概率统计》公式、符号汇总表
- 格式:docx
- 大小:140.55 KB
- 文档页数:3
概率与数理统计公式1.组合公式:组合公式用于计算从n个元素中选取k个元素的组合数,表示为C(n,k)。
其计算公式为:C(n,k)=n!/(k!*(n-k)!)2.排列公式:排列公式用于计算从n个元素中选取k个元素的排列数,表示为P(n,k)。
其计算公式为:P(n,k)=n!/(n-k)!3.基本概率公式:基本概率公式用于计算一个事件A发生的概率P(A),表示为P(A)=n(A)/n(S),其中n(A)表示事件A发生的样本空间中的元素数,n(S)表示样本空间中的元素总数。
4.条件概率公式:条件概率公式用于计算在已知事件B发生的条件下,事件A发生的概率P(A,B),表示为P(A,B)=P(A∩B)/P(B),其中P(A∩B)表示事件A与事件B同时发生的概率。
5.乘法公式:乘法公式用于计算同时发生的多个事件的概率,表示为P(A∩B)=P(A)*P(B,A),其中P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下,事件B发生的概率。
6.加法公式:加法公式用于计算多个事件中至少一个事件发生的概率,表示为P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率。
7.期望公式:期望公式用于计算随机变量的平均值,表示为E(X)=Σ(x*P(X=x)),其中x表示随机变量的取值,P(X=x)表示随机变量的概率分布。
8.方差公式:方差公式用于描述随机变量取值的离散程度,表示为Var(X) =Σ((x - E(X))^2 * P(X=x)),其中x表示随机变量的取值,E(X)表示随机变量的期望。
9.标准差公式:标准差公式是方差的平方根,表示为σ(X) = sqrt(Var(X)),其中Var(X)表示随机变量的方差。
10.正态分布公式:正态分布公式用于描述连续型随机变量的分布,表示为P(X=x) = 1 / (σ * sqrt(2π)) * exp(-(x-μ)^2 / (2σ^2)),其中μ表示期望,σ表示标准差。
概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率统计公式大全第1章随机事件及其概率P(A) =P(B 1)P(A| B 1) P(B 2)P(A| B 2)P(B n )P(A|B n )。
我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发 生或A 不发生;n次试验是重复进行的,即A 发生的 概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否公式2°则有nA二B ii -4(16 设事件B 1, 1。
B 1, P(Bi)>0,—, B 2,…, B 2 •… 2 •…B n及A 满足Bn两两互不相贝叶斯 nA B i,且 P(A)公式 (用于 求后验P(B i /A)nP(B i )P (A/Bi),i=1 , 2, •…n o、P(B j)P(A/B j)此公式即为贝叶斯公式。
驴i), (“1, 率 o P( B i/ A), 后验概率 o 的概率规律,并作出了由果溯因”的 推断。
2,…,ni =1 2(17)伯努利第二章随机变量及其分布P k二 1 (1) P k_o ,kT2, (2) k.( 1) 离散型随机变量的 分布X对于连续型随机变量 , F(x) = f(x)dxa4)分布 函数设X 为随机变量,x 是任意实数,则函 数F(x) =P(X沁)称为随机变量X 的分布函数,本质上是一个累积函数。
P(a XEb) =F(b)—F(a)可以得到X 落入区 间(a,b ]的概率。
分布函数F(x)表示随机变量 落入区间(-X, x ]的概率。
分布函数具有如下性质:1° 2°岂 F (x)乞 1, -二::x ::二; F(x)是单调不减的函数,即-X2时, 有34° 5°F(X 1)二 F (X 2);F(-::)二 Jim F(x) = 0 , F(二)二 JimF(x)二 1 ; 即F(x)是右连续的;F(x 0HF(x), P(X = x) = F(x) _ F(x _0)。
概率与统计学公式大全概率与统计学是一门关于随机事件发生规律及其数学描述的学科。
在实际问题的分析和决策中,概率与统计学都起着重要的作用。
本文将汇总一些常用的概率与统计学公式,帮助读者更好地理解和应用这门学科。
一、概率公式1. 概率的基本概念:概率是指某个特定事件发生的可能性大小。
