第五章 析氢腐蚀和吸氧腐蚀
- 格式:pptx
- 大小:1.09 MB
- 文档页数:40
析氢腐蚀和吸氧腐蚀的电极反应式
负极都是Fe-2e-=Fe2+
正极:
吸氧腐蚀:2H2O+O2+4e-=4OH-
析氢腐蚀:2H++2e-=H2↑
铁(iron)是一种金属元素,原子序数为26,铁单质化学式:Fe,平均相对原子质量为55.845。
纯铁是白色或者银白色的,有金属光泽。
熔点1538℃、沸点2750℃,能溶于强酸和中强酸,不溶于水。
铁有0价、+2价、+3价、+4价、+5价和+6价,其中+2价和+3价较常见,+4价、+5价和+6价少见。
铁在生活中分布较广,占地壳含量的4.75%,仅次于氧、硅、铝,位居地壳含量第四。
纯铁是柔韧而延展性较好的银白色金属,用于制发电机和电动机的铁芯,铁及其化合物还用于制磁铁、药物、墨水、颜料、磨料等,是工业上所说的“黑色金属”之一。
扩展资料:
铁的物理性质:
外观与形状:纯铁是带有银白色金属光泽的金属晶体,通常情况下呈灰色到灰黑高纯铁丝色无定形细粒或粉末。
有良好的延展性、导电、导热性能。
有很强的铁磁性,属于磁性材料。
密度 : 7.874 g/cm3
比热容:460J/(kg·℃)。
声音在铁中的传播速率:5120m/s。
纯铁质地软,不过如果是铁与其他金属的合金或者是掺有杂质的铁,通常情况下熔点降低,硬度增大。
晶体结构:面心立方和体心立方。
原电池吸氧腐蚀和析氢腐蚀
原电池是一种将化学能转化为电能的装置,它由两个不同金属和一个电解质组成。
在使用过程中,原电池可能发生吸氧腐蚀和析氢腐蚀,这会影响其性能和寿命。
吸氧腐蚀是指当原电池处于开路状态时,电解质中的氧气会与金属发生反应,导致金属表面产生氧化物。
这种腐蚀会降低原电池的电势差和电流输出,甚至导致电池失效。
为了避免吸氧腐蚀,可以在电池使用后及时加盐水或其他还原剂。
析氢腐蚀是指当原电池处于闭路状态时,电解质中的水分解产生氢气,并在金属表面析出。
这种腐蚀会导致金属表面出现气孔、气泡和裂纹,甚至引起电池爆炸。
为了避免析氢腐蚀,可以选择合适的金属材料和电解质,以及控制电流密度和电池温度。
总之,吸氧腐蚀和析氢腐蚀是原电池使用过程中需要注意的问题,正确的使用和维护可以延长电池寿命并保证其正常工作。
- 1 -。
原电池吸氧腐蚀和析氢腐蚀
原电池是一种由两种不同金属通过电解液相联系形成的电化学
系统。
在这种系统中,其中一种金属被氧化,另一种金属被还原,从而产生电能。
然而,当原电池处于开路状态时,金属表面会与电解液中的氧气和水分子发生反应,导致腐蚀现象的发生。
在原电池中,金属表面与氧气反应形成的氧化物称为吸氧腐蚀。
在这种腐蚀中,金属表面会被氧化,并且会形成一层氧化物覆盖在金属表面上。
吸氧腐蚀的程度取决于金属的活性和氧气的浓度。
例如,铁、镁和锌在氧气中容易吸氧腐蚀,而铜和铝则比较耐腐蚀。
与吸氧腐蚀不同的是,原电池中金属表面与水分子反应形成氢气的腐蚀称为析氢腐蚀。
在这种腐蚀中,金属表面与水分子反应形成氢气,并且在金属表面上形成小气泡。
析氢腐蚀的程度取决于金属的活性和水的浓度。
例如,锌和铝在酸性水中容易析氢腐蚀,而铜则比较耐腐蚀。
原电池吸氧腐蚀和析氢腐蚀都会导致金属表面的损失和腐蚀产
物的形成,从而影响到原电池的性能和寿命。
为了减少这种腐蚀,可以采取一些措施。
例如,可以在金属表面涂上一层保护膜,以防止金属表面与电解液发生反应。
此外,可以选择更耐腐蚀的金属材料,以延长原电池的使用寿命。
