35 直接线性变化的基本原理和解算方法.
- 格式:pps
- 大小:148.50 KB
- 文档页数:21
线性变换与线性方程组的解法线性变换和线性方程组是线性代数中的重要概念和方法。
线性变换是指变换结果符合线性性质的一种变换,而线性方程组是由多个线性方程组成的方程组。
在本文中,我们将探讨线性变换与线性方程组的解法及其应用。
一、线性变换线性变换是指保持加法和数乘两种运算的变换。
设V和W是两个向量空间,如果存在一个从V到W的映射T,对于任意的向量u和v 以及标量c,满足以下条件:1. T(u+v) = T(u) + T(v)(加法运算性质)2. T(cu) = cT(u)(数乘运算性质)则称T为从V到W的线性变换。
线性变换在实际问题中有着广泛的应用,比如在图像处理、信号处理等领域都会用到。
二、线性方程组的解法线性方程组是由一组线性方程构成的方程组,其一般形式可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁到aₙₙ为已知系数,b₁到bₙ为已知常数,x₁到xₙ为未知数。
求解线性方程组的方法有多种,最常见的包括高斯消元法和矩阵的逆运算。
1. 高斯消元法高斯消元法是一种通过初等变换将线性方程组转化为简化形式的求解方法。
具体步骤如下:(1)将线性方程组写成增广矩阵的形式:[ a₁₁ a₁₂ ... a₁ₙ | b₁ ][ a₂₁ a₂₂ ... a₂ₙ | b₂ ]...[ aₙ₁ aₙ₂ ... aₙₙ | bₙ ](2)利用初等行变换将增广矩阵转化为简化行阶梯形矩阵。
(3)从最后一行开始,逐步求解未知数,得到线性方程组的解。
2. 矩阵的逆运算对于一个非奇异的矩阵A,可以通过求解线性方程组Ax = b来得到未知数x。
如果矩阵A可逆,则可以利用矩阵的逆运算求解该线性方程组:x = A⁻¹b其中A⁻¹为矩阵A的逆矩阵。
三、线性变换与线性方程组的应用线性变换和线性方程组的解法在实际问题中具有广泛的应用。
线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。
2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。
根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。
二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。
设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。
线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。
由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。
另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。
线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。
因此,矩阵表示是研究线性变换的重要工具。
三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。
设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。
这里的λ就是T的特征值,v就是T的特征向量。
第 7章 线性变换知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=; 注:V 的线性变换就是其保持向量的加法与数量乘法的变换;2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈;性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关;性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关;注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s s s s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B ;4. 线性变换举例1设V 是数域P 上的任一线性空间;零变换: ()00,V αα=∀∈; 恒等变换:(),V εααα=∀∈;幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使得σ=m 0,就称σ为幂零变换;幂等变换:设σ是数域P 上的线性空间V 的线性变换,如果2σσ=,就称σ为幂等变换;2nV P =,任意取定数域P 上的一个n 级方阵A ,令:111222n n n n x x x x x x A ,P x x x σ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=∀∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 3[]V P x =,()()()()[]D f x f x ,f x P x '=∀∈; 4n nV P⨯=,()ij A a =是V 中一固定矩阵,()n n X AX ,X P τ⨯=∀∈;二.