用P(A)表示事件A发生的概率,有以下公式:P(A) = N(A) / N(S)其中,N(A)表示事件A包含的基本样本点的个数,N(S)表示全样本空间的基本样本点的个数。
2. 随机变量的概率分布:随机变量是指在某个随机实验中可能取得不同值的变量。
其概率分布可由概率质量函数(离散随机变量)或概率密度函数(连续随机变量)来描述。
离散随机变量的概率质量函数为:P(X = x) = f(x)连续随机变量的概率密度函数为:P(a ≤ X ≤ b) = ∫[a, b] f(x)dx其中,f(x)表示概率质量函数或概率密度函数。
3. 事件的和与积:对于两个事件A和B,其和与积的概率表示如下:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B)其中,P(A ∪ B)表示事件A和B至少其中一个发生的概率,P(A ∩ B)表示事件A和B同时发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A|B)表示在事件B发生的条件下事件A发生的概率。
二、统计学公式1. 样本均值和总体均值:样本均值的公式为:X = (x₁ + x₂ + ... + xn) / n其中,x₁,x₂,...,xn是样本中的个体值,n是样本的大小。
总体均值的公式为:μ = (x₁ + x₂ + ... + xn) / N其中,x₁,x₂,...,xn是总体中的个体值,N是总体的大小。
2. 样本方差和总体方差:样本方差的公式为:s² = ((x₁ - X)² + (x₂ - X)² + ... + (xn - X)²) / (n - 1)其中,x₁,x₂,...,xn是样本中的个体值,X是样本均值,n是样本的大小。
概率论与数理统计核心公式汇总本文将介绍概率论与数理统计中的核心公式,这些公式在统计学和数据分析中起到至关重要的作用,帮助我们理解和处理各种随机现象和数据集。
通过掌握这些公式,我们可以更好地进行数据分析、推断和预测。
概率论核心公式1. 事件的概率计算公式事件的概率定义为:$P(A)=\\frac{n(A)}{n(S)}$,其中P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n(S)表示样本空间S中的总次数。
2. 条件概率公式条件概率的计算公式为:$P(A|B)=\\frac{P(A \\cap B)}{P(B)}$,表示事件B发生的条件下事件A发生的概率。
3. 贝叶斯定理贝叶斯定理表示为:$P(A|B)=\\frac{P(B|A)P(A)}{P(B)}$,用于在给定相关事件的条件下计算其余事件的概率。
数理统计核心公式1. 样本均值和总体均值的关系样本均值$\\bar{X}=\\frac{\\sum_{i=1}^{n}X_i}{n}$,总体均值$\\mu=\\frac{\\sum_{i=1}^{N}X_i}{N}$。
当样本容量足够大时,样本均值接近于总体均值。
2. 样本方差和总体方差的关系样本方差$s^2=\\frac{\\sum_{i=1}^{n}(X_i-\\bar{X})^2}{n-1}$,总体方差$\\sigma^2=\\frac{\\sum_{i=1}^{N}(X_i-\\mu)^2}{N}$。
样本方差用于估计总体方差。
3. 中心极限定理中心极限定理表明,样本容量足够大时,样本均值的分布近似服从正态分布,不论总体分布是什么形式。
总结概率论与数理统计中的核心公式为我们提供了处理和分析数据的重要工具。
通过合理运用这些公式,我们可以更准确地理解数据背后的规律并做出有效的决策。
希望本文所介绍的核心公式对您有所帮助。
概率统计实用公式整理专为研究者和实践者准备的指南概率统计是数学中一门重要的学科,作为一种应用广泛的工具,被广泛应用于各个领域的研究和实践中。
在进行概率统计的计算和分析过程中,掌握一些实用的公式非常重要。
本文将整理一些常用的概率统计公式,旨在为广大研究者和实践者提供一个便捷的指南。
一、基本概率公式在概率统计的计算中,一些基本的概率公式是必不可少的。
下面是几个常用的基本概率公式:1. 乘法定理:P(A∩B) = P(A) × P(B|A)2. 加法定理:P(A∪B) = P(A) + P(B) − P(A∩B)3. 条件概率公式:P(A|B) = P(A∩B) / P(B)4. 全概率公式:P(B) = ∑[i=1, n] P(Ai) × P(B|Ai)二、离散分布公式在离散概率分布中,一些常见的分布公式可以用来描述随机变量的特征。
