高中数学选修2-1优质学案5:1.3 简单的逻辑联结词
- 格式:doc
- 大小:57.80 KB
- 文档页数:5
1.3.3简单的逻辑联结词【学习目标】1.理解逻辑联结词“非”的意义.2.能把文字、符号语言相互转化.【自主学习】研读教材1.3.3节内容,回答下列问题:1.一般地,对命题p全盘否定,就得到一个新的命题,记作,读作 .2.若p是真命题,则非p是命题,若p是假命题,则非p是题3.对一些词语的否定【自主检测】1.写出下列命题的否定,并判断其真假:< (1)2是有理数; (2)5不是15的约数; (3)23【合作探究及展示】写出下列命题的否定,并判断他们的真假:(1)p:siny x=是周期函数;(2)p:32<(3)p:空集是集合A的子集.【课堂检测】1.写出下列命题的否定,然后判断它们的真假.(1)2+2=5 (2)3是方程29=0x - (31-2.判断下列命题的真假:(1)78≥ (2)52>且73> (3)34>或34<3. 下列“p ⌝”形式的命题中,假命题是( ) A.2不是有理数 B .π≠3.14C .方程22321=0x x ++没有实根D .等腰三角形不可能有120°的角 4.已知命题:66p ≥,:89q >,则下列选项正确的是 ( )A .p q ∨为真,p q ∧为真,p ⌝为假B .p q ∨为真,p q ∧为假,p ⌝为真C .p q ∨为假,p q ∧为假,p ⌝为假D .p q ∨为真,p q ∧为假,p ⌝为假5.对于命题p 和q ,若p q ∧为真命题,则下列四个命题:①p 或q ⌝是真命题; ②p 且q ⌝是真命题; ③p ⌝且q ⌝是假命题; ④p ⌝或q 是假命题. 其中真命题有( )A .①②B .③④C .①③D .②④6.已知命题p :不等式210x x ++≤的解集为R ,命题q :不等式201x x -<-的解集为{}12x x <<,则命题“p q ∨”“p q ∧”“p ⌝”“q ⌝”中正确的是命题_______________.【课堂小结】:p ⌝的真假性的判断,关键在于p 的真假的判断. 【课后作业】:课本18P 习题1.3。
1. 3 简单的逻辑联结词单元课时分配:1.第一课且1个课时2.第二课或1个课时3.第三课非1个课时1. 3.1 且(and)【教学目标】一、知识与技能目标:1.掌握逻辑联结词“且”的含义2.正确应用逻辑联结词“且”解决问题3.掌握真值表并会应用真值表解决问题二、过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。
三、情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。
【教学重难点】一、重点:通过数学实例,了解逻辑联结词“且”的含义,使学生能正确地表述相关数学内容。
二、难点:1.正确理解命题“P∧q”真假的规定和判定。
2.简洁、准确地表述命题“P∧q”。
【学前准备】:多媒体,预习例题1.3.2或(or)【教学目标】1.知识与技能目标:掌握逻辑联结词“或”的含义,正确应用逻辑联结词“或”解决问题掌握真值表并会应用真值表解决问题。
2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。
3.情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。
【教学重难点】一、重点:通过数学实例,了解逻辑联结词“或”的含义,使学生能正确地表述相关数学内容。
二、难点:1.正确理解命题“P∨q”真假的规定和判定。
2.简洁、准确地表述命题“P∨q”。
【教学过程】在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。
:多媒体,预习例题1. 3.3非(not)简单的逻辑联结词【教学目标】1.通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义;2.能正确地利用“或”、“且”、“非”表述相关的数学内容;3.知道命题的否定与否命题的区别。
【教学重难点】:1.掌握真值表的方法;2.理解逻辑联结词的含义。
【学前准备】:多媒体,预习例题例1:判断下面的语句是否为命题?若是命题,指出它的真假。
《1.3简单的逻辑联结词“1.3.3非”》教案一、教学目标:1.知识与技能:(1)掌握逻辑联结词“非”的含义(2)正确应用逻辑联结词“非”解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法:观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.3.情感态度价值:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.二、教学重难点:1.重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容.2.难点:(1)正确理解命题“¬P”真假的规定和判定.(2)简洁、准确地表述命题“¬P”.三、教具准备:与教材内容相关的资料。
四、教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.五、教学过程:学生探究过程:1.思考、分析问题1:下列各组命题中的两个命题间有什么关系?(1)①35能被5整除;②35不能被5整除;(2)①方程x2+x+1=0有实数根。
②方程x2+x+1=0无实数根。
学生很容易看到,在每组命题中,命题②是命题①的否定。
2.归纳定义一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p读作“非p”或“p的否定”。
3.命题“¬p”与命题p的真假间的关系命题“¬p”与命题p的真假之间有什么联系?引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。
例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。
第(2)组命题中,命题①是假命题,而命题②是真命题。
由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;4.命题的否定与否命题的区别让学生思考:命题的否定与原命题的否命题有什么区别?命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。
1.3简单的逻辑联结词(第1课时)一、教学目标(一)学习目标1.掌握逻辑联结词“且、或”的含义;2.正确应用逻辑联结词“且、或”解决问题;3.掌握真值表并会应用真值表解决问题.(二)学习重点1.通过数学实例,了解逻辑联结词“且、或、非”的含义,使学生能正确地表述相关数学内容.(三)学习难点1.正确理解命题“p q ∧”与“p q ∨”真假的规定和判定;2.简洁、准确地表述命题“p q ∧”与“p q ∨”.二、教学设计(一)课前设计1.预习任务(1)“或”“且”叫做__________;(2)用联结词“或”联结命题p 和命题q ,记作_______,读作_________;(3)用联结词“且”联结命题p 和命题q ,记作_______,读作_________.【答案】 逻辑联结词 p q ∨ p 或q p q ∧ p 且q预习自测1.分别写出由下列命题构成的“p q ∧”与“p q ∨”式的命题.(1) :p π是无理数,:q e 不是无理数;(2) :p 方程2210x x ++=有两个相等的实数根,:q 方程2210x x ++=两根的绝对值相等.答案:(1)p q ∨:π是无理数或e 不是无理数;p q ∧:π是无理数且e 不是无理数;(2)p q ∨:方程2210x x ++=有两个相等的实数根或两根的绝对值相等; p q ∧:方程2210x x ++=有两个相等的实数根且两根的绝对值相等. 解析:【知识点】 命题p q ∧、p q ∨.点拨:掌握逻辑联结词的用法.2.指出下列命题的构成形式及构成它的简单命题.(1)分式2201x x x +-=-; (2)不等式220x x +->的解集是{|12}x x x ><-或答案:(1)是p q ∧的形式,其中2:20:10p x x q x +-=-≠;;(2)是p q ∨的形式,其中:p 不等式220x x +->的解集是{|1}x x >;:q 不等式220x x +->的解集是{|2}x x <-.解析:【知识点】命题p q ∧、p q ∨的判断.点拨:掌握逻辑联结词的用法.3.判断下列符合命题的真假.(1)菱形的对角线互相垂直平分;(2)若21x =,则2310x x ++=.答案:(1)命题是p q ∧的形式,真命题;(2)命题是p q ∨的形式,假命题. 解析:【知识点】命题的真假.点拨:掌握逻辑联结词的用法.4.命题:p 不等式2(1)10x a x -++≤的解集是∅;命题:q 函数()(1)x f x a =+在定义域内是增函数,如果p q ∧为假命题,p q ∨为真命题,求a 的取值范围. 答案:(3,0][1,)-+∞解析:【知识点】命题p q ∧、p q ∨真假的判断.【解题过程】命题:p 不等式2(1)10x a x -++≤的解集是∅,则2(1)40a ∆=+-<恒成立,解得31a -<<;命题:q 函数()(1)x f x a =+在定义域内是增函数,则11a +>,即0a >.因为p q ∧为假命题,p q ∨为真命题,所以p 、q 一真一假.(1)p 真q 假时,30a -<<;(2)p 假q 真时,1a ≥.综上:(3,0][1,)a ∈-+∞. 点拨:p q ∧为假命题,p q ∨为真命题,则p 、q 一真一假,要分两种情况讨论.(二)课堂设计1.