线性变换的运算、矩阵 1. 加法、乘法、数量乘法1 定义: 设V 是数域P 上的线性空间,,στ是V 的两个线性变换,定义它们的和στ+、乘积στ分别为:对任意的V α∈()()()()στασατα+=+,()()()()σταστα=任取k P ∈,定义数量乘积k σ为:对任意的V α∈()()()k k σασα=σ的负变换-σ为:对任意的V α∈()()()-=-σασα则στ+、στ、k σ与-σ都是V 的线性变换;2()L V ={σσ为V 的线性变换},按线性变换的加法和数乘运算做成数域P 上的维线性空间;2. 线性变换的矩阵1定义:设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα是V 的一组基,如果:()()()11111221221122221122n n n n n n n nn na a a a a a a a a σαααασαααασαααα=+++=+++=+++那么称矩阵112111222212n n nnnn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭为线性变换σ在基12,,,n ααα下的矩阵;此时:()()()()()()121212,,,,,,,n n n A σααασασασαααα==2线性变换的和、乘积、数量乘积、逆变换、负变换及线性变换多项式的矩阵:设12,,,n ααα是数域P 上的n 维线性空间V 的一组基,(),L V στ∀∈,设它们在12,,,n ααα下的矩阵分别为A,B ;1():n n f L V P ⨯→,A σ是数域P 上的线性空间()L V 到数域P 上的线性空间n n P ⨯的同构映射,因此()n n L V P ⨯≅;2σ可逆⇔A 可逆3①στ+、στ与-σ在基12,,,n ααα下的矩阵分别为A B,AB +与A -; ② 任取k P ∈,k σ在基12,,,n ααα下的矩阵为kA ;③ 若σ为可逆线性变换,则1σ-在基12,,,n ααα下的矩阵为1A -;④ 设()1110mm m m f x a x a xa x a --=++++为数域P 上的任一多项式,那么()1110m m m m f a a a a σσσσε--=++++ε为V 的恒等变换在基12,,,n ααα下的矩阵为:()1110m m m m n f A a A a A a A a E --=++++;三.特征值、特征向量与对角矩阵1. 矩阵的特征值与特征向量1矩阵的特征多项式:设A 为n 级复方阵,将多项式()λλ=-A n f E A 称为A 的特征多项式;注: 1若()ijnnA a =,则:()()()()1112211λλλλ-=-=+-+++++-nn n A n nn f E A a a a A()()()11tr 1λλ-=+-++-nn n A A2 将λ-n E A 称为矩阵A 的特征矩阵,0λ-=n E A 称为矩阵A 的特征方程;2 定义:n 级方阵A 的特征多项式()λλ=-A n f E A 在复数域上的所有根都叫做其特征值根,设0λ∈C 是A 的特征值,齐次线性方程组()0λ-=n E A X 的每个非零解都叫做矩阵A 的属于其特征值0λ的特征向量;3求法:1求()λλ=-A n f E A 在复数域上的所有根12λλλn ,,,重根按重数计算;2对()1λ=k k ,n 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l =-k l n 秩()λ-k n E A ,则矩阵A 的属于特征值λk 的全部特征向量为1122,,ηηη+++k k k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为不全为零的任意常数复数;4 重要结论:1设0λ∈C 是A 的特征值,0X 是A 的属于其特征值0λ的特征向量,()g x 为一复系数多项式;① ()0λg 为()g A 的特征值,0X 为()g A 的属于特征值()0λg 的特征向量; ② 如果A 还是可逆矩阵,那么1λ与λA分别为1-A 和*A 的特征值,0X 为1-A 的属于特征值1λ的特征向量,0X 为*A 的属于特征值λA的特征向量,③ 若12λλλn ,,,是矩阵A 的全部特征值,那么()()()12λλλn g ,g ,,g 就是()g A 的全部特征值,如果A 还是可逆矩阵,则12111λλλn,,,为1-A 的全部特征值,12λλλnA A A,,,为*A 的全部特征值;2若12λλλn,,,是矩阵A的全部特征值,那么()12tr λλλ=+++n A ,12λλλ=n A ;2. 