动态规划(生产和存储问题)
- 格式:docx
- 大小:107.47 KB
- 文档页数:20
动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划原理动态规划(Dynamic Programming)是一种在数学、计算机科学和经济学等领域中使用的优化方法。
它是一种将复杂问题分解成更小的子问题来解决的方法,通过将问题分解成相互重叠的子问题,动态规划可以大大简化问题的解决过程,提高算法的效率。
在本文中,我们将介绍动态规划的原理及其应用。
动态规划的基本原理是将原问题分解成相互重叠的子问题,通过解决子问题来解决原问题。
在动态规划中,我们通常使用一个表格来存储子问题的解,以便在解决更大的问题时能够重复利用已经计算过的结果。
动态规划通常用于解决具有重叠子问题和最优子结构性质的问题,这些问题可以被分解成相互重叠的子问题,并且最优解可以通过子问题的最优解来计算得到。
动态规划的关键步骤包括定义子问题、构建状态转移方程、初始化边界条件和计算最优解。
首先,我们需要定义子问题,即将原问题分解成更小的子问题。
然后,我们需要构建状态转移方程,即找到子问题之间的递推关系,以便能够通过子问题的解来计算更大的问题的解。
接下来,我们需要初始化边界条件,即确定最小的子问题的解。
最后,我们可以通过自底向上或自顶向下的方式计算最优解。
动态规划的应用非常广泛,包括但不限于最短路径问题、背包问题、编辑距离、最长公共子序列、最大子数组和斐波那契数列等。
这些问题都具有重叠子问题和最优子结构性质,因此可以通过动态规划来解决。
动态规划在实际应用中往往能够大大提高算法的效率,因此受到了广泛的关注和应用。
总之,动态规划是一种将复杂问题分解成更小的子问题来解决的优化方法。
通过定义子问题、构建状态转移方程、初始化边界条件和计算最优解,动态规划可以大大简化问题的解决过程,提高算法的效率。
它在各个领域都有着广泛的应用,是一种非常重要的算法设计思想。
希望本文能够帮助读者更好地理解动态规划的原理及其应用。
以上就是关于动态规划原理的介绍,希望对您有所帮助。
吴禹锟一院八队201101044032 运筹学摘要:临近年末,家中生产的冰糖橙到了一个大卖的时候,采摘下来的冰糖橙需要合理的保存,才能够长期保鲜。
而摘下来的冰糖橙需要进行进一步包装,才能卖到一个更好的价格。
最后就是运输问题,怎样用最少的运价运到更多的地方。
这就需要制定一个严密的计划,使自己所用的花费最少。
关键字:生产与存储 动态规划 经济批量订货模型 运输问题 lingo正文:研究背景:家中种有3000余棵冰糖橙树,每年到年底时,也就是冰糖橙成熟的时候。
冰糖橙采摘需分阶段,且采摘需要请员工,这会产生一个费用,存贮需要存储空间,就会产生一个存储费用。
这就涉及到一个生产与存储的问题,可以建立一个数学模型。
采摘下来的冰糖橙,需要装入保鲜袋,然后装进箱子中,箱子需要订购。
这就会涉及到一个经济批量(EOQ )问题,是一个优化问题,且不允许缺货。
最后就是卖往各个地区,这里还可能产生产销不平衡的情况,需要寻求最优解。
研究内容:一、生产与存储问题:这是一个动态规划问题,需要合理的安排生产与库存的问题,达到既要满足需求,又要尽量降低成本费用。
一次,确定不同时期的的的生产量和库存量,以使总的雇佣费与库存费之和最小。
设d k 为第k 阶段对产品的需求量,x k 为第k 阶段该产品的生产数量,sk 为第k 阶段初的产品数量,则有z k =s k -1+x k -1-d k -1。
C k (x k )表示第k 阶段生产xk 数量的产品使的成本费用,它包括生产准备费用k 和产品城北ax k 两项费用。
即C k (x k )={0, xk =0k +axk,0<xk ≤mk其中m k 为第k 阶段生产xk 数量的上限。
用h k (s k )表示在地k 阶段初库存量为s k 时的存储费用。
因此,第k 阶段的成本费用为C k (x k )+h k (s k )所以,上述问题的数学模型为Minz=∑ck (xk )+ℎk(sk )n k=1s.t.{s0=0,sn +1=0sk =∑(xj −dj ), k =1,2,…,n −1k j=10≤xk ≤mk, k =1,2,…,n xk 为正整数用动态规划方法求解,s k 为状态变量,他表示第k 阶段开始时的库存量x k 为决策变量,他表示第k 阶段的生产量;状态转移方程为S k+1=s k +x k -d k , k=1,2,…,n 最优值函数f k (s k )表示从第k 阶段初始库存量为s k 到底n 阶段末的最小总费用。
抽样分析(ASA)应用于各种抽样分析、抽样方案设计、假设分析决策分析(DA)确定型与风险型决策(效益表分析)、贝叶斯决策、决策树、二人零和对策、蒙特卡罗模拟。