知识回顾命题:若p ,则q .(1)若p q ⇒且q p ⇒/,则p 是q 的充分不必要条件;(2)若p q ⇒/且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的充要条件,q 也是p 的充要条件;(4)若p q ⇒/且q p ⇒/,则p 是q 的既不充分与不必要条件.2.问题探究探究一 结合实例感受逻辑联结词●活动① 设置情景,引入概念下列各组命题中,三个命题间有什么关系?(1)①24能被4整除;②24能被6整除;③24能被6整除且能被4整除.(2)①1x >;②2x <-;③1x >或2x <-.教师引导学生:在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题.问题:以前我们有没有学习过像这样用联结词“且”或者“或”联结的命题呢? 你能否举一些例子?例如:命题p :正方形四个角相等且均为直角.命题q :菱形的对角线相等且菱形的对角线互相平分.命题r :三条边对应成比例的两个三角形相似或两个角相等的两个三角形相似.【设计意图】通过观察实例,让学生直观感受逻辑联结词,自然过渡.●活动② 结合例子,提取概念一般地,用联结词“且”把命题p 和命题q 联结起来,就得到一个新命题, 记作:p q ∧ ,读作“p 且q ”.一般地,用联结词“或”把命题p 和命题q 联结起来,就得到一个新命题, 记作:p q ∨ ,读作“p 或q ” .命题“p 且q ”与命题“p 或q ”中的“且”字与“或” 字与集合理论里的两个命题中“且” 字与“或” 字的含义相同吗?(1)若x A ∈且x B ∈,则x A B ∈.(2)若x A ∈或x B ∈,则x A B ∈.定义中的“且”字与“或”字与集合理论里的两个命题中“且”字与“或”字的含义是相似.但这里的逻辑联结词“且”与日常语言中的“和”,“并且”,“以及”,“既…又…”等相当,表明前后两者同时满足; 逻辑联结词“或”与生活中“或”的含义不同,例如“你去学习或我去”,理解上是排斥你我都去这种可能.类比:符号“∧ ”与“”开口都是向下,符号“∨”与“”开口都是向上.强调:“p 或q ”,“p 且q ”,命题中的“p ”、“q ”是两个命题,而原命题,逆命题,否命题,逆否命题中的“p ”、“q ”是一个命题的条件和结论两个部分.【设计意图】结合实例,提取概念,通过类比,加深对逻辑连结词的理解. ●活动③ 应用反馈,巩固概念例1 请同学们选择合适的逻辑联结词“且”“或”改写下列命题.(12)32≥;(3)4是合数或2是质数.【知识点】逻辑联结词“且”“或”.【数学思想】【解题过程】略.【思路点拨】掌握逻辑联结词的用法.【答案】(12)3232>=或;(3)4是合数或2是质数.同类训练 请选择合适的逻辑联结词“且”“或”改写下列命题.(1)∅既是A 的子集又是它的真子集;(2)*(1)(2)()n n n n N ++∈是偶数或是3的倍数.【知识点】 逻辑联结词“且”“或”.【数学思想】【解题过程】略.【思路点拨】掌握逻辑联结词的用法.【答案】 (1)∅是A 的子集且∅是A 的真子集;(2)*(1)(2)()n n n n N ++∈是偶数或*(1)(2)()n n n n N ++∈是3的倍数. 探究二 “p q ∧”与“p q ∨”真假的规定和判定●活动① 设置情景,引入概念问题1:请接着判断例1中的三个命题的真假:(1(2)32≥;(3)4是合数或2是质数.(抢答) 问题2:你能确定“p q ∧”与“p q ∨”真假吗?“p q ∧”与“p q ∨”真假与p q 、的真假有什么关系?(引导学生思考)分析:(1)中p 假q 真,所以为假;(2)中p 真q 假,但(2)为真(学生可能有不同意见);(3)中p 真q 真,所以为真.【设计意图】结合实例,学生更容易理解.●活动② 结合例子,提取概念一般地,我们规定:当p q 、都是真命题时,p q ∧是真命题;当p q 、两个命题中有一个命题是假命题时,p q ∧是假命题;当p q 、两个命题中有一个是真命题时,p q ∨是真命题;当p q 、两个命题都是假命题时,p q ∨是假命题.总结出真值表:【设计意图】使概念更加清晰,学生理解起来容易.●活动③ 应用反馈,巩固概念例1 将下列命题分别用“且”与“或”联结成新命题“p q ∧”与“p q ∨”的形式,并判断它们的真假.(1)p :长方形的对角线互相平分,q :长方形的对角线相等;(2)p :菱形的对角线互相垂直,q :菱形的对角线互相平分;(3)p :14是2的倍数,q :14是4的倍数.【知识点】逻辑联结词“且”与“或”及复合命题真假的判断.【数学思想】【解题过程】略.【思路点拨】掌握逻辑联结词的用法.【答案】(1)p q ∨:长方形的对角线互相平分或相等(真);p q ∧:长方形的对角线互相平分且相等(真);(2)p q ∨:菱形的对角线互相垂直或平分(真);p q ∧:菱形的对角线互相垂直且平分(真).(3)p q ∨:14是2的倍数或是4的倍数(真);p q ∧:14是2的倍数且是4的倍数(假).3.课堂总结知识梳理1.逻辑联结词“且、或”的含义;2.命题“p q ∧”与“p q ∨”真假的规定和判定.重难点归纳1.正确理解命题“p q ∧”与“p q ∨”真假的真值表和判定;2.简洁、准确地表述命题“p q ∧”与“p q ∨”.(三)课后作业基础型 自主突破1.命题“平行四边形的对边平行且相等”是( )A .简单命题B .“()()p q ⌝∧⌝”的形式C .“p ∧q ”的形式D .“p ∨q ”的形式答案:C解析:【知识点】逻辑联结词“且”.【解题过程】含有逻辑联结词“且”,故为“p ∧q ”的形式.点拨:掌握逻辑联结词的用法.2.由下列各组命题构成的“p 或q ”“p 且q ”形式的新命题中,“p 或q ”为真,“p 且q ”为假的是( )A .p :3是偶数,q :4是奇数B .p :3+2=6,q :5>3C .p :a ∈{a ,b },q :{a }⊆/{a ,b }D .p :Q ⊇R ,q :N =N *答案:B解析:【知识点】“p 或q ”“p 且q ”真假的判断.【解题过程】“p 或q ”为真,“p 且q ”为假,则p 与q 一真一假.A .p 假,q 假;B .p 假,q 真;C .p 真,q 真;D .p 假,q 假.点拨:p 或q 为真,则p 、q 至少一个为真;p 且q 为假,则p 、q 至少一个为假.3.命题“p 或q 为真”是命题“q 且p 为真”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B解析:【知识点】命题充分、必要性的判断.【解题过程】当p 或q 为真时,可以得到p 和q 中至少有一个为真,这时q 且p 不一定为真;反之当q 且p 为真时,必有p 和q 都为真,一定可得p 或q 为真. 点拨:p 或q 为真,则p 、q 至少一个为真;p 且q 为真,则p 、q 都为真.4.给出命题p :3≥3;q :函数1(0)()1(0)x f x x ≥⎧=⎨-<⎩在R 上的值域为[-1,1].则p ∧q 、p ∨q 为( )A .假命题;真命题B .真命题;真命题C .假命题;假命题D .真命题;假命题答案:A解析:【知识点】p ∧q 、p ∨q 真假的判断.【解题过程】p 为真命题.对于q ,∵f (x )对应的函数值只有两个,即1或-1,所以f (x )的值域为{1,-1},∴q 为假命题,∴p ∧q 假,p ∨q 真.点拨:先分别判断p 、q 的真假.5.已知p :函数y =2|x -1|的图象关于直线x =1对称;q :函数y =x +x1在(0,+∞)上是增函数.由它们组成的新命题“p 且q ”“p 或q ”为( )A .真命题;假命题B .真命题;真命题C .假命题;假命题D .假命题;真命题答案:D解析:【知识点】p ∧q 、p ∨q 真假的判断.【解题过程】命题p 是真命题.y =x +1x在(0,1)上为减函数,在(1,+∞)上为增函数,故q 为假命题.∴p 且q 为假,p 或q 为真.点拨:先分别判断p 、q 的真假.6.已知命题p 1:函数y =2x -2x -在R 上为增函数,p 2:函数y =2x +2x -在R 上为减函数.在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(⌝p 1)∨p 2和q 4:p 1∧(⌝p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4答案:C解析:【知识点】p ∧q 、p ∨q 真假的判断.【解题过程】∵y =2x 在R 上为增函数,y =2-x =(21)x 在R 上为减函数,∴y =-2-x =-(21)x 在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q 1:p 1∨p 2是真命题,因此排除B 和D.q 2:p 1∧p 2是假命题,q 3:⌝p 1是假命题,(⌝p 1)∨p 2是假命题,故q 3是假命题,排除A .点拨:先分别判断p 、q 的真假.能力型 师生共研7.已知p :30x -<,q :x 2-4x -5<0,若“p 且q”为假命题,则x 的取值范围是________.答案:x ≥3或x ≤-1解析:【知识点】p ∧q 、p ∨q 真假的判断.【解题过程】p :x <3;q :-1<x <5.∵p 且q 为假命题 ∴p ,q 中至少有一个为假∴x ≥3或x ≤-1点拨:p 且q 为假命题,则p ,q 中至少有一个为假.8.已知p :不等式ax +b >0的解集为{x |x >b a -},q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b }.若“p ∨q ”是假命题,则a ,b 满足的条件是________.