2)213714210S t t =-+(3)存在,65s 29t =【分析】(1)利用AQE AED △∽△得AQ AE AE AD =,即445t =,进而求解;(2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.(1)解:在Rt ABC △中,由勾股定理得,4AC ===∵ABC 绕点A 按逆时针方向旋转90︒得到ADE。
相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。
中考真题汇编—相似三角形1、〔2021•〕如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF 〔点E、F分别在边AC、BC上〕〔1〕假设△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;〔2〕当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.2、〔2021•滨州〕某高中学校为高一新生设计的学生板凳的正面视图如下图,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?〔材质及其厚度等暂忽略不计〕.3、〔2021•株洲〕在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB〔如图1〕或线段AB的延长线〔如图2〕于点P.〔1〕当点P在线段AB上时,求证:△APQ∽△ABC;〔2〕当△PQB为等腰三角形时,求AP的长.4、〔2021省21〕如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△P AD的面积为1/2,设AB=x,AD=y〔1〕求y与x的函数关系式;〔2〕假设∠APD=45°,当y=1时,求PB•PC的值;〔3〕假设∠APD=90°,求y的最小值.5、〔2021•〕如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP 并延长交边AD于点F,交CD的延长线于点G.〔1〕求证:△APB≌△APD;〔2〕DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.6、〔2021•〕【提出问题】〔1〕如图1,在等边△ABC中,点M是BC上的任意一点〔不含端点B、C〕,连结AM,以AM为边作等边△AMN,连结.求证:∠ABC=∠A.【类比探究】〔2〕如图2,在等边△ABC中,点M是BC延长线上的任意一点〔不含端点C〕,其它条件不变,〔1〕中结论∠ABC=∠A还成立吗?请说明理由.【拓展延伸】〔3〕如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点〔不含端点B、C〕,连结AM,以AM 为边作等腰△AMN,使顶角∠AMN=∠ABC.连结.试探究∠ABC与∠A的数量关系,并说明理由.7、〔2021•〕在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F 在BC上.〔1〕如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.〔2〕如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.8、(202125)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠4.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F重合,直角边BA与FDE=90°,DF=4,DE=3FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停顿运动.(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,那么∠EMC=______度;(2)如题25图〔3〕,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠局部面积为y,求y与x的函数解析式,并求出对应的x取值围.9、〔2021•〕如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t〔单位:秒,0<t<2.5〕.〔1〕当t为何值时,以A,P,M为顶点的三角形与△ABC相似?〔2〕是否存在某一时刻t,使四边形APNC的面积S有最小值?假设存在,求S的最小值;假设不存在,请说明理由.10、〔2021•〕如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB 的延长线相交于点Q,连接PQ,M为PQ中点.〔1〕求证:△ADP∽△ABQ;〔2〕假设AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;〔3〕假设AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD 外部时,求a的取值围.11.(2021年XX市,第8题3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,那么EF:FC等于〔〕A.3:2 B.3:1 C.1:1 D. 1:212.〔2021•地区,第12题3分〕如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,那么DC的长等于〔〕A.B.C.D.13.〔2021•,第6题3分〕如图,线段AB两个端点的坐标分别为A〔6,6〕,B〔8,2〕,以原点O为位似中心,在第一象限将线段AB缩小为原来的后得到线段CD,那么端点C的坐标为〔〕A.〔3,3〕B.〔4,3〕C.〔3,1〕D.〔4,1〕14.〔2021•滨州,第15题4分〕如图,平行于BC的直线DE把△ABC分成的两局部面积相等,那么=.15. 〔2021•省,第17题8分〕如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 〔顶点是网格线的交点〕.〔1〕将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;〔2〕请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.16. 〔2021•,第25题9分〕如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P 从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C 时,点P与直线m同时停顿运动,设运动时间为t秒〔t>0〕.17. 〔2021XX市、市25题10分〕如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.〔1〕求证:四边形BMNP是平行四边形;〔2〕线段MN与CD交于点Q,连接AQ,假设△MCQ∽△AMQ,那么BM与MC存在怎样的数量关系?请说明理由.18.(2021年资阳,第23题11分)如图,直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E〔点A、E位于点B的两侧〕,满足BP=BE,连接AP、CE.〔1〕求证:△ABP≌△CBE;〔2〕连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n〔n>1〕时,设△PAD的面积为S1,△PCE的面积为S2,求的值.19.