以下是几个常用的离散分布公式:1. 二项分布公式:P(X=k) = C(n,k) × p^k × (1-p)^(n-k)2. 泊松分布公式:P(X=k) = (e^(-λ) × λ^k) / k!3. 几何分布公式:P(X=k) = (1-p)^(k-1) × p三、连续分布公式连续概率分布描述的是在某一范围内随机变量取值的概率。
以下是几个常用的连续分布公式:1. 正态分布公式:f(x) = (1 / (σ * √(2π))) * e^(-(x-μ)^2 / (2σ^2))2. 指数分布公式:f(x) = λ * e^(-λx)3. 均匀分布公式:f(x) = 1 / (b-a),其中a ≤ x ≤ b四、描述统计公式描述统计是对数据进行整理和总结的过程,以下是一些常用的描述统计公式:1. 均值公式:μ = (x1 + x2 + ... + xn) / n2. 方差公式:σ^2 = [(x1-μ)^2 + (x2-μ)^2 + ... + (xn-μ)^2] / n3. 标准差公式:σ = √(σ^2)五、假设检验公式假设检验是概率统计中用来推断总体特征的方法。
概率论与数理统计公式整理概率论和数理统计是数学中重要的分支,广泛应用于科学、工程、经济、金融等领域。
本文将对概率论和数理统计中常用的公式进行整理,以帮助读者更好地理解和应用这些概念和方法。
一、概率论公式1. 基本概率公式:P(A) = n(A) / n(S)其中P(A)表示事件A发生的概率,n(A)表示事件A的样本空间,n(S)表示样本空间中所有可能结果的个数。
2. 概率的加法公式:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)其中P(A ∪ B)表示事件A或B发生的概率,P(A ∩ B)表示事件A和B同时发生的概率。
3. 条件概率公式:P(A | B) = P(A ∩ B) / P(B)其中P(A | B)表示在事件B已经发生的条件下,事件A发生的概率。
4. 乘法公式:P(A ∩ B) = P(B) * P(A | B) = P(A) * P(B | A)其中P(A ∩ B)表示事件A和B同时发生的概率。
5. 全概率公式:P(A) = ∑[P(Bi) * P(A | Bi)]其中{Bi}为样本空间S的一个划分,P(Bi)表示事件Bi发生的概率。
二、数理统计公式1. 期望:E(X) = ∑[x * P(X = x)]其中X表示随机变量,x表示X可能取到的值,P(X = x)表示X取到x的概率。
2. 方差:Var(X) = E[(X - E(X))^2]其中E(X)表示随机变量X的期望。
3. 标准差:σ(X) = √(Var(X))其中Var(X)表示随机变量X的方差。
4. 协方差:Cov(X, Y) = E[(X - E(X)) * (Y - E(Y))]其中X和Y分别表示两个随机变量。
5. 相关系数:ρ(X, Y) = Cov(X, Y) / (σ(X) * σ(Y))其中Cov(X, Y)表示X和Y的协方差,σ(X)和σ(Y)分别表示X和Y的标准差。
三、概率分布公式1. 二项分布:P(X = k) = C(n, k) * p^k * (1 - p)^(n-k)其中X服从二项分布,n表示试验次数,k表示成功次数,p 表示每次试验成功的概率。
概率论与数理统计公式精选常用公式一览为了帮助读者更好地掌握概率论与数理统计的知识,本文将为大家整理并介绍一些常用的公式。
这些公式是在学习和应用概率论与数理统计过程中必备的工具,相信对大家的学习和研究具有重要的参考价值。
一、概率论常用公式1. 概率公式在概率论中,我们经常需要计算事件发生的概率。
以下是几个常用的概率公式:(1)加法公式设A和B为两个事件,则A与B的和事件概率为P(A∪B) = P(A) + P(B) - P(A∩B)。
(2)乘法公式设A和B为两个独立事件,则A与B的积事件概率为P(A∩B) =P(A) * P(B)。
2. 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。
以下是条件概率的计算公式:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示A与B的交事件的概率,P(A|B)表示在B发生的条件下A发生的概率。
3. 贝叶斯公式贝叶斯公式是概率论中非常重要的公式,它用于根据已知条件,计算一个事件的后验概率。
贝叶斯公式如下所示:P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(B|A)表示在事件A发生的条件下,事件B发生的概率;P(A)和P(B)分别表示事件A和事件B的先验概率。