【知识点】p ∧q 、p ∨q 真假的判断.【数学思想】【解题过程】∵p∨q为假命题,∴p,q均为假命题.p假⇔a≤0,q假⇔a≥b,则b≤a≤0.【思路点拨】p∨q为假命题,则p、q均为假命题.【答案】b≤a≤0探究型多维突破9.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求m的取值范围.答案:(1,2]∪[3,+∞)解析:【知识点】p或q、p且q命题真假.【解题过程】p:240mm⎧∆=->⎨>⎩,得m>2.q:∆=16(m-2)2-16=(m2-4m+3)<0.解得1<m<3.∵p或q为真,p且q为假,∴p为真,q为假,或p为假,q为真.解得m≥3,或1<m≤2.所以m的取值范围是(1,2]∪[3,+∞).点拨:由∆判断一元二次方程的根的个数.10.a>0,a≠1.设p:函数y=log a(x+1)在(0,+∞)内单调递减;q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.若p或q为真,p且q为假,求a的取值范围.答案:[12,1)∪(52,+∞)解析:【知识点】p或q、p且q命题的真假.【解题过程】当0<a<1时,函数y=log a(x+1)在(0,+∞)内单调递减当a>1时,y=log a(x+1)在(0,+∞)内不是单调递减函数,故p真时.0<a<1.q真等价于(2a-3)2-4>0,即12a<或52a>.又a>0,∴0<a<12或a>52.∵p或q为真,p且q为假,∴p,q中必定是一个为真一个为假.(1)p真,q假⇒12≤a<1,即a∈[12,1).(2)p假,q真⇒a>52,即a∈(52,+∞).综上可知,a的取值范围为[12,1)∪(52,+∞).点拨:根据p,q的真假求参数a的范围.自助餐1.分别指出下列各命题的形式及构成它的简单命题.(1)他是运动员兼教练;(2)这些文学作品不仅艺术上有缺点,而且逻辑上有错误;(3)3≥1.答案:(1)这个命题是“p∧q”形式.其中p:他是运动员;q:他是教练.(2)这个命题是“p∧q”形式.其中p:这些文学作品艺术上有缺点;q:这些文学作品逻辑上有错误.(3)此命题为“p∨q”形式.其中p:3>1;q:3=1.解析:【知识点】命题的形式.点拨:熟悉p∧q、p∨q的命题形式.2.分别写出由下列各组命题构成的“p∨q”“p∧q”形式的新命题,并判断其真假.(1)p:6是自然数;q:6是偶数.(2)p:∅⊆{0};q:∅={0}.答案:(1)p∧q:6是自然数且是偶数.它是真命题.p∨q:6是自然数或是偶数.它是真命题.(2)p∧q:∅⊆{0}且∅={0}.它是假命题.p∨q:∅⊆{0}或∅={0}.它是真命题.解析:【知识点】命题的形式.点拨:熟悉p∧q、p∨q的命题形式.3.已知p:∃x∈R,mx2+1≤0,q:∀x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围是( )A.[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]答案:A .解析:【知识点】复合命题的真假.【解题过程】依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q均为假命题得⎩⎨⎧m ≥0,m ≤-2或m ≥2,即m ≥2. 点拨:熟悉p ∨q 的真假.4.已知命题p :“∀x ∈[0,1],x a e ≥ ”;命题q :“∃x ∈R ,使得x 2+4x +a =0”. 若命题“p ∧q ”是真命题,则实数a 的取值范围是________.答案:[e,4].解析:【知识点】复合命题的真假.【解题过程】若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x ,得a ≥e ;由∃x ∈R ,使x 2+4x +a =0,知Δ=16-4a ≥0,a ≤4,因此e ≤a ≤4.点拨:熟悉p ∧q 的真假判断.5.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.(2)对于中国足球参与的某次大型赛事,有三名观众对结果作如下猜测: 甲:中国非第一名,也非第二名;乙:中国非第一名,而是第三名;丙:中国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名.答案:(1)A (2)一.解析:【知识点】复合命题,逻辑推理.【解题过程】(1)由题意可推断:甲没去过B城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A,C城市,而乙“没去过C城市”,说明乙去过城市A,由此可知,乙去过的城市为A.(2)由上可知:甲、乙、丙均为“p且q”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知丙是真命题,因此中国足球队得了第一名.点拨:熟悉p∧q、p∨q的命题形式.6.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;q:函数f(x)=-(5-2a)x是减函数.若p或q为真,p且q为假,求实数a的取值范围.答案:(-∞,-2]解析:【知识点】p或q、p且q命题的真假.【解题过程】设g(x)=x2+2ax+4.因为关于x的不等式x2+2ax+4>0对一切x∈R恒成立,所以函数g(x)的图象开口向上且与x轴没有交点,故Δ=4a2-16<0.∴-2<a<2,∴命题p:-2<a<2.函数f(x)=-(5-2a)x是减函数,则有5-2a>1,即a<2.∴命题q:a<2.由p或q为真,p且q为假,可知p和q一真一假.(1) 若p真q假,则此不等式组无解.(2)若p假q真,则a≤-2.综上,实数a的取值范围是(-∞,-2].点拨:解答这类问题的一般步骤:①求出命题p,q为真时参数的条件;②根据命题p∧q,p∨q的真假判定命题p,q的真假;③根据p,q的真假建立不等式(组),求出参数的取值范围.。
第二课时 1.3简单的逻辑联结词(二)教学要求:通过教学实例,了解逻辑联结词“且”、“或”、“非”的含义,使学生能正确地表述相关数学内容.教学重点:正确理解逻辑联结词“且”、“或”、“非”的含义,并能正确表述这“p q ∧”、“p q ∨”、“p ⌝”这些新命题.教学难点:简洁、准确地表述新命题“p q ∧”、“p q ∨”、“p ⌝”.教学过程:一、复习准备:1. 分别用“p q ∧”、“p q ∨”填空:(1)命题“6是自然数且是偶数”是 的形式;(2)命题“3大于或等于2”是 的形式;(3)命题“正数或0的平方根是实数”是 的形式.2. 下列两个命题间有什么关系?(1)7是35的约数;(2)7不是35的约数.二、讲授新课:1. 教学命题p ⌝:①一般地,对一个命题p 全盘否定,就得到一个新命题,记作p ⌝,读作“非p ”或“p 的否定.②规定:若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. ③例1:写出下列命题的否定,并判断它们的真假:(1)p :tan y x =是周期函数;(2)p :32<;(3)p :空集是集合A 的子集;(4)p :若220a b +=,则,a b 全为0;(5)p :若,a b 都是偶数,则a b +是偶数.(学生自练→个别回答→学生点评)④练习教材P20页 练习第3题⑤例2:分别指出由下列各组命题构成的“p q ∧”、“p q ∨”、“p ⌝”形式的复合命题的真假:(1)p :9是质数,q :8是12的约数;(2)p :1{1,2}∈,q :{1}{1,2}⊂;(3)p :{0}∅⊂,q :{0}∅=;(4)p :平行线不相交.2. 小结:逻辑联结词的理解及“p q ∧”、“p q ∨”、“p ⌝”这些新命题的正确表述和应用.三、巩固练习:1. 练习:判断下列命题的真假:(1)23≤;(2)22≤;(3)78≥.2. 分别指出由下列命题构成的“p q ∧”、“p q ∨”、“p ⌝”形式的新命题的真假:(1)p :π是无理数,q :π是实数;(2)p :23>,q :8715+≠;(3)p :李强是短跑运动员,q :李强是篮球运动员.3. 作业:教材P20页 习题第1、2、3题。
1.3 简单的逻辑联结词【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲;2.小组合作,动手实践。