动态规划(DP)最短路问题,背包问题,生产与存储问题。
设备场地布局(HLL)设备场地设计、功能布局、线路均衡布局。
预测与线性回归(FC)简单平均、移动平均、加权移动平均、线性趋势移动平均、指数平滑、多元线性回归、Holt-Winters季节迭加与乘积算法目标规划与整数线性目标规划(GP-IGP)多目标线性规划,线性目标规划,变量可以取整、连续、0-1或无限制存储论与存储控制系统(ITS)经济定货批量、批量折扣、单时期随机模型、多时期动态存储模型、存储控制系统(各种存储策略)。
作业调度,编制工作进度表(JOB)机器加工排序,流水线车间加工排序。
线性规划和整数线性规划(LP-ILP)线性规划、整数规划、写对偶、灵敏度分析、参数分析网络模型(Net)运输问题网络运输、指派、最大流、最短路、最小支撑树、货郎担问题等这个软件解决包括:效用网络流(转载)、运输问题、指派问题(分配问题)、最短路问题、最大流问题、最小生成树问题和旅行商问题等等关于网络图的问题。
非线性规划(NLP)有(无)条件约束、目标函数或约束条件非线性、目标函数与约束条件都非线性等规划的求解与分析。
与网络图。
二次规划(QP)求解线性约束、目标函数是二次型的一种非线性规划问题,变量可以取整数。
排队分析(QA)各种排队模型的求解与性能分析,15种分布模型求解、灵敏度分析、服务能力分析、成本分析排队系统模拟(QSS)未知到达和服务时间分析、一般排队系统模拟计算。
动态规划在经济管理中的应用研究1 绪言20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
动态规划(dynamic programming)是运筹学的一个分支,是解决多阶段决策过程最优化问题的一种方法。
是求解决策过程(decision process)最优化的数学方法。
同时动态规划也是一种在数学和计算机中使用的,用于求解包含重叠子问题的最优化问题的方法。
其基本思想是,将原问题分解为相似的子问题,在求解过程中通过子问题的解求出原问题的解。
动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。
它作为运筹学的一个分支,在工程技术,经济,工业生产及军事等部门都得到了广泛的应用,并获得了显著的效果。
许多问题,利用动态规划去处理,常比线性规划和非线性规划这样一些“静态”的优化方法更有成效。
特别是对于离散性质的问题,传统的解析数学方法无法施展其技,动态规划就常常成为一种有用的工具。
在某些情况下,用动态规划处理不仅能作定性的描述分析,而且可以利用计算机给出求其数值解的方法。
因此对动态规划应用的研究有重要的意义。
2 动态规划介绍动态规划是用来解决多阶段决策过程中最优化问题的一种方法。
动态规划基本原理是将一个问题的最优解转化为求子问题的最优解。
研究的对象是决策过程的最优化,其变量是变动的时间或变动的状态,最后达到整个系统的最优。
基本原理一方面说明了原问题的最优解中包含了子问题的最优解,另一方面给出了一种求解问题的思路,将一个难以直接解决的大问题,分割成一些规模较小的相同子问题,每一个子问题只解一次,并将结果保存起来以后直接引用,避免每次碰到时都要重复计算,以便各个击破。
动态规划(生产和存储问题)一、动态规划法的发展及其研究内容动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。
20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。
1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。
例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。
二、动态规划法基本概念一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:1.阶段阶段(stage)是对整个过程的自然划分。
通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。
表示。
.n.…k=1.2阶段变量一般用.1.状态状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。
它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。
通常还要求状态是可以直接或者是间接可以观测的。
描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。