总之,原电池吸氧腐蚀和析氢腐蚀是原电池中常见的腐蚀现象。
了解这些腐蚀现象的原因和措施,对于保护原电池的性能和延长寿命非常重要。
析氢腐蚀和吸氧腐蚀
从动力学角度而言,析氢腐蚀比吸氧腐蚀进行得更快,一旦发生了析氢腐蚀,往往会造成很大的损失。
但是,在溶液中不论是碱性及酸性环境,氧电位都比氢电位高,而且中性、碱性环境占据了腐蚀环境的绝大部分(这种情况下析氢腐蚀不发生),所以以析氢腐蚀相比,吸氧腐蚀具更重要的意义。
析氢腐蚀,指的是钢铁制品在酸性较强的溶液中与质子反应发生时放出氢气的腐蚀。
如果钢铁制品使用不当或者保管不合理的话,它就会在潮湿空气中,吸附空气中的水蒸气而形成一层薄薄的水膜。
这层水膜中无疑可以吸收空气中的二氧化碳。
而二氧化碳与水反应生产的碳酸,又会使得使水里的氢离子增多。
这就构成无数个以铁为负极、碳为正极、酸性水膜为电解质溶液的微小原电池。
析氢腐蚀发生的速率很快。
(这个反应首先是个原电池反应,而且反应面积大,同时生成的氢气可以很快脱离体系,反应速率能不快么。
)吸氧腐蚀是指金属在酸性很弱或中性溶液里,空气里的氧气溶解于金属表面水膜中而发生的电化学腐蚀。
这个反应速率取决于
氧穿过空气/溶液界面进入溶液;
在溶液对流作用下,氧迁移到阴极表面附近;
在扩散层范围内,氧在浓度梯度作用下扩散到阴极表面;
在阴极表面氧分子发生还原反应,也叫氧的离子化反应。
这四个步骤显然比析氢腐蚀的步骤多且慢。
但在热力学的角度而言,它发生的趋势更大,而且应用的范围更广,所以就更有意义咯。
析氢腐蚀和吸氧腐蚀的区别二者的腐蚀环境不同,一般来讲,析氢腐蚀的腐蚀环境是由含水、湿度高的空气组成,而吸氧腐蚀则是在大气中进行的。
1、析氢腐蚀和吸氧腐蚀的区别如果说有哪些金属容易发生析氢腐蚀,那么这个说法是对的,不过有的时候这个判断并不正确,因为有些材料,其他的条件都满足了,但是还是会产生析氢腐蚀。
例如在海水中工作的船舶,它们就很容易发生析氢腐蚀。
而有些材料,即使是在空气中也能发生析氢腐蚀。
析氢腐蚀在日常生活中比较少见,所以人们往往认为它只发生在不纯的物质中,或是没有干燥处理好的设备里。
而吸氧腐蚀则更常见,尤其是石油开采的地方,到处都有。
我们常见的不锈钢制品,其实就是不锈钢,也会发生吸氧腐蚀。
2、氢在钢中存在形态不同。
在海水中,水是分子,水分子与氢离子结合,形成氢分子,而且极不稳定,水分子互相碰撞而消失;在大气中,空气是无数分子的集合体,而且非常不稳定,因此经常会看到大量的水分子不停地碰撞而消失的情况,甚至许多分子相互接触而形成微尘状态。
根据分析,从腐蚀电池原理上分析,钢铁在含酸性物质的水溶液中比在空气中更容易受到腐蚀,主要原因是:析氢腐蚀的发生取决于氢离子的浓度,而且最低氢离子浓度要求为5×10^-4~5×10^-5 mol/L。
若水中含有2 mol/L的氢离子时,钢铁表面就开始出现钝化膜,使腐蚀减速,故通常把水中氢离子浓度作为衡量腐蚀程度的指标。
空气中,通常要求的氢离子浓度较小,约为0.01~0.03mol/L。
3、吸氧腐蚀和析氢腐蚀的形成条件也不相同。
吸氧腐蚀,指金属表面溶解氧浓度低于其钝化膜允许的氧浓度的条件下发生的腐蚀。
例如,海水中的Fe- 2×10-3~Fe- 4×10-2。
若温度较低, Fe表面发生析氢腐蚀的结果是Fe- 4×10-2转变为Fe。
吸氧腐蚀有两种情况,一种是在低于其电极电位的低氧化状态下发生的,称为欠氧化吸氧腐蚀;另一种是在高于其电极电位的过氧化状态下发生的,称为过氧化吸氧腐蚀。