【学习目标】1. 了解“或”“且”“非”逻辑联结词的含义;2. 掌握,,∧∨⌝的真假性的判断;p q p q p3. 正确理解p⌝的意义,区别p⌝与p的否命题;4. 掌握,,∧∨⌝的真假性的判断,关键在于p与q的真假的判断.p q p q p【重点】了解“或”“且”“非”逻辑联结词的含义;【难点】掌握,,∧∨⌝的真假性的判断,关键在于p与q的真假的判断.p q p q p一、自主学习1.预习教材P14~P18, 解决下列问题<1>“且“的意义问题:下列三个命题有什么关系?(1) 12能被3整除;(2)12能被4整除;(3)12能被3整除且能被4整除.新知:1.一般地,用逻辑联结词“且”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.2.规定:试试:判断下列命题的真假:(1)12是48且是36的约数;(2)矩形的对角线互相垂直且平分.反思:“或“的意义问题:下列三个命题有什么关系?(1) 27是7的倍数;(2)27是9的倍数;(3)27是7的倍数或是9的倍数.新知:1.一般地,用逻辑联结词“或”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.2.规定:(1)47是7的倍数或49是7的倍数;(2)等腰梯形的对角线互相平分或互相垂直.反思:“非“的意义问题:下列两个命题有什么关系?(1) 35能被5整除;(2)35不能被5整除;新知:1.一般地,对一个命题的全盘否定就得到一个新命题,记作“”,读作“”或“”.2.规定:试试:写出下列命题的否定并判断他们的真假:(1)2+2=5;(2)3是方程290x-=的根;(31=-二、典型例题1. “p或q为真命题”是“p且q为真命题”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题:(1)平行四边形对角线相等;(2)三角形两边的和大于或等于第三边;(3)三角形中最小角不大于60︒;(4)对角线相等的菱形为正方形.其中真命题有().A.1B.2C.3D.43.命题p:0不是自然数,命题q:π是无理数,在命题“p或q”“p且q”“非p”“非q”中假命题是,真命题是.4. 已知p:2x x-≥,q:,,||6∈∧⌝都是假命题,则x的值组成的集合为x Z p q q5、将下列命题用“且”联结成新命题并判断他们的真假:(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等;(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数6.判断下列命题的真假(1) 22≤;(2) 集合A是A B的子集或是A B的子集;(3) 周长相等的两个三角形全等或面积相等的两个三角形全等.(4)如果p q∧也一定是∨为真命题,那么p q∧为真命题,那么p q∨一定是真命题.反之,p q真命题。
课题:1.3简单的逻辑联结词(2) 第 课时 总序第 个教案 课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标: 知识与技能目标: (1)掌握逻辑联结词“非”的含义 (2)正确应用逻辑联结词“非”解决问题(3)掌握真值表并会应用真值表解决问题过程与方法目标:观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.情感态度价值目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.批 注教学重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容.教学难点:1、正确理解命题 “¬P ”真假的规定和判定.2、简洁、准确地表述命题 “¬P ”.教学用具: 多媒体教学方法: 归纳,分析教学过程:1、思考、分析问题1:下列各组命题中的两个命题间有什么关系?(1) ①35能被5整除; ②35不能被5整除;(2) ①方程x 2+x+1=0有实数根。
②方程x 2+x+1=0无实数根。
学生很容易看到,在每组命题中,命题②是命题①的否定。
2、归纳定义一般地,对一个命题p 全盘否定,就得到一个新命题,记作¬p读作“非p ”或“p 的否定”。
3、命题“¬p ”与命题p 的真假间的关系命题“¬p ”与命题p 的真假之间有什么联系?引导学生分析前面所举例子中命题p 与命题¬p 的真假性,概括出这两个命题的真假之间的关系的一般规律。
例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。
第(2)组命题中,命题①是假命题,而命题②是真命题。
由此可以看出,既然命题¬P 是命题P 的否定,那么¬P 与P 不能同时为真命题,也不能同时为假命题,也就是说,若p 是真命题,则¬p 必是假命题;若p 是假命题,则¬p 必是真命题;4、命题的否定与否命题的区别让学生思考:命题的否定与原命题的否命题有什么区别?p ¬P 真 假 假 真命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。
1.3简单的逻辑联结词(第1课时)(名师:魏杰)一、教学目标(一)学习目标1.掌握逻辑联结词“且、或”的含义;2.正确应用逻辑联结词“且、或”解决问题;3.掌握真值表并会应用真值表解决问题.(二)学习重点1.通过数学实例,了解逻辑联结词“且、或、非”的含义,使学生能正确地表述相关数学内容.(三)学习难点1.正确理解命题“p q ∧”与“p q ∨”真假的规定和判定;2.简洁、准确地表述命题“p q ∧”与“p q ∨”.二、教学设计(一)课前设计1.预习任务(1)“或”“且”叫做__________;(2)用联结词“或”联结命题p 和命题q ,记作_______,读作_________;(3)用联结词“且”联结命题p 和命题q ,记作_______,读作_________.【答案】 逻辑联结词 p q ∨ p 或q p q ∧ p 且q预习自测1.分别写出由下列命题构成的“p q ∧”与“p q ∨”式的命题.(1) :p π是无理数,:q e 不是无理数;(2) :p 方程2210x x ++=有两个相等的实数根,:q 方程2210x x ++=两根的绝对值相等.答案:(1)p q ∨:π是无理数或e 不是无理数;p q ∧:π是无理数且e 不是无理数;(2)p q ∨:方程2210x x ++=有两个相等的实数根或两根的绝对值相等; p q ∧:方程2210x x ++=有两个相等的实数根且两根的绝对值相等. 解析:【知识点】 命题p q ∧、p q ∨.点拨:掌握逻辑联结词的用法.2.指出下列命题的构成形式及构成它的简单命题.(1)分式2201x x x +-=-; (2)不等式220x x +->的解集是{|12}x x x ><-或答案:(1)是p q ∧的形式,其中2:20:10p x x q x +-=-≠;;(2)是p q ∨的形式,其中:p 不等式220x x +->的解集是{|1}x x >;:q 不等式220x x +->的解集是{|2}x x <-.解析:【知识点】命题p q ∧、p q ∨的判断.点拨:掌握逻辑联结词的用法.3.判断下列符合命题的真假.(1)菱形的对角线互相垂直平分;(2)若21x =,则2310x x ++=.答案:(1)命题是p q ∧的形式,真命题;(2)命题是p q ∨的形式,假命题. 解析:【知识点】命题的真假.点拨:掌握逻辑联结词的用法.4.命题:p 不等式2(1)10x a x -++≤的解集是∅;命题:q 函数()(1)x f x a =+在定义域内是增函数,如果p q ∧为假命题,p q ∨为真命题,求a 的取值范围. 答案:(3,0][1,)-+∞解析:【知识点】命题p q ∧、p q ∨真假的判断.【解题过程】命题:p 不等式2(1)10x a x -++≤的解集是∅,则2(1)40a ∆=+-<。
§1.3 简单的逻辑联结词教学目标:1.通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义;2.能正确地利用“或”、“且”、“非”表述相关的数学内容;3.知道命题的否定与否命题的区别.教学重点及难点:1.掌握真值表的方法;2.理解逻辑联结词的含义.教学过程:一、复习回顾问题:判断下面的语句是否正确.⑴125>;⑵3是12的约数;⑶3是12的约数吗?⑷0.4是整数;⑸5x>.象⑴⑵⑷这样可以判断正确或错误的语句称为命题,⑶⑸就不是命题.二、讲授新课例1:判断下面的语句是否为命题?若是命题,指出它的真假.⑴请全体同学起立!⑵20+>;x x⑶对于任意的实数a,都有210a+>;⑷x a=-;⑸91是素数;⑹中国是世界上人口最多的国家;⑺这道数学题目有趣吗?⑻若||||-=-,则x y a bx y a b-=-;⑼任何无限小数都是无理数.我们再来看几个复杂的命题:⑴10可以被2或5整除;⑵菱形的对角线互相垂直且平分;⑶0.5非整数.这里的“或”、“且”、“非”称为逻辑联结词.我们常用小写拉丁字母p,q,r,…表示命题,上面命题⑴⑵⑶的构成形式分别是:p或q;p且q;非p.⌝”,“⌝”读作“非”(或“并非”),表示“否定”.非p也叫做命题p的否定.非p记作“p思考:下列三个命题间有什么关系?⑴12能被3整除;⑵12能被4整除;⑶12能被3整除且能被4整除.一般地,用逻辑联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.规定:当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个是假命题时,p q∧是假命题.全真为真,有假即假.例1:将下列命题用“且”联结成新命题,并判断它的真假:⑴p :平行四边形的对角线互相平分;q :平行四边形的对角线相等.⑵p :菱形的对角线互相垂直;q :菱形的对角线互相平分.例2:用逻辑联结词“且”改写下列命题,并判断它们的真假:⑴1既是奇数,又是素数;⑵2和3都是素数.例3:分别指出下列命题的形式及构成它的简单命题.⑴24既是8的倍数,又是6的倍数;⑵李强是篮球运动员或跳水运动员;⑶平行线不相交.思考:下列三个命题间有什么关系?⑴27是7的倍数;⑵27是9的倍数;⑶27是7的倍数或是9的倍数.一般地,用逻辑联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作:p q ∨,读作:p 或q .规定:当p 、q 两个命题中有一个是真命题时,p q ∨是真命题;当p 、q 都是假命题时,p q∨是假命题.全假为假,有真即真.例1:判断下列命题的真假:⑴22≤;⑵集合A 是A B 的子集或是A B 的子集;⑶周长相等的两个三角形全等或面积相等的两个三角形全等.思考:如果p q ∧为真命题,那么p q ∨一定是真命题吗?反之,如果p q ∨为真命题,那么p q ∧一定是真命题吗?注:逻辑联结词中的“或”相当于集合中的“并集”,它与日常用语中的“或”的含义不同.日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”,可以是两个都选,但又不是两个都选,而是两个中至少选一个,因此,有三种可能的情况.逻辑联结词中的“且”相当于集合中的“并集”即两个必须都选.思考:下列命题间有什么关系?⑴35能被5整除;⑵35不能被5整除.一般地,对一个命题p 全盘否定,就得到一个新命题,记作:⌝p ,读作“非p ”或“p的否定”.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.例1:写出下列命题的否定,并判断它们的真假:⑴p:sin=是周期函数;y x⑵p:32<;⑶p:空集是集合A的子集;⑷p:π是无理数;⑸p:等腰三角形的两个底角相等;⑹p:等腰三角形底边上的高和底边上的中线重合.练习:1.判断下列命题的真假:⑴12是48且是36的约数;⑵矩形的对角线互相垂直且平分.2.判断下列命题的真假:⑴47是7的倍数或49是7的倍数;⑵等腰梯形的对角线互相平分或互相垂直.3.写出下列命题的否定,然后判断它们的真假:⑴225+=;=的根;。