线性变换的特征值与特征向量1定义:设σ是数域P 上的线性空间V 的线性变换,0λ∈P ,若存在0α≠∈V ,使得()0σαλα=,就称0λ为σ的一个特征值,α为σ的一个属于特征值0λ的特征向量;2线性变换的特征多项式设σ是数域P 上的n 维线性空间V 的线性变换,任取V 的一组基12,,,n ααα,设σ在该基下的矩阵为A ,称矩阵为A 的特征多项式λ-n E A 为σ的特征多项式,记为()σλλ=-n f E A ,即线性变换的特征多项式为其在任意基下矩阵的特征多项式;3求法:设σ是数域P 上的n 维线性空间V 的线性变换;1取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;2求()σλλ=-n f E A 在P 中的所有根12λλλm ,,,0≤≤m n ,重根按重数计算,且0=m 表示σ无特征值;3若0>m ,对()1λ=k t ,s 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l =-k l n 秩()λ-k n E A ,则线性变换σ的属于特征值λk 的全部特征向量为()()121122,,,,,αααηηη+++k k n k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为P 中不全为零的任意常数;3. 矩阵相似1定义:设A,B 是数域P 上的两个n 级方阵,如果存在数域P 上的n 级可逆矩阵T ,使得1-=T AT B ,就称矩阵A 相似于矩阵B ,记为A B ;2性质:1矩阵相似是等价关系,即:设A,B,C 都是n 级方阵,那么:①A A ; ② 若A B ,那么B A ;③ 若A B 且B C ,则A C ;2若AB ,那么()()λλλλ=-==-A n B n f E A f E B ,因此矩阵A 与矩阵B 有相同的特征值,相同的迹()()tr tr =A B ,相同的行列式=A B ;3两个实对称阵相似⇔它们有相同的特征值;3有限维线性空间上的线性变换在不同基底下的矩阵彼此相似;4若1-=T AT B ,那么1-+=∀∈kkB T A T ,k Z ;4. 线性变换与矩阵可对角化 1矩阵可对角化1设A 是n 级方阵,如果存在n 级可逆矩阵T ,使得1-T AT 为对角阵,则称A 可对角化;2n 级方阵A 可对角化⇔A 有n 个线性无关特征向量; 3如果n 级方阵A 有n 个不同的特征值,则A 可对角化; 4设12λλλk ,,,是n 级方阵A 的所有不同的特征值,()()()()1212λλλλλλλλ=-=---klll A n k f E A称()12=i l i ,,,k 为λi 的代数重数;称=-i s n 秩()()12λ-=i n E A i ,,,k 为λi 的几何重数;()12≤=i i s l i ,,,k ;n 级方阵A 可对角化⇔对12=i ,,,k 都有λi 的代数重数=λi 的几何重数;注:1. 设齐次线性方程组()0λ-=i n E A X 的解空间为i W ,则()dim =i i s W2. 称{}λααλα=∈=i ni V CA 为n 级方阵A 的属于特征值λi 的特征子空间,那么()dim λ=i i s V2线性变换可对角化1 设σ是数域P 上的n 维线性空间V 的线性变换,如果存在V 的一组基,使得σ 在该基下的矩阵为对角阵,就称σ可对角化;2数域P 上的n 维线性空间V 的线性变换σ可对角化⇔σ有n 个线性无关特征向量; 3设σ是数域P 上的n 维线性空间V 的线性变换,如果σ有n 个不同的特征值,则σ可对角化;4设σ是数域P 上的n 维线性空间V 的线性变换,σ在V 的一组基下的矩阵为A , 设12λλλk ,,,是n 级方阵A 的所有不同的特征值;① 若12λλλ∈k ,,,P ,那么:σ可对角化⇔对12=i ,,,k 都有λi 的代数重数=λi 的几何重数;② 若12λλλk ,,,不全在数域P 中,则σ不可对角化;注:λi 的几何重数 =()dim λi V ,其中(){}λασαλα=∈=i iV V 为σ的属于特征值λi 的特征子空间;四.线性变换的值域与核1.定义:设σ是数域P 上的线性空间V 的线性变换,将()(){}100V σασα-=∈=,(){}V V σσαα=∈分别称为线性变换σ的核与值域()10σ-与V σ也分别记为ker σ与Im σ;2.线性变换的秩与零度: V σ与()10σ-都是V 的子空间,将()dim V σ 与()()1dim 0σ-分别称为σ的秩和零度;3. 有限维线性空间的线性变换的值域与核设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα为V 的一组基,σ 在该基下的矩阵为A ,=r 秩()A ,1122n n a a a V αααα=+++∈;1()1210n a a a ασ-⎛⎫ ⎪ ⎪∈⇔ ⎪ ⎪⎝⎭是齐次线性方程组0=AX 的解;2若12,,,ηηη-n r 是0=AX 的一个基础解系,那么12,,,γγγ-n r 其中()()12,,,1,2,,γαααη==-k n k k n r 就是()10σ-的一组基,于是:()()1dim0n r σ-=-()(){}1121122120n r n r n r n r L ,,,k k k k ,k ,,k P σγγγγγγ-----==+++∈因此σ的秩和零度为n r -; 3()()()()12n V L,,,σσασασα=于是()()()12σασασαn ,,,的一个极大线性无关组就是V σ的一组基,而()()()12σασασαn ,,,的秩等于秩()A =r ,所以()dim V r σ=,即σ的秩为秩()A =r ; 4()()()1dim dim 0V n σσ-+=;3. 