二、数理统计常用公式1. 期望和方差在数理统计中,我们经常需要计算一组数据的期望和方差。
以下是期望和方差的计算公式:(1)期望的计算公式设X为一个离散型随机变量,其取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn,则X的期望为:E(X) = x1 * p1 + x2 * p2 + ... + xn * pn。
(2)方差的计算公式设X为一个离散型随机变量,其取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn,则X的方差为:Var(X) = E[(X - E(X))^2] = (x1 - E(X))^2 * p1 + (x2 - E(X))^2 * p2 + ... + (xn - E(X))^2 * pn。
概率统计公式大全概率统计是一门研究事件发生的可能性及其规律性的学科。
它以概率论为基础,通过概率模型和统计方法对随机现象进行建模、分析和预测。
在概率统计中,有很多重要的公式和定理,下面将简单介绍几个常用的公式。
1.加法原理加法原理是计算多个事件并集概率的基本方法,它表述为:如果A和B是两个事件,那么它们的并集事件的概率可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。
2.乘法原理乘法原理是计算多个事件交集概率的基本方法,它表述为:如果A和B是两个事件,那么它们的交集事件的概率可以表示为P(A∩B)=P(A)*P(B,A),其中P(B,A)表示在事件A发生的条件下事件B发生的概率。
3.条件概率条件概率是指在其中一事件已经发生的条件下,另一事件发生的概率。
条件概率可以表示为P(A,B)=P(A∩B)/P(B),其中P(B)不为0。
4.全概率公式全概率公式是计算事件的概率的重要方法,它表述为:如果B1、B2、..、Bn是一组互不相容的事件,且它们的并集构成了样本空间S,那么对于任意事件A,可以表示为P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)。
5.贝叶斯定理贝叶斯定理是利用条件概率和全概率公式来计算事件的概率的重要方法,它表述为:如果B1、B2、..、Bn是一组互不相容的事件,且它们的并集构成了样本空间S,那么对于任意事件A,可以表示为P(Bi,A)=P(A,Bi)*P(Bi)/(P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn))。
6.期望值期望值是度量随机变量平均取值的重要统计量,它可以表示为E(X)=∑x*P(X=x),其中x为随机变量X的取值,P(X=x)为X取值为x的概率。
7.方差方差是衡量随机变量取值的波动性的统计量,它可以表示为Var(X)= E((X - E(X))^2),其中E(X)为随机变量X的期望值。
概率论与数理统计是数学中的一个重要分支,它们在各个领域都有着广泛的应用。
在学习概率论与数理统计的过程中,我们会遇到大量的符号和公式,这些符号通常代表着一些特定的概念或者算法,对于初学者来说可能会比较晦涩难懂。
为了帮助大家更好地理解概率论与数理统计中常见的符号,本文将对常见的符号进行解释和说明,希望能够为读者提供一些帮助。
1. Ω(样本空间):样本空间是指一个随机试验中所有可能的结果组成的集合。
通常用Ω来表示样本空间,掷一枚硬币的样本空间可以表示为Ω={正面,反面}。
2. A,B,C...(事件):在概率论中,事件是指样本空间的一个子集。
通常用大写字母A、B、C...来表示事件,在掷一枚硬币的随机试验中,事件A可以表示为“出现正面”。
3. P(A)(事件的概率):事件A的概率是指事件A发生的可能性大小。
在概率论中,通常用P(A)来表示事件A的概率,概率的取值范围是0到1,其中0表示不可能发生,1表示一定发生。
4. E(X)(随机变量的数学期望):在数理统计中,随机变量的数学期望是指随机变量的平均取值。
通常用E(X)来表示随机变量X的数学期望,它是对随机变量取值的加权平均。
5. Var(X)(随机变量的方差):随机变量的方差是指随机变量取值与数学期望之间的差异程度。
通常用Var(X)来表示随机变量X的方差,它是随机变量取值与数学期望之间差的平方的加权平均。
6. Cov(X,Y)(随机变量之间的协方差):在数理统计中,协方差是用来衡量两个随机变量之间的相关程度。
通常用Cov(X,Y)来表示随机变量X和Y之间的协方差,它是X和Y之间差的乘积的加权平均。