课题:1.3.1简单的逻辑联结词(一)一、学习目标:1.了解逻辑联结词“且”,“或”,“非”的意义.2.能够判断命题“q p ∧”,“q p ∨”,“p ⌝”的真假.二、重点、难点:了解逻辑联结词“且”,“或”,“非”的意义.三、自学指导:导读:阅读课本1814p p -导思:1.下列三个命题间有什么关系? (1)12能被3整除. (2)12能被4整除.(3)12能被3整除且能被4整除.2.“p 且q ”命题如何定义?如何判断真假.3.下列三个命题间有什么关系? (1)27是7的倍数. (2)27是9的倍数.(3)27是7的倍数或是9的倍数.4.“P 或q ”命题如何定义?如何判断真假.5.下列两个命题间有什么关系? (1)35能被5整除. (2)35不能被5整除.6.“非P ”命题如何定义,如何判断真假.7.列出“且”,“或”,“非”的真值表.四、导练展示:1.分别写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形成的新命题,并判断其真假.(1)p:3是9的约数,q:3是18的约数。
(2)p:菱形的对角线相等,q :菱形的对角线互相垂直.(3)p:方程012=-+x x 的两实根符号相同.q :方程012=-+x x 的两 实根的绝对值相等.(4)p:π是有理数.q :π是无理数2.已知命题1p :函数x x y --=22在R 内为增函数;2p :函数x x y -+=22 在R 内为减函数.则在命题:211:p p q ∨,212:p p q ∧,213)(:p p q ∨⌝和)(:214p p q ⌝∧中,真命题是( )A.31,q qB.32,q qC.41,q qD.42,q q五、达标训练:1.写出下列命题的p ⌝形式,并判断真假. (1)若x+y 是偶数,则x,y 一定是奇数 (2)若abc=0,则a,b,c 中至少有一个为0.2.课本18p ,练习3. 课本,18p A 组1,2 六、反思小结。
[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P14~P17的内容,回答下列问题.(1)教材P14“思考”中的命题(3)与命题(1)、(2)之间有什么关系?提示:命题(3)是由命题(1)(2)使用联结词“且”联结得到的新命题.(2)教材P15“思考”中的命题(3)与命题(1)、(2)之间有什么关系?提示:命题(3)是由命题(1)(2)用联结词“或”联结得到的新命题.(3)教材P17“思考”中的命题(2)与命题(1)之间有什么关系?提示:命题(2)是命题(1)的否定.2.归纳总结,核心必记(1)用逻辑联结词“或”“且”“非”构成新命题①用联结词“且”把命题p和q联结起来,就得到一个新命题,记作p∧q,读作“p 且q”.②用联结词“或”把命题p和q联结起来,就得到一个新命题,记作p∨q,读作“p 或q”.③对一个命题p全盘否定,就得到一个新命题,记作,读作“非p”或“p的否定”.(2)含有逻辑联结词的命题的真假判断p q p∨q p∧q真真真真假真假真假假假真真假真假假假假真(1)“平面向量既有大小,又有方向”使用的逻辑联结词是什么?提示:且.(2)“a≥b”使用的逻辑联结词是什么?提示:或.(3)“方程x2-3=0没有有理根”使用的逻辑联结词是什么?提示:非.(4)“p∨q”为真是“p∧q”为真的什么条件?(充要、充分不必要、必要不充分、既不充分也不必要).提示:必要不充分.(5)命题的否定与否命题有什么不同?提示:命题的否定只否定命题的结论,而否命题,既否定命题的条件,又否定命题的结论.[课前反思]通过以上预习,必须掌握的几个知识点.(1)用逻辑联结词“且”、“或”、“非”构成的命题各是什么?其记法和读法各是什么?;(2)含逻辑联结词的命题的真假性有什么特点?;(3)“命题的否定”与“否命题”有什么不同?.讲一讲1.指出下列命题的形式及构成它的命题.(1)向量既有大小又有方向;(2)矩形有外接圆或有内切圆;(3)集合A⊆(A∪B);(4)正弦函数y=sin x(x∈R)是奇函数并且是周期函数.[尝试解答](1)是“p∧q”形式的命题.其中p:向量有大小,q:向量有方向.(2)是“p∨q”形式的命题.其中p:矩形有外接圆,q:矩形有内切圆.(3)是“”形式的命题.其中p:A⊆(A∪B).(4)是“p∧q”形式的命题.其中p:正弦函数y=sin x(x∈R)是奇函数,q:正弦函数y=sin x(x∈R)是周期函数.正确理解逻辑联结词“或”“且”“非”的含义是解决这类问题的关键,有些命题中并不一定包含这些联结词,这时要结合命题的具体含义分析这些命题的构成.练一练1.指出下列命题的构成形式及构成它们的简单命题.(1)李明是男生且是高一学生.(2)方程2x2+1=0没有实根.(3)12能被3或4整除.解:(1)是“p且q”形式.其中p:李明是男生;q:李明是高一学生.(2)是“非p”形式,其中p:方程2x2+1=0有实根.(3)是“p或q”形式.其中p:12能被3整除;q:12能被4整除.[思考1]若p为真命题,q为假命题,则p∨q,p∧q,的真假性是什么?名师指津:p∨q为真,p∧q为假,为假.[思考2]若p∧q为真命题,那么p∨q一定是真命题吗?反之,若p∨q为真命题,那么p∧q一定是真命题吗?名师指津:若p∧q为真,则p∨q一定为真;若p∨q为真,则p∧q的真假性不能确定.[思考3]p与綈p的真假性一定相反吗?名师指津:若p是真命题,则一定是假命题;若p是假命题,则一定是真命题.讲一讲2.分别写出由下列各组命题构成的“p∨q”“p∧q”“”形成的命题,并判断其真假.(1)p:等腰梯形的对角线相等,q:等腰梯形的对角线互相平分;(2)p :函数y =x 2-2x +2没有零点,q :不等式x 2-2x +1>0恒成立. [尝试解答] (1)p ∨q :等腰梯形的对角线相等或互相平分,真命题. p ∧q :等腰梯形的对角线相等且互相平分,假命题.:等腰梯形的对角线不相等,假命题.(2)p ∨q :函数y =x 2-2x +2没有零点或不等式x 2-2x +1>0恒成立,真命题. p ∧q :函数y =x 2-2x +2没有零点且不等式x 2-2x +1>0恒成立,假命题.:函数y =x 2-2x +2有零点,假命题.(1)命题结构的两种类型及判断方法①从含有联结词“且”“或”“非”或者与之等价的词语上进行判断. ②若命题中不含有联结词,则从命题所表达的数学意义上进行判断. (2)判断命题真假的三个步骤①明确命题的结构,即命题是“p ∧q ”“p ∨q ”还是“”;②对命题p 和q 的真假作出判断; ③由“p ∧q ”“p ∨q ”“ ”的真假判断方法给出结论.练一练2.分别写出下列含有逻辑联结词的命题的形式,并判断其真假. (1)等腰三角形顶角的平分线平分且垂直于底边; (2)1或-1是方程x 2+3x +2=0的根; (3)(A ∩B )⊆B .解:(1)这个命题是“p ∧q ”的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真,q 真,则“p ∧q ”真,所以该命题是真命题.(2)这个命题是“p ∨q ”的形式,其中p :1是方程x 2+3x +2=0的根,q :-1是方程x 2+3x +2=0的根,因为p 假,q 真,则“p ∨q ”真,所以该命题是真命题.(3)这个命题是“”的形式,其中p :(A ∩B )⊆B ,因为p 真,则“”假,所以该命题是假命题.讲一讲3.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根.若使p ∨q 为真,p ∧q 为假,求实数m 的取值范围.[尝试解答] 由⎩⎪⎨⎪⎧Δ1=4m 2-4>0,x 1+x 2=-2m >0,得m <-1,所以p :m <-1.由Δ2=4(m -2)2-4(-3m +10)<0,知-2<m <3. 所以q :-2<m <3.由p ∨q 为真,p ∧q 为假可知,命题p ,q 一真一假,①当p 真q 假时,⎩⎪⎨⎪⎧m <-1,m ≥3或m ≤-2,此时m ≤-2,②当p 假q 真时,⎩⎪⎨⎪⎧m ≥-1,-2<m <3,此时-1≤m <3.综上所述,实数m 的取值范围是(-∞,-2]∪[-1,3).解决由含有逻辑联结词的三种命题的真假求参数的取值范围问题时,(1)由命题p ∧q ,p ∨q ,非p 的真假确定命题p 、q 可能的真假情况,依次讨论求解;(2)注意补集思想的应用,当“p 假”不易求解时改为求“p 真”时参数的取值范围构成的集合的补集.练一练3.设命题p :“方程x 2+mx +1=0有两个实根”,命题q :“方程4x 2+4(m -2)x +1=0无实根”,若p ∧q 为假,为假,求实数m 的取值范围.解:若方程x 2+mx +1=0有两个实根, 则Δ1=m 2-4≥0, 解得m ≤-2或m ≥2, 即p :m ≤-2或m ≥2.若方程4x 2+4(m -2)x +1=0无实根, 则Δ2=16(m -2)2-16<0, 解得1<m <3, 即q :1<m <3. 由于p ∧q 为假, 则p ,q 至少有一个为假; 又为假,则q 真,所以p 为假,即p 假q 真,从而有⎩⎪⎨⎪⎧-2<m <2,1<m <3,解得1<m <2,所以,实数m 的取值范围是(1,2).——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是含逻辑联结词的命题的真假判断,难点是根据含逻辑联结词的命题的真假性求参数的取值范围.2.本节课要重点掌握的规律方法(1)判断含逻辑联结词的命题真假的方法,见讲2.(2)根据含逻辑联结词命题的真假求参数的方法,见讲3.3.注意以下三个等价关系(1)p∧q为真⇔p和q同时为真;(2)p∨q为真⇔p和q中至少有一个为真;(3)p为真⇔为假.。