变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。
用X(k)表示第k 阶段的允许状态集合。
n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。
生产与存贮问题的探讨摘 要在一定时期内,生产的成本费与库存费一直是厂家最关心的优化指标。
本文根据题中的条件针对如何在成本费与库存费之和最优的情况下,使总工时最小的问题,利用了多目标动态规划的方法,建立了生产与存储的优化模型。
我们知道增大生产量可以降低成本费,但如果超过市场的需求量,就会因积压增加存贮费而造成损失。
相反,如果减少生产量,虽然可以降低存贮费,但又会增加生产的成本费,同样会造成损失。
故可以找到一个生产计划使得生产的生产费与存贮费之和达到一个最小值,并且使他们所花的工时也最少。
我们根据实际生活中生产的部件的性质可以将生产模式分成两种情况:允许有缺货的情况和不允许有缺货的情况。
在模型一中,我们假设这种部件是不允许缺货的,于是目标函数为:∑∑==+++=6161)(7.03.0min k k k k k k c h p akx g在模型二中,我们假设这种部件是可以缺货的,但是我们要求上个月所缺的部件必须要在本月补回来。
如果中间某个月或者是某几个月出现缺货的现象,就会因为有损失费,面对这样的情况时,如果损失费比生产费少的话,对于这种方案公司还是可以考虑,根据这种情况我们可以得到目标函数为:∑∑==++++=6161)(7.03.0min k k k k k k k q p h c akx g我们建立的模型一和模型二都是以动态规划为主要解题思路,在模型中我们将生产费与库存费之和赋予0.7的权重值,总耗费工时数赋予0.3的权重值,假设每件产品的单位工时费为10元,每件产品每月的存贮费为20元,每件产品每月的缺货损失费为5元,因为产品的生产量与成本费成反比,设反比系数为S ,若生产量为X ,则成本费为S/X 元,设反比系数S 为840。
我们利用Lingo 软件求解,在没有缺货存在的条件下得到的最小成本费为5158元,总耗费工时数最少为382小时,一到六月的逐月分配方案为:7 4 5 4 3 4;在有缺货存在的条件下得到的最小成本费为4960元,总耗费工时数最少为363小时,一到六月的逐月分配方案为:6 3 4 3 3 8,每月的缺货量为:0 2 1 0 4 0。
判断题:1. 单纯形法计算中,选取最大正检验数k 对应的变量k x 作为换入变量,将使目标函数值得到最快的增长。
( )2. 单纯形计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负。
( )3. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
( )4. 任何线性规划问题存在并具有唯一的对偶问题。
( )5. 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
( ) 6. 对偶问题的对偶问题一定是原问题。
( )7. 运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一;有惟一最优解,有无穷多最优解,无界解,无可行解。
( )8. 整数规划解的目标函数值一般优于其相应的线性规划问题的解的目标函数值。
( ) 9. 指派问题效率矩阵的每个元素都乘上同一常数k ,将不影响最优指派方案。
( ) 10.指派问题数学模型的形式同运输问题十分相似,故也可以用表上作业法求解。
( ) 11.按最小元素法给出的初始基可行解,从每一空格出发可以找到而且仅能找出惟一的闭回路。
( )12.表上作业法实质就是求解运输问题的单纯形法。
( )13.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点边线的长短曲直等都要严格注意。
( )14.在任一图G 中,当点集V 确定后,树图是G 中边数最少的连通图。
( )15.大M 法处理人工变量时,若最终表上基变量中仍含有人工变量,则原问题无可行解。
( )16.若可行域是空集,则表明存在矛盾的约束条件。
( )17.用单纯形法求线性规划问题,若最终表上非基变量的检验数均非正,则该模型一定有唯一最优解。
( )18.指派问题的每个元素都加上同一个常数k ,并不会影响最优分配方案。
( ) 19.指派问题的每个元素都乘上同一个常数k ,并不会影响最优分配方案。
动态规划(生产和存储问题)一、动态规划法的发展及其研究内容动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。