求法:设V 是数域P 上的n 维线性空间,σ是V 的线性变换; 1()10σ-的求法:① 取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;② 解齐次线性方程组0=AX ,得其一个基础解系12,,,ηηη-n r =r 秩()A ;③ 令()()12,,,1,2,,γαααη==-k n k k n r ,得()10σ-的一组基12,,,γγγ-n r ,()(){}1121122120n r n r n r n r L ,,,k k k k ,k ,,k P σγγγγγγ-----==+++∈2V σ的求法:① 取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;② 设矩阵A 的列向量组为12,,,n ηηη,求出12,,,n ηηη的一个极大线性无关组12,,,r i i i ηηη就得到()()()12σασασαn ,,,的一个极大线性无关组()()()12σασασαri i i ,,,,()()()12σασασαri i i ,,,就是V σ的一组基;()()()()12ri i i V L ,,,σσασασα=()()(){}112212σασασα=+++∈r r r i i i i i i i i i l l l l ,l ,,l P五.不变子空间1. 定义:设σ是数域P 上的线性空间V 的线性变换,W 是V 的子空间,如果对α∀∈W ,都有()σα∈W 即()σ⊆W W ,就称W 是σ的不变子空间,也称σ-子空间; 2. 设V 是数域P 上的线性空间,那么{}0与V 都是V 的任一线性变换的不变子空间; 3. 设σ是数域P 上的线性空间V 的线性变换,λ是σ的任意一个特征值,那么σ的特征子空间(){}λασαλα=∈=V V 都是σ的不变子空间;4. 线性变换的循环子空间:设σ是数域P 上的0n >维线性空间V 的线性变换,任取0V α≠∈,必存在正整数m ,使得()()1m ,,,ασασα-线性无关,而()()m ,,,ασασα线性相关,令()()()1m W L ,,,ασασα-=,则W 是σ的不变子空间,称W 为σ的循环子空间;5. 设V 是数域P 上的n 维线性空间,σ是V 的线性变换,W 是σ的不变子空间,()0<dim =<W m n ,取W 的一组基12,,,αααm ,将其扩充为V 的一组基121,,,,,,ααααα+m m n ,那么σ在该基下的矩阵为1230⎛⎫⎪⎝⎭A A A ,其中1A 为σW在W 的基12,,,αααm 下的矩阵;六.若尔当 Jordan 标准形1.若尔当块与若尔当形矩阵: 1若尔当块:形式为()0000100000100001t tJ ,t λλλλλ⨯⎛⎫⎪ ⎪⎪=⎪⎪ ⎪⎝⎭ 的矩阵称为若尔当块,其中λ为复数;2若尔当形矩阵:由若干个若尔当块组成的准对角阵称为若尔当形矩阵,其一般形状如:12s A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭其中:111i ii ii ii k k A λλλλ⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,且12s ,,,λλλ中有些可以相等;2. 复数域上有限维线性空间上的线性变换与复方阵1设σ是复数域C 上的0n >维线性空间V 的任意一个线性变换,那么必存在V 的一组基,使得σ在该基下的矩阵为若尔当形矩阵;2每个n 级复矩阵都与一个若尔当形矩阵形矩阵相似;3. 设σ是复数域上的0n >维线性空间V 的线性变换,那么σ幂零⇔σ的特征值都为零;。
线性变换知识点总结一、引言线性变换是线性代数中的重要概念,它是在向量空间中的一种特殊映射。
线性变换具有许多重要的性质和应用,因此研究线性变换对于理解线性代数和应用数学有着重要的意义。
本文将从线性变换的基本概念、性质和应用进行总结,希望能够帮助读者对线性变换有更深入的理解。
二、线性变换的定义线性变换是向量空间之间的一种映射,具体来说,设V和W是两个向量空间,f:V→W是从V到W的映射。
如果对于V中的任意向量u、v和任意标量a,b,都有f(au+bv)=af(u)+bf(v)那么f称为一个线性变换。
三、线性变换的矩阵表示线性变换可以用矩阵来表示,假设V和W是n维向量空间,我们选择V和W的基,那么可以得到V和W中的向量可以用n维列向量表示。
设f:V→W是一个线性变换,选择V和W的基分别为{v1,v2,...,vn}和{w1,w2,...,wn},那么f的矩阵表示为[f]=(f(v1) f(v2) ... f(vn))其中f(vi)表示w中的基向量wi在f映射下的像,也就是f(vi)对应的列向量。
根据线性变换的定义,我们可以得到映射f的矩阵表示满足下列关系f(av1+bv2)=af(v1)+bf(v2)等价于[f](av1+bv2)=a[f]v1+b[f]v2其中[f]v1和[f]v2为f(v1)和f(v2)的列向量表示。
四、线性变换的性质1. 线性变换的保直性线性变换f:V→W将V中的任意向量线性映射到W中,这种映射保持向量之间的直线性质,即通过f映射后的图像仍然是一条直线。
这是线性变换的一个重要性质,它保证了线性变换后的图像具有一些有用的性质,比如直线上的点在f映射后仍然在同一条直线上。
2. 线性变换的局部性线性变换f:V→W保持向量之间的“相对位置”不变,即如果向量v1和v2之间的相对位置关系在V中是一定的,那么在映射f下,向量f(v1)和f(v2)之间的相对位置关系也是一定的。
这一性质对于理解线性变换的几何意义有着重要的作用,它意味着线性变换可以保持向量之间的某些几何性质。