高中数学专题1.3 简单的逻辑联结词(1)教案新人教A版选修2-1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题1.3 简单的逻辑联结词(1)教案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题1.3 简单的逻辑联结词(1)教案新人教A版选修2-1的全部内容。
简单的逻辑联结词(1)【教学目标】1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q"的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
【教法指导】重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假【教学过程】☆情境引入☆要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你能运用“或"“且”的方法解决吗?☆探索新知☆1.一般地,用联结词“且”把命题p和q联结起来,就得到一个新命题,记作__________,读作p且q.2.关于逻辑联结词“且”(1)“且"的含义与日常语言中的“并且”、“及"、“和”相当,是连词“既……又……"的意思,二者须__________成立.(2)从如图所示串联开关电路上看,当两个开关S1、S2__________时,灯才能亮;当两个开关S、S2中一个不闭合或两个都不闭合时,灯都不会亮.1(3)从集合角度理解“且"即集合运算“__________”.设命题p:x∈A,命题q:x∈B,则p∧q⇔x∈A,且x∈B⇔x∈(A∩B).(4)“p∧q”是这样的一个复合命题:当p、q都是真命题时,p∧q是__________命题;当p、q两个命题中有一个命题是假命题时,p∧q是__________命题.3.一般地,用联结词“或”把命题p和q联结起来,就得到一个新命题,记作__________,读作p或q。
1.3简单的逻辑联结词(第2课时)一、教学目标(一)学习目标1.掌握逻辑联结词“非”的含义;2.正确应用逻辑联结词“非”解决问题;3.掌握真值表并会应用真值表解决问题.(二)学习重点1.通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容.(三)学习难点1.正确理解命题“p⌝”真假的规定和判定;2.简洁、准确地表述命题“p⌝”.二、教学设计(一)课前设计1.预习任务(1)逻辑联结词“非”是从日常语言中的________等抽象而来的;(2)一般地,对命题p加以否定,就得到一个新命题,记作________,读作_______. (3)命题的否定要对命题的结论进行否定,主要是否定命题中的关键词,如把:“是”改为________,“大于”改为__________等;(4)若p是真命题,则p⌝必是__________;若p是假命题,则p⌝必是__________. 【答案】不是、全盘否定、问题的反面p⌝非p或者p的否定不是不大于假命题真命题预习自测1.已知p:2+2=5;q:3>2,则下列判断错误的是( )A.“p或q”为真,“q⌝”为假B.“p且q”为假,“p⌝”为真C.“p且q”为假,“p⌝”为假D.“p或q”为真,“p且q”为假答案:C解析:【知识点】含有逻辑连结词的命题真假的判断.【解题过程】p为假命题,q为真命题,所以“p或q”为真,“p且q”为假,“p⌝”为真,“q⌝”为假.点拨:先判断命题p、q的真假.2.已知全集S=R,A⊆S,B⊆S,若命题p:2∈(A∪B),则命题“p⌝”是( )A.2∉AB.2∈∁S BC.2∉A∩BD.2∈(∁S A)∩(∁S B)答案:D解析:【知识点】命题的否定与集合间的关系.【解题过程】因为2∈(A∪B),所以p⌝:2∉(A∪B),即2∉A且2∉B,所以2∈∁S A且2∈∁S B,所以2∈(∁S A)∩(∁S B).点拨:进行命题的否定时,逻辑联结词要作相应变化.3.下列命题:①2010年2月14日既是春节,又是情人节;②10的倍数一定是5的倍数;③梯形不是矩形.其中使用逻辑联结词的命题有( )A.0个B.1个C.2个D.3个答案:C解析:【知识点】逻辑连结词的判断.【解题过程】①中“既又”表示逻辑连结词“且”;②为简单的陈述句;③含有逻辑连结词“非”.点拨:常用逻辑连结词的判断.4.设p、q是两个命题,则新命题“()且为假”的充要条件是( )⌝或为假,p qp qA.p、q中至少有一个为真B .p 、q 中至少有一个为假C .p 、q 中有且只有一个为假D .p 为真,q 为假答案:C解析:【知识点】逻辑连结词的判断.【解题过程】()p q ⌝或为假,则p q 或为真,所以p 、q 中至少有一个为真;p q 且为假,则p 、q 中至少有一个为假,所以综上可得p 、q 一真一假,故选C. 点拨:常用逻辑连结词的判断.(二)课堂设计1.知识回顾(1)逻辑联结词“且、或”的含义;(2)命题“p q ∧”与“p q ∨”真假的规定和判定.2.问题探究探究一 命题的否定●活动① 设置情景,引入概念下列各组命题中的两个命题间有什么关系?(1):p 平面内垂直于同一直线的两条直线平行,:q 平面内垂直于同一直线的两条直线不平行.(2):p sin y x =是周期函数,:q sin y x =不是周期函数.学生容易得到:在第(1)(2)组命题中,命题p 是命题q 的否定.【设计意图】从具体问题入手,有利于学生主动参与.●活动② 结合例子,提取概念一般地,对命题p 加以否定,就得到一个新命题,记作p ⌝.读作“非p ”或者“p 的否定”.让学生们自己随便说几个命题,并得到所说命题的否定,加深印象.问题:命题“p ⌝”和命题“p ”的真假之间有什么关系?引导学生通过活动①中命题的真假性概括出命题“p ⌝”和命题“p ”的真假关系的一般结论.活动①中的两组命题均是一真一假,由此看出命题“p ⌝”和命题“p ”不能同时为真,也不能同时为假,即必然一真一假.【设计意图】结合实例让学生觉得更有说服力.●活动③ 类比旧知,巩固概念问题:前面我们学习和否命题,那么否命题和命题的否定有什么区别? 提出问题后引导学生思考.请写出命题“若3x >,则1x >”的否命题和命题的否定,借此回答刚刚的问题. 否命题:若3x ≤,则1x ≤;命题的否定:若3x >,则1x ≤.总结:否命题是将命题的条件和结论进行否定,命题的否定只否定结论.事实上,原命题与否命题真假性无关系,但原命题与命题的否定一定一真一假.【设计意图】类比让知识点更加清晰问题:在学“或”“且”的时候,我们类比集合中的并集和交集理解,那么如何从集合的角度理解“非”.呢?补集思想,设}|{p x x A 满足=,则“p ⌝”对应“}|{A x U x x A C U ∉∈=且”. 问题:请同学们给出下列常见关键词的否定(1)等于:不等于(大于或小于);(2)大于:不大于(小于或等于);(3)都是:不都是(部分否定);(4)所有:某些(或部分);(5)至多n 个:至少1n +个;(6)任意一个:某一个;(7)p 或q :非p 且非q ;(8)p 且q :非p 或非q .●活动④ 运用反馈例1 命题“,a b 不全为0”是指( )A.,a b 全不为0B.,a b 最多有一个为0C.,a b 至少有一个为0D.,a b只有一个不为0答案:B.解析:【知识点】命题的否定.【解题过程】运用概念.点拨:命题“,a b全为0”的否定.同类训练A B A⊆/是_______形式;该命题是________命题.(填“真”,“假”)【知识点】命题的否定.【数学思想】【解题过程】运用概念.【思路点拨】集合的基本知识.【答案】非p假.例2 写出下列命题的“非p”命题,并判断其真假:(1)若m>1,则方程x2-2x+m=0有实数根.(2)平方和为0的两个实数都为0.(3)若△ABC是锐角三角形,则△ABC的任何一个内角是锐角.(4)若abc=0,则a,b,c中至少有一为0.(5)若(x-1)(x-2)=0,则x≠1且x≠2.答案:(1)若m>1,则方程x2-2x+m=0无实数根(真);(2)平方和为0的两个实数不都为0(假);(3)若△ABC是锐角三角形,则△ABC的任何一个内角不都是锐角(假);(4)若abc=0,则a,b,c中没有一个为0(假);(5)若(x-1)(x-2)=0,则x=1或x=2(真).解析:【知识点】命题的否定.【解题过程】运用概念.点拨:命题的否定只否定结论.同类训练指出下列命题的形式,并判断真假.(1)不等式|x+2|≤0没有实数解;(2)若m2+n2+a2+b2=0,则实数m、n、a、b不全为零.答案:(1)此命题是“p⌝”的形式,其中p:不等式|x+2|≤0有实数解.