2
引入:杆长为L,球的质量为m,杆连球在竖直平面 内绕轴O自由转动,已知在最高点处,杆对球的弹力 大小为F=1/2mg,求这时小球的即时速度大小。
解:小球所需向心力向下,本题中 F=1/2mg<mg, 所以弹力的方向可能向上,也可能向下。
⑴若F 向上,则
mv2 mgF ,
L
⑵若F 向下,则
v gL 2
5
绳和内轨模型:
最高点:FNmgmvr2
v临= gr
讨论:
(1)当v>
gr时,FN
m v2 r
mg
(2)当v gr时,F N 0
(3)当v gr时, 物做近心运动
v
FN mg
6
例6、如图所示,质量为m的小球在竖直平面内的光 滑圆轨道上做圆周运动.圆半径为R,小球经过圆环最高 点时刚好不脱离圆轨.则其通过最高点时( )
f
F
F
ω2=?
1
mg
8.如图所示,长为2L的轻杆,两端各固定一小球,A球质量
为m1,B球质量m2。过杆的中点O有一水平光滑固定轴,杆
可绕轴在竖直平面内转动。当转动到竖直位置且A球在上端、
B球在下端时杆的角速度为ω,此时杆对转轴的作用力为零,
则A、B小球的质量之比为
(D )
A. 1:1
B . (L 2 2 g ):(L 2 2 g )
A.小球对圆环的压力大小等于mg B.小球受到的向心力等于重力
C.小球的线速度大小等于 Rg
D.小球的向心加速度大小等于g
7
小结:竖直平面内的变速圆周运动
绳
杆
圆管
mA
mA
mA
L
L
R
O
O
O