7. σ(X)(随机变量的标准差):随机变量的标准差是方差的平方根,它用来衡量随机变量取值的分散程度。
通常用σ(X)来表示随机变量X 的标准差。
8. H0与H1(假设检验的零假设和备择假设):在假设检验中,通常会有一个零假设H0和一个备择假设H1。
H0是在原假设成立的条件下所作的断言,H1是当H0不成立时所作的断言。
第1章随机事件及其概率
我们作了n次试验,且满足
每次试验只有两种可能结果,A发生或A不发生;
n次试验是重复进行的,即A发生的概率每次均一样;
每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,
k n k k
n n q p k P C -=)(,n k ,,2,1,0 =。
第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。
概率论与数理统计必背公式在概率论与数理统计中,掌握好一些重要的公式是非常重要的,这些公式可以帮助我们解决问题、推导证明以及计算概率和统计量。
下面将介绍一些必须掌握的概率论与数理统计的重要公式。
一、概率论公式:1.加法定理:如果事件A和B是互不相容的(即A和B不会同时发生),则它们的和事件的概率为P(A∪B)=P(A)+P(B)。
2.条件概率公式:对于两个事件A和B,A在给定B发生的条件下发生的概率定义为P(A,B)=P(A∩B)/P(B)。
3.乘法定理:对于两个事件A和B,其交事件的概率可以通过条件概率公式来计算,即P(A∩B)=P(A,B)*P(B)。
4.全概率公式:如果事件B1,B2,...,Bn是一组互不相容的且其并集为样本空间(即事件B1∪B2∪...∪Bn=S),则对于事件A,它的概率可以通过条件概率公式和全概率公式来计算,即P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)。
5.贝叶斯公式:贝叶斯公式是条件概率公式的推广,对于事件A和B,其交事件的概率可以通过贝叶斯公式来计算,即P(A,B)=P(B,A)*P(A)/P(B)。
二、数理统计公式:1.期望:对于一组随机变量X,其期望(也称为均值)定义为E(X)=ΣX*P(X),即随机变量X乘以其概率的和。
2. 方差:对于一组随机变量X,其方差定义为Var(X) = E((X - μ)^2),其中μ为X的期望。
3. 协方差:对于两组随机变量X和Y,其协方差定义为Cov(X,Y) = E((X - μx)(Y - μy)),其中μx和μy分别为X和Y的期望。
4. 标准差:对于一组随机变量X,其标准差定义为σ = √Var(X),即方差的平方根。
5. 协方差矩阵:对于多组随机变量X1,X2,...,Xn,其协方差矩阵定义为Cov(X) = [Cov(Xi,Xj)],其中i和j分别表示第i组和第j组随机变量。
概率和统计公式大全---------------------------------------第一章随机事件和概率(1)排列组合公式从m 个人中挑出n 个人进行排列的可能数。
从m 个人中挑出n 个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n种方法来完成,则这件事可由m ×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A ,B ,C ,…表示事件,它们是的子集。
为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):如果同时有,,则称事件A 与事件B 等价,或称A 等于B :A=B 。
A 、B 中至少有一个发生的事件:A B ,或者A +B 。
《概率统计》公式、符号汇总表及各章要点 (共3页)
第一章 第二、三章
一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性
(1)边缘分布:∑=j
ij i p P ,⎰+∞
∞-=dy y x f x f X ),()(
(2)独立关系:J I IJ P P P Y X =⇔独立与 或)()()(y f x f y x f Y X =,
),,(11n X X Λ与),,(21n Y Y Λ独立),,(11n X X f Λ⇒与),,(21n Y Y g Λ独立
(3)随机变量函数的分布(离散型用列表法)
一维问题:已知X 的分布以及)(X g Y =,求Y 的分布-------连续型用分布函数法