因为x =-2是该不等式的一个解,所以命题p 为真命题,即非p 为假命题,所以已知命题为假命题.(2)此命题是“p ⌝”的形式,其中p :若m 2+n 2+a 2+b 2=0,则实数m 、n 、a 、b 全为零.因为p 是真命题,所以已知命题为假命题. 解析:【知识点】命题的否定.【解题过程】运用概念.点拨:命题的否定只否定结论.例3 命题p :“存在实数m ,使得210x mx ++=有实数根”,则“非p ”为:_________.【知识点】命题的否定.【解题过程】 运用概念.【思路点拨】 命题的否定只否定结论,但此题要把存在改成任意.【答案】 任意实数m ,方程210x mx ++=无实数根.同类训练 命题p :“任意实数m ,均有210m m ++>”,则“非p ”为:_________. 答案:存在实数m ,使得210m m ++≤.解析:【知识点】命题的否定.【解题过程】运用概念.点拨:命题的否定只否定结论,但此题要把任意改成存在.3.课堂总结知识梳理1.逻辑联结词“非”的含义;2.命题“p ⌝”真假的判定;3.命题的否定和否命题的区别.重难点归纳1.命题的否定只需要否定结论,而否命题是结论和条件均要否定;2.命题的否定和原命题一真一假,而否命题和原命题真假性没有关系.(三)课后作业基础型 自主突破1.已知命题p :函数12x y -=的图象关于直线x =1对称,命题q :函数y =x +1x 在(0,+∞)上是减函数,下面结论正确的是( )A.命题p且q是真命题B.命题“p且非q”是假命题C.命题“非p或q”是真命题D.命题“非p且非q”是假命题答案:D.解析:【知识点】命题真假的判断.【解题过程】∵p真q假,∴p⌝为真,∴选D.⌝为假,q点拨:命题“p⌝”和命题“p”必然一真一假.2.“a2+b2≠0”的含义是( )A.a,b不全为0B.a,b全不为0C.a,b至少有一个为0D.a不为0且b为0,或b不为0且a为0答案:A解析:【知识点】对命题的理解.点拨:若两个数的平方和等于0,则这两个数都等于0;若两个数的平方和不等于0,则这两个数不全为0.3.命题“若a、b都是偶数,则a+b是偶数”的逆否命题为________.答案:若a+b不是偶数,则a、b不都是偶数.解析:【知识点】逆否命题的形式.点拨:“都是”的否定形式为“不都是”.4.命题“若x+y>0,xy>0,则x>0,y>0”的否命题为________.答案:若x+y>0,xy>0,则x≤0,y≤0.解析:【知识点】否命题的形式.点拨:条件不变5.用反证法证明“a、b、c中至少有一个大于0”的假设内容应是________.答案:a≤0且b≤0且c≤0(或a、b、c全都小于等于0).解析:【知识点】否定词.点拨:“至少有一个大于0”的否定为“全都小于等于0”.6.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数.试判断以下四个命题的真假:①(⌝p )∨q ②p ∧q ③(⌝p )∧(⌝q ) ④(⌝p )∨(⌝q ). 答案:①假;②假;③假;④真.解析:【知识点】含有逻辑联结词的命题真假的判断.【解题过程】命题p :所有有理数都是实数是真命题,命题q :正数的对数都是负数是假命题.所以⌝p 为假,⌝q 为真.①(⌝p )∨q 为假;②p ∧q 为假,③(⌝p )∧(⌝q )为假,④(⌝p )∨(⌝q )为真. 点拨:“至少有一个大于0”的否定为“全都小于等于0”.能力型 师生共研7.命题p :方程x 2+mx +1=0有两个不等的正实数根,命题q :方程4x 2+4(m +2)x +1=0无实数根,若“p 或q ”为真命题,求m 的取值范围.答案:m ∈(-∞,-1)解析:【知识点】p 或q .【解题过程】“p 或q ”为真命题,则p 真q 假,或p 假q 真,或q 和p 都是真命题.当p 为真命题时,则⎪⎩⎪⎨⎧>=>-=+>-=∆0100421212x x m x x m ,得m <-2;当q 为真命题时,则∆=16(m +2)2-16<0,得-3<m <-1;当q 和p 都是真命题时,得-3<m <-2.∴m ∈(-∞,-1)点拨:“p 或q ”为真命题有三种情况:(1)p 真q 假;(2)p 假q 真;(3)q 真p 真.8.已知a 、b ∈R ,设p :|a |+|b |>|a +b |,q :函数y =x 2-x +1在(0,+∞)上是增函数,那么命题:p 或q 、p 且q 、⌝p 中的真命题是________.答案:⌝p解析:【知识点】含有逻辑联结词的命题真假的判断.【解题过程】对于p ,当a >0,b >0时,|a |+|b |=|a +b |,故p 假,⌝p 为真;对于q ,抛物线y =x 2-x +1的对称轴为x =12,故q 假,所以p 或q 假,p 且q 假.点拨:这里⌝p 应理解成|a |+|b |>|a +b |不恒成立,而不是|a |+|b |≤|a +b |. 探究型 多维突破9.已知下列三个关于x 的方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个有实根,求实数a 的取值范围. 答案:),1()23,(+∞---∞ 解析:【知识点】否定词.【解题过程】设三个关于x 的方程:x 2+4ax -4a +3=0……①,x 2+(a -1)x +a 2=0……②,x 2+2ax -2a =0……③全都没有实根,则⎪⎩⎪⎨⎧<--=∆<--=∆<+--=∆0)2(4)2(04)1(0)34(4)4(2322221a a a a a a ,即⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--<><<-021,312123a a a a 或,得123-<<-a ∴23-≤a ,或a ≥-1. 所以三个关于x 的方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个有实根,实数a 的取值范围为),1()23,(+∞---∞ . 点拨:“至少有一个”的否定为“一个也没有”.10.已知命题p :⎩⎨⎧ x +3≥0,x -10≤0,命题q :2-m ≤x ≤2+m ,m >0,若⌝p 是⌝q 的必要不充分条件,求实数m 的取值范围.答案:[8,+∞)解析:【知识点】逆否命题的等价性.【解题过程】p :x ∈[-3,10],q :x ∈[2-m,2+m ],m >0∵⌝p 是⌝q 的必要不充分条件,∴p ⇒q 且q ⇒/p .∴[-3,10][2-m,2+m ]. ∴⎩⎨⎧ m >0,2-m ≤-3,2+m ≥10.∴m ≥8.故实数m 的取值范围为[8,+∞).点拨:⌝p是⌝q的必要不充分条件,则p⇒q且q⇒/p.自助餐1.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是( )A.¬p∨qB.p∧qC.¬p∧¬qD.¬p∨¬q答案:D.解析:【知识点】含有逻辑联结词的命题真假的判断.【解题过程】不难判断命题p为真命题,命题q为假命题,从而上面叙述中只有¬p∨¬q为真命题.点拨:首先判断命题p、q的真假.2.已知命题p:∃x∈R,cos x=54;命题q:∀x∈R,x2-x+1>0,则下列结论正确的是( )A.命题p∨q是假命题B.命题p∧q是真命题C.命题(¬p)∧(¬q)是真命题D.命题(¬p)∨(¬q)是真命题答案:D.解析:【知识点】含有逻辑联结词的命题真假的判断.【解题过程】易判断p为假命题,q为真命题,从而只有选项D正确.点拨:首先判断命题p、q的真假.3.命题p:{2}∈{1,2,3},q:{2}⊆{1,2,3},对命题的判断如下:①p或q为真;②p或q为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中判断正确的序号是________(填上你认为正确的所有序号).答案:①④⑤⑥解析:【知识点】含有逻辑联结词的命题真假的判断.【解题过程】因为命题p假、q真,根据真值表,命题可以判定p且q为假、非p 为真、非q 为假.点拨:首先判断命题p 、q 的真假.4. 若命题p :不等式ax +b >0的解集为⎩⎨⎧⎭⎬⎫x |x >-b a ,q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b },则“p 或q ”“p 且q ”“⌝p ”形式的命题中的真命题是________.答案:⌝p解析:【知识点】含有逻辑联结词的命题真假的判断.【解题过程】∵p 、q 均为假命题,∴“p 或q ”、“p 且q ”为假命题,“⌝p ”为真命题.点拨:首先判断命题p 、q 的真假.5.下列四个命题:①任意x ∈R ,x 2+2x +3>0;②若命题“p 且q ”为真命题,则命题p 、q 都是真命题;③若p 是⌝q 的充分而不必要条件,则⌝p 是q 的必要而不充分条件. 其中真命题的序号为________.(将符合条件的命题序号全填上)答案:①②③.解析:【知识点】充分、必要条件与命题真假的判断.【解题过程】①因为0∆>恒成立,为真命题;②p 且q 为真,则p 真q 真;③“p 是⌝q 的充分而不必要条件”的逆否命题为“⌝p 是q 的必要而不充分条件” . 点拨:③利用逆否命题的等价性.6.已知2:7100p x x -+<,22:430q x mx m -+<,其中0m >. 若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围. 答案:523m ≤≤. 解析:【知识点】充分必要条件.【解题过程】易知p 是q 的充分不必要条件,又:25,:3p x q m x m <<<<,所以235m m ≤≥且.点拨:q⌝的充分不必要条件等价为p是q的充分不必要条件.⌝是p。