20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。
1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。
例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。
二、动态规划法基本概念一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:1.阶段阶段(stage)是对整个过程的自然划分。
通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。
阶段变量一般用k=1.2….n.表示。
1.状态状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。
它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。
通常还要求状态是可以直接或者是间接可以观测的。
描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。
变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。
用X(k)表示第k阶段的允许状态集合。
n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。
根据演变过程的具体情况,状态变量可以是离散的或是连续的。
为了计算方便有时将连续变量离散化,为了分析的方便有时又将离散的变量视为连续的。
2.决策当一个阶段的状态确定后,可以做出各种选择从而演变到下一阶段的某个状态,这种选择手段称为决策(decision),在最优控制问题中也称为控制(control)描述决策的变量称为决策变量(decision virable)。
变量允许取值的范围称为允许决策集合(set ofadmissble decisions)。
用表示第k阶段处于阶段x(k)的决策变量,它是x(k)的函数,用表示x(k)的允许决策集合决策变量简称决策。
4.策略决策组成的系列称为策略(policy)。
由初始状态x1开始的全过程的策略记作..由第k阶段的状态x(k)开始到终止状态的后部子过程的策略,;k=2,…,n-1.可供选择的策略有一定的范围,称为允许策略集合(set of admissble polices),用,等表示。
5.状态转移方程在确定性过程中,一旦某阶段的状态和决策为已知,下阶段的状态偏完全可以确定。
用状态转移方程(state transfer equations)表示这种演变规律,写作:6.阶段指标函数对于k阶段的状态x(k),当执行了决策时,除带来系统状态的转移之外,还产生第k阶段的局部利益,它是总效益的一部分,称为阶段指标函数(stageeffective fuction),记作.7.过程指标函数用来衡量策略或者是子策略执行效果的数量指标称为过程指标函数(process effective fuction),它定义在所有k后部子过程上,常用用表示,即k=1,2,…,n.当k=1时,就是全过程指标函数。
如果状态x(k)和子策略给定,那么也就被确定了,所以是x(k)和的函数,记为:常见的过程指标函数是连和形式或连积形式:8.最优指标函数过程指标函数的最优值称为最优指标函数(optimum effective fuction),记为f(x(k).它表示,采取了最优子策略之后,后部子过程所获得的总效益,表示为:式中opt是optimization的缩写,意为最优化,可以根据具体问题去max或min三·动态规划法的最优性原理和基本函数方程在动态规划中起核心作用的是最优性原理:“作为整个过程的最优策略具有这样的性质,无论过去的状态和决策如何,相对于前面决策所形成的状态而言,余下的决策系列必须构成最优子策略。
”动态规划解法的关键在于给出一种递推关系,一般把这种关系称为基本函数方程,注意到无后效性,最优指标函数为当k=n时,由于x(n+1)是整个决策过程的终止状态,以后不再做出决策,因此,这样就得到了可以用来递推的基本函数方程:f(x(n+1))=0.类似的,可以得到乘法形式的基本函数方程:f(x(n+1))=1.四、建立动态规划模型的基本步骤1.阶段;2.状态变量及可能状态集合;3.决策变量及允许决策集合;4.状态转移方程;5.阶段指数函数;6.基本函数方程;建立动态规划模型基本上是上面6个步骤,按上述顺序逐步确定1~6的内容。