〔2021•,第24题10分〕如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒〔0<t<2〕,连接PQ.〔1〕假设△BPQ与△ABC相似,求t的值;〔2〕连接AQ,CP,假设AQ⊥CP,求t的值;〔3〕试证明:PQ的中点在△ABC的一条中位线上.20. 〔2021•,第21题,12分〕如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.〔1〕求AD的长;〔2〕点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?假设存在,求出x的值;假设不存在,请说明理由;〔3〕设△ADP与△PCB的外接圆的面积分别为S1、S2,假设S=S1+S2,求S的最小值.21. 〔2021•,第28题,12分〕矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.22.〔2021•滨州,第25题12分〕如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,OP交AC于点Q.〔1〕求证:△APQ∽△CDQ;〔2〕P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.①当t为何值时,DP⊥AC?②设S△APQ+S△DCQ=y,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.23.〔2021年,第28题〕如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠AC B.〔1〕求证:=;〔2〕假设AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.24.〔2021,22,12分〕如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.〔1〕求线段BG的长;〔2〕求证:DG平分∠EDF;〔3〕连接CG,如图2,假设△BDG与△DFG相似,求证:BG⊥CG.。
图3A EDBC图8相似三角形中考真题试题汇编二、填空题6、(2008年江苏省南通市)已知∠A =40°,则∠A 的余角等于=________度.8、(2008年荆州)两个相似三角形周长的比为2:3,则其对应的面积比为___________. 9、(2008年庆阳市) 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 . 10、(2008年庆阳市) 如图8,D 、E 分别是ABC △的边AB 、AC 上的点,则使AED △∽ABC △的条件是 .11、(2008年•南宁市)如图4,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC⊥CE ,ED=1,BD=4,那么AB=13、(2008年广东梅州市) 如图3,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.14、(2008新疆建设兵团)如图,一束光线从y 轴上点A (0,1)发出,经过x 轴上点C 反射后,经过点B (6,2),则光线从A 点到B 点经过的路线的长度为 .(精确到0.01)15、如图,ABC △中,AB AC >,D E ,两点分别在边AC AB ,上,且DE 与BC 不平行.请填上一个..你认为合适的条件: ,使ADE ABC △∽△. (不再添加其他的字母和线段;只填一个条件,多填不给分!) 17、(2008上海市)如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是 . 18、 (2008上海市)如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD= . 一、选择题1、(2008湖北襄樊)如图1,已知AD 与VC 相交于点O,AB//CD,如果∠B=40°, ∠D=30°,则∠AOC 的大小为( )A.60°B.70°C.80°D.120°EABCD O图1 BA DEB第18题图CABCDF2、(2008湘潭市) 如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADE DBCE S S :=:8,四边形 那么:AE AC 等于( ) A .1 : 9 B .1 : 3 C .1 : 8D .1 : 23、(2008 台湾)如图G 是❒ABC 的重心,直线L 过A 点与BC 平行。
若直线CG 分别与AB 、L 交于D 、E 两点,直线BG 与AC 交于F 点,则❒AED 的面积:四边形ADGF 的面积=?( )(A) 1:2 (B) 2:1 (C) 2:3 (D) 3:24、(2008 台湾) 图为❒ABC 与❒DEC 重迭的情形,其中E 在BC 上,AC 交DE 于F 点, 且AB // DE 。
若❒ABC 与❒DEC 的面积相等,且EF =9,AB =12,则DF =?( ) (A) 3 (B) 7 (C) 12 (D) 15 。
5、(2008浙江金华)如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8那么该古城墙的高度是( ) A 、6米 B 、8米 C 、18米 D 、24米FED C 60°图2(第2题图)6、(2008 青海)如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是( )A .1:6B .1:5C .1:4D .1:27、(2008 青海 西宁)给出两个命题:①两个锐角之和不一定是钝角;②各边对应成比例的两个多边形一定相似.( ) A .①真②真 B .①假②真 C .①真②假 D .①假②假8、(2008海南省)如图2所示,Rt △ABC ∽Rt △DEF ,则cosE 的值等于( ) A. 12第4题A BCDE9、 (2008湖北荆州)如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:410、(2008贵州贵阳)如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A.1:2B .1:4C.D .2:111、(2008湖南株洲)4.如图,在ABC ∆中,D 、E 分别是AB 、AC 边的中点,若6BC =,则DE 等于A .5B .4C .3D .212、 (2008 青海)如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是( )A .1:6B .1:5C .1:4D .1:2CA BD O EF第18题图13、(2008青海西宁)给出两个命题:①两个锐角之和不一定是钝角;②各边对应成比例的两个多边形一定相似.( ) A .①真②真B .①假②真C .①真②假D .①假②假14、已知ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( ) A .2 B .3 C .6 D .5415、(2008山东潍坊)如图,Rt △ABAC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于D ,设BP =x ,则PD+PE =( )A.35x + B.45x - C.72D.21212525x x -16、 (2008山东烟台)如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c满足的关系式是( )A 、b a c =+B 、b ac =C 、222b a c =+D 、22b a c ==ABCDEP17、(2008年广东茂名市)如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( ) A.91 B.92 C.31 D.9418、(2008 江苏 常州)如图,在△ABC 中,若D E ∥BC,AD DB =12,DE=4cm,则BC 的长为( ) A.8cmB.12cmC.11cmD.10cm19、(2008 江西南昌)下列四个三角形,与左图中的三角形相似的是( )20、(2008 重庆)若△ABC∽△DEF,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为()A 、2∶3 B、4∶9 C、2∶3 D 、3∶2(第7题) A . B . C . D .C((第10题图)21、(2008 湖南 长沙)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( ) A 、4.8米B 、6.4米C 、9.6米D 、10米22、(2008江苏南京)小刚身高1.7m ,测得他站立在阳关下的影子长为0.85m 。
紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起手臂超出头顶 A.0.5m B.0.55m C.0.6m D.2.2m33、(2008湖北黄石)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是( )三、解答题1、(2008广东)如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF. (1)求证:EF ∥BC.(2)若四边形BDFE 的面积为6,求△ABD 的面积.2、(2008山西太原)如图,在ABC 中,2BAC C ∠=∠。
A .B .D .AB(1)在图中作出ABC 的内角平分线AD 。
(要求:尺规作图,保留作图痕迹,不写证明)(2)在已作出的图形中,写出一对相似三角形,并说明理由。
提示:(1)如图,AD 即为所求。
3、(2008湖北武汉)(本题6分)如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC 。
求证:△ABC ∽△FDE .4、 (2008年杭州市)(本小题满分10分)如图:在等腰△ABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连接AP 交BC 于点E,连接BP 交AC 于点F.(1) 证明:∠CAE=∠CBF; (2) 证明:AE=BF;(3) 以线段AE ,BF 和AB 为边构成一个新的三角形ABG (点E 与点F 重合于点G ),记△ABC 和△ABG 的面积分别为S △ABC 和S △ABG ,如果存在点P,能使得S △ABC =S △ABG ,求∠C 的取之范围。
FECBABH5、(2008佛山21)如图,在直角△ABC 内,以A 为一个顶点作正方形ADEF ,使得点E 落在BC 边上.(1) 用尺规作图,作出D 、E 、F 中的任意一点 (保留作图痕迹,不写作法和证明. 另外两点不需要用尺规作图确定,作草图即可);(2) 若AB = 6,AC = 2,求正方形ADEF 的边长.6、(2008年陕西省)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种..测量方案. (1)所需的测量工具是: ; (2)请在下图中画出测量示意图;(3)设树高AB 的长度为x ,请用所测数据(用小写字母表示)求出x .BC第21题图7、(2008年江苏省南通市)如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E. (1)求证:AB ·AF =CB ·CD(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点.设DP =xcm (x >0),四边形BCDP 的面积为ycm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.8、(2008 湖南 怀化)如图10,四边形ABCD 、DEFG 都是正方形,连接AE 、CG,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)CG AE =;(2).MN CN DN AN •=•第20题D PAEF CB9、(2008 湖南 益阳)△ABC 是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG ,使正方形的一条边DE 落在BC 上,顶点F 、G 分别落在AC 、AB 上. Ⅰ.证明:△BDG ≌△CEF ;Ⅱ. 探究:怎样在铁片上准确地画出正方形.小聪和小明各给出了一种想法,请你在Ⅱ....a .和Ⅱ..b .的两个问题中选择一个你喜............欢的问题解答....... .如果两题都解,只以Ⅱ..........a .的解答记分...... Ⅱa . 小聪想:要画出正方形DEFG ,只要能计算出正方形的边长就能求出BD 和CE 的长,从而确定D 点和E 点,再画正方形DEFG 就容易了.设△ABC 的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .ABCD EFG图 (1)AB CFGⅡb . 小明想:不求正方形的边长也能画出正方形. 具体作法是: ①在AB 边上任取一点G’,如图作正方形G’D’E’F’;②连结BF’并延长交AC 于F ;③作FE ∥F’E’交BC 于E ,FG ∥F ′G ′交AB 于G ,GD ∥G ’D ’交BC 于D ,则四边形DEFG 即为所求.你认为小明的作法正确吗?说明理由.10、(2008 湖北 恩施) 如图11,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC =∠AGF =90°,它们的斜边长为2,若∆ABC固定不动,∆AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE =m ,CD =n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明. (2)求m 与n 的函数关系式,直接写出自变量n 的取值范围.ABCD E FG图 (3)G ′F ′E ′D ′(3)以∆ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面直角坐标系(如图12).在边BC 上找一点D ,使BD =CE ,求出D 点的坐标,并通过计算验证BD 2+CE 2=DE 2.(4)在旋转过程中,(3)中的等量关系BD 2+CE 2=DE 2是否始终成立,若成立,请证明,若不成立,请说明理由.11、 (08浙江温州)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.A BCD ER PH Q(第1题图)12、(08山东省日照市)在△ABC 中,∠A=90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?13、(2008安徽)如图,四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC CD ,于点P Q ,.(1)请写出图中各对相似三角形(相似比为1除外); (2)求::BP PQ QR .B图 1第20题A BCD EPOR14、(2008 山东 临沂)如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD DE 21。