1.3 简单的逻辑联结词导学目标:1.了解逻辑联结词“或、且、非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.课前准备区——回扣教材 夯实基础自主梳理1.逻辑联结词命题中的或,且,非叫做逻辑联结词.“p 且q ”记作p ∧q ,“p 或q ”记作p ∨q ,“非p ”记作綈p .2.命题p ∧q ,p ∨q3.(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题,可用符号简记为∀x ∈M ,p (x ),它的否定∃x ∈M ,綈p (x ).(2)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做特称命题,可用符号简记为∃x ∈M ,p (x ),它的否定∀x ∈M ,綈p (x ).自我检测1.命题“∃x ∈R ,x 2-2x +1<0”的否定是( )A .∃x ∈R ,x 2-2x +1≥0 B.∃x ∈R ,x 2-2x +1>0C .∀x ∈R ,x 2-2x +1≥0 D.∀x ∈R ,x 2-2x +1<02.若命题p :x ∈A ∩B ,则綈p 是( )A .x ∈A 且x ∉B B .x ∉A 或x ∉BC .x ∉A 且x ∉BD .x ∈A ∪B3.若p 、q 是两个简单命题,且“p ∨q ”的否定是真命题,则必有( )A .p 真q 真B .p 假q 假C .p 真q 假D .p 假q 真4.下列命题中的假命题是( )A .∀x ∈R,2x -1>0B .∀x ∈N *,(x -1)2>0C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =25.下列4个命题:p 1:∃x ∈(0,+∞),(12)x <(13)x ; p 2:∃x ∈(0,1),log 12x >log 13x ; p 3:∀x ∈(0,+∞),(12)x >log 12x ; p 4:∀x ∈(0,13),(12)x <log 13x . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4课堂活动区——突破考点 研析热点探究点一 判断含有逻辑联结词的命题的真假例1 写出由下列各组命题构成的“p ∨q ”、“p ∧q ”、“綈p ”形式的复合命题,并判断真假.(1)p :1是素数;q :1是方程x 2+2x -3=0的根;(2)p :平行四边形的对角线相等;q :平行四边形的对角线互相垂直;(3)p :方程x 2+x -1=0的两实根的符号相同;q :方程x 2+x -1=0的两实根的绝对值相等.解题导引 正确理解逻辑联结词“或”、“且”、“非”的含义是解题的关键,应根据组成各个复合命题的语句中所出现的逻辑联结词进行命题结构与真假的判断.其步骤为:①确定复合命题的构成形式;②判断其中简单命题的真假;③根据其真值表判断复合命题的真假.解 (1)p ∨q :1是素数或是方程x 2+2x -3=0的根.真命题.p ∧q :1既是素数又是方程x 2+2x -3=0的根.假命题.綈p :1不是素数.真命题.(2)p ∨q :平行四边形的对角线相等或互相垂直.假命题.p ∧q :平行四边形的对角相等且互相垂直.假命题.綈p :有些平行四边形的对角线不相等.真命题.(3)p ∨q :方程x 2+x -1=0的两实根的符号相同或绝对值相等.假命题.p ∧q :方程x 2+x -1=0的两实根的符号相同且绝对值相等.假命题.綈p :方程x 2+x -1=0的两实根的符号不相同.真命题.变式迁移1 (2011·厦门月考)已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④[答案] D[解析] 命题p :∃x ∈R ,使tan x =1是真命题,命题q :x 2-3x +2<0的解集是{x |1<x <2}也是真命题,∴①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题. 探究点二 全(特)称命题及真假判断例2 判断下列命题的真假.(1)∀x ∈R ,都有x 2-x +1>12. (2)∃α,β使cos(α-β)=cos α-cos β.(3)∀x ,y ∈N ,都有x -y ∈N .(4)∃x 0,y 0∈Z ,使得2x 0+y 0=3.解题导引 判定一个全(特)称命题的真假的方法:(1)全称命题是真命题,必须确定对集合中的每一个元素都成立,若是假命题,举反例即可.(2)特称命题是真命题,只要在限定集合中,至少找到一个元素使得命题成立.解 (1)真命题,因为x 2-x +1=(x -12)2+34≥34>12. (2)真命题,如α=π4,β=π2,符合题意. (3)假命题,例如x =1,y =5,但x -y =-4 N .(4)真命题,例如x 0=0,y 0=3符合题意.变式迁移2 (2011·日照月考)下列四个命题中,其中为真命题的是( )A .∀x ∈R ,x 2+3<0B .∀x ∈N ,x 2≥1C .∃x ∈Z ,使x 5<1D .∃x ∈Q ,x 2=3[答案] C[解析] 由于∀x ∈R 都有x 2≥0,因而有x 2+3≥3,所以命题“∀x ∈R ,x 2+3<0”为假命题;由于0∈N ,当x =0时,x 2≥1不成立,所以命题“∀x ∈N ,x 2≥1”为假命题;由于-1∈Z ,当x =-1时,x 5<1,所以命题“∃x ∈Z ,使x 5<1”为真命题;由于使x 2=3成立的数只有±3,而它们都不是有理数,因此没有任何一个有理数的平方能等于3,所以命题“∃x ∈Q ,x 2=3”为假命题. 探究点三 全称命题与特称命题的否定例3 写出下列命题的“否定”,并判断其真假.(1)p :∀x ∈R ,x 2-x +14≥0; (2)q :所有的正方形都是矩形;(3)r :∃x ∈R ,x 2+2x +2≤0;(4)s :至少有一个实数x ,使x 3+1=0.解题导引 (1)全(特)称命题的否定与一般命题的否定有着一定的区别,全(特)称命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可.(2)要判断“綈p ”命题的真假,可以直接判断,也可以判断p 的真假.因为p 与綈p 的真假相反且一定有一个为真,一个为假.解 (1)綈p :∃x ∈R ,x 2-x +14<0,这是假命题, 因为∀x ∈R ,x 2-x +14=(x -12)2≥0恒成立,即p 真,所以綈p 假. (2)綈q :至少存在一个正方形不是矩形,是假命题.(3)綈r :∀x ∈R ,x 2+2x +2>0,是真命题,这是由于∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0成立.(4)綈s :∀x ∈R ,x 3+1≠0,是假命题,这是由于x =-1时,x 3+1=0.变式迁移3 (2009·天津)命题“存在x 0∈R,2x 0≤0”的否定是( )A .不存在x 0∈R,2x 0>0B .存在x 0∈R,2x 0≥0C .对任意的x ∈R,2x ≤0D .对任意的x ∈R,2x >0[答案] D[解析] 本题考查全称命题与特称命题的否定.原命题为特称命题,其否定应为全称命题,而“≤”的否定是“>”,所以其否定为“对任意的x ∈R,2x >0”.转化与化归思想的应用例 (12分)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,求实数a 的取值范围.【答题模板】解由“p且q”是真命题,则p为真命题,q也为真命题.[3分]若p为真命题,a≤x2恒成立,∵x∈[1,2],∴a≤1.[6分]若q为真命题,即x2+2ax+2-a=0有实根,Δ=4a2-4(2-a)≥0,即a≥1或a≤-2,[10分]综上,所求实数a的取值范围为a≤-2或a=1.[12分]【突破思维障碍】含有逻辑联结词的命题要先确定构成命题的(一个或两个)命题的真假,求出参数存在的条件,命题p转化为恒成立问题,命题q转化为方程有实根问题,最后再求出含逻辑联结词的命题成立的条件.若直接求p成立的条件困难,可转化成求綈p成立的条件,然后取补集.【易错点剖析】“p且q”为真是全真则真,要区别“p或q”为真是一真则真,命题q就是方程x2+2ax +2-a=0有实根,所以Δ≥0.不是找一个x0使方程成立.1.逻辑联结词“或”“且”“非”的含义的理解.(1)“或”与日常生活用语中的“或”意义有所不同,日常用语“或”带有“不可兼有”的意思,如工作或休息,而逻辑联结词“或”含有“同时兼有”的意思,如x<6或x>9.(2)命题“非p”就是对命题“p”的否定,即对命题结论的否定;否命题是四种命题中的一种,是对原命题条件和结论的同时否定.2.判断复合命题的真假,要首先确定复合命题的构成形式,再指出其中简单命题的真假,最后根据真值表判断.3.全称命题“∀x∈M,p(x)”的否定是一个特称命题“∃x∈M,綈p(x)”,特称命题“∃x∈M,p(x)”的否定是一个全称命题“∀x∈M,綈p(x)”.答 案自我检测1.[答案] C[解析] 因要否定的命题是特称命题,而特称命题的否定为全称命题.对x 2-2x +1<0的否定为x 2-2x +1≥0,故选C.2.[答案] B[解析] ∵“x ∈A ∩B ”⇔“x ∈A 且x ∈B ”,∴綈p :x ∉A 或x ∉B .3.[答案] B[解析] ∵“p ∨q ”的否定是真命题,∴“p ∨q ”是假命题,∴p ,q 都假.4.[答案] B[解析] 对于B 选项x =1时,(x -1)2=0.5.[答案] D[解析] 取x =12,则log 12x =1,log 13x =log 32<1,p 2正确. 当x ∈(0,13)时,(12)x <1,而log 13x >1,p 4正确.。