二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,m ax =、{}Y X N ,m in =的分布-
M 、N 的分布---------连续型用分布函数法 第四章
(1)期望定义:离散:∑=i
i i p x X E )(
连续:⎰⎰⎰+∞∞-+∞
∞-+∞∞-==dxdy y x xf dx x xf X E ),()()(
方差定义:)()(]))([()(222X E X E X E X E X D -=-=
离散:∑-=i
i i p X E x X D 2))(()(
连续:⎰+∞
∞--=dx x f X E x X D X )())(()(2
协方差定义:)()()())]())(([(),(Y E X E XY E Y E Y X E X E V X COV -=--= 相关系数定义:)
()(),(Y D X D Y X COV XY =
ρ
K 阶原点矩定义:)( K k X E ∆μ K 阶中心矩定义:]))([( K k X E X E -∆σ (2)性质:
C
C E =)( ;)()(X CE CX E = ;)()()(Y E X E Y X E ±=±;
)()( )(Y E X E Y X XY E 独立与
0)(=C D ;)()(2X D C CX D = ;
1≤XY ρ ; {}11=+=⇔=b aX Y p XY ρ
X 与Y 独立 0=⇒XY ρ 即X 与Y 线性无关,但反之不然 。
第五章
(1)设μ=)(X E ,2
)(σ=X D ,则:{}221ε
σεμ-≥≤-X p ,亦即:{}22
εσεμ≤≥-X p
(2)设n X X ,,1Λ独立同分布则)(n X −→−
P
)()()(i n X E X E = ; n
n A −→−P
)(A p (3)若X ~),(p n B 则:当n 足够大时
npq
np X - 近似服从 )1,0(N ;
(4) 设n X X ,,1Λ独立同分布,并设μ=)(i X E ,2)(σ=i X D 则:当n 足够大时 n
X n σ
μ
-)( 近似服从 )1,0(N
第六章
(1)设n X X ,,1Λ是来自总体X 的样本,μ=)(X E ,2)(σ=X D 样本均值:∑==n
i i n X n X 1)
(1 ,μ=)()(n X E ,n
X D n 2)()(σ= 样本方差:][11)(111
2)(212
)(2
∑∑==--=--=n i n i n i n i X n X n X X n S ,22)(σ=S E )(n X −→−
P μ ,2B −→−P 2σ ,2S −→−P
2σ 样本K 阶原点矩∑==n i k i k X n A 1
1−→−
P
总体K 阶原点矩)( k k X E =μ (2)2212n X X ++=Λχ (i X 是来自)1,0(N 的简单样本) n
Y X t =
(X ~)1,0(N ,Y ~)(2n χ,X 与Y 独立)
2
1
//n Y n X F =
(X ~)(12n χ,Y ~)(22n χ,X 与Y 独立) (3)设n X X ,,1Λ是来自),(2σμN 的简单样本
则 :n X n σμ
-)( ~ )1,0(N ,n
S X n μ-)(~ )1(-n t ,2
2)1(σS n -~)1(2
-n χ 第七章
参数估计的问题:),(θx F X 的形式为已知,θ未知待估 参数θ的置信度为1—α的置信区间概念 参数估计方法:(1)矩估计 (2)最大似然估计
似然函数:离散:{}{}n x X P x X P L ===Λ1)(θ
连续:)()()(1n X X x f x f L Λ=θ
(3)单正态总体μ、2σ的区间估计(见课本P 137页表7—1) 点估计评选标准:无偏性,有效性,一致性 。
( )(n X 、2S 分别是μ、2σ的无偏估计量 ) 第八章
参数假设检验的问题:),(θx F X 的形式为已知,θ未知待检 假设检验的 I 类(弃真)错误 、∏类(取伪)错误的概念 显着性水平为α的显着性检验概念
单正态总体μ、2σ显着性检验方法:(见课本P 151页表8—2,P 154页表8—3) *七个常用分布(见课本P 82页表4—1 补充超几何分布) 正态分布),(2σμN 的性质: (1)
σ
μ
-X ~ )1,0(N , b aX +~),(22σμa b a N + ,3σ原则
(2)i X ~ ),(2
i i N σμ,i X 之间相互独立, 则:i n
i i X c ∑=1
~ ),(21
21
i n
i i i n
i i c c N σμ∑∑==。