3 sin 1 1 cos 1 2 sin 1 1 cos 1 Q 2 球: 1 exp 1 Fo 3 Q0 1 1 sin 1
3.3 典型一维物体非稳态导热的分析解
t t e 0 t0 t
hA Vc
hA hV A2 其中: 2 cV A V c h(V A)
过余温度比
a Biv Fov 2 (V A)
3.2 零维问题的分析法--集总参数法
Biv h(V A) a Fov 2 (V A)
Bi n 为超越方程的根: tan n n
Bi h
x ( x , ) 因此 是 F0 , Bi 和 函数,即 0
( x , ) x f ( F0 , Bi , ) 0
2.圆柱
用分离变量法可得其分析解为:
( r , ) 2 Cn exp n Fo J 0 ( n ) 0 n 1 J1 n r 2 a Cn Fo 2 2 2 R n J 0 n J1 n R
3.3 典型一维物体非稳态导热的分析解
引入过余温度: ( x, ) t( x, ) t
a 2 x
2
0 x ,
0
初始 条件
微分 方程
x,0 0
x, h , x x
x, 0 x x 0
3.1 非稳态导热的基本概念
5 热量变化
1 2
0
0
3.1 非稳态导热的基本概念
6 学习非稳态导热的目的: (1) 温度分布和热流量分布随时间和空间的变 化规律
t f ( x, y, z, ) ;