五、动态规划法的递推方向及求解形式1.递推解法基本方程:f(x(n+1))=0状态转移方程为计算步骤是,利用终端条件从k=n开始由后向前递推基本方程,求得各阶段的最优决策和最优函数,最后算出f(x(1)时就得到了最优决策系列再按照状态转移方程从k=1开始确定,k=1,2,…,n}为最优轨迹线,为最优策略。
2.顺推解法使用顺推解法时,一些概念的含义须做相应调整。
状态变量x(k)表示第k阶段末系统的形态·状况,最优值函数f(x(k))表示从第一阶段到第k阶段总效益的最优值,状态转移方程为基本函数方程为f(x(0))=0或13.求解形式求解动态规划问题,一般有两种形式:解析形式和表格形式,解析形式是利用函数的解析表达式,在每个阶段用经典求极值的方法得到最优解。
表格形式是指各阶段的计算过程均在表格中进行,这种形式便于分析和比较,操作过程直观且简练,适用于没有解析表达式的离散型问题。
4.动态规划的适用条件适用动态规划的问题通常应满足如下3点:○1最优化原理(最优子结构性质)。
如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构性质,即满足最优化原理。
由于对于有些问题的某些递归式来讲并不一定能保证最优化原则,因此在求解问题时有必要对它进行验证。
若不能保持最优原则,则不可以应用动态规划法求解。
在得到最优解的递归式之后,需要执行回溯以构造最优解。
○2无后效性。
应用动态规划法的一个重要条件就是将各阶段按照一定的次序排好,阶段i的状态只能由阶段i+1的状态来确定,与其他状态没有关系,尤其是于未发生的状态没有关系。
换言之,每个状态都是“过去历史的一个完整总结”。
这就是无后效性。
○3子问题的重叠性。
子问题的重叠性是指在利用递归算法自顶向下对问题进行求解时,每次产生的问题并不总是新问题,有些子问题可能会被重复计算多次。
动态规划法正是利用子问题的这种重叠性质,对每一个问题只计算一次,然后将其计算结果保持起来,当再次需要计算已经计算过的子问题时,只要简单的查看一下以往的计算结果,从而获得较高的解题效率。
子问题的的重叠性并不是动态规划适用的必要条件,但是如果该性质无法满足,动态规划算法同其他算法相比就无优势可言了。
5.解决问题的步骤利用动态规划法求解问题的算法通常包含如下几个步骤。
○1分析。
对原始的问题进行分析,找到问题的最优解的结构特征。
○2分解。
将所给问题按时间或空间特征分解成相互关联的阶段,并确定出计算局部最优解的递推关系,这是利用动态规划法解决问题的关键和难点所在。
需要注意的是,分解后的各个阶段一定是有序的或者是可以排序的,即无后向性。
否则问题就无法用动态规划求解。
阶段之间相互联系方式是通过状态和状态转移体现的。
每个阶段通常包含若干个状态,可以描述问题发展到这个阶段时所处在的一种客观情况。
每个阶段的状态都由以前阶段的状态以某种方式“变化”来的,这样的“变化”称为状态转移。
状态转移是导出状态的途径,也是联系各阶段的方式。
○3解决。
对于每个阶段通过自底向上的方法求得局部最优解。
由于这一步骤通常是通过递推实现的,因此,需要递推终止条件或边界条件。
○4合并。
将各个阶段求出的解合并为原问题的解,即构造一个最优解。
动态规划的主要难点在于理论的设计,特别是递推关系的建立,一旦设计完成,实现部分就会非常简单。
整个求解过程就可以使用一个最优决策表的二维数组来描述,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某阶段某个状态下的最优值,如最短路径,最长公共子序列,最大价值等。
填表的过程就是根据递推关系从1行1列开始,以行或者列优先的顺序,依次填写表格。
最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。
总之,动态规划算法的关键在于解决冗余,是一个以空间换时间的技术,所以它的空间复杂度要大于其他的算法。
六、动态规划问题在问题中的具体实现例如:动态规划规划在生产存储中的运用生产存储问题是生产活动中经常遇到的问题。
大批量生产可以降低成本,但当产量大于销量时就会造成产品积压而增加库存费用;单纯按市场要求安排生产也会因为开工不足或加班加点造成生产成本增加。
因此合理利用存贮资源调节产量,满足要求是十分有意义的。
生产与存贮问题是一个生产部门如何在已知生产成本,存贮费用和各阶段市场要求的条件下,决定各个生产阶段的产量,使得计划期内的费用之和最小。
现设有一个生产部门,生产计划周期为n个阶段,已知最初库存量为x1,阶段需求量为dk,单位产品的消耗费用是lk,单位产品的阶段库存费用为hk,仓库容量为mk,阶段生产能力为bk,生产固定成本为问如何安排现阶段的产量,使计划期内的费用综合为最小?该问题本身就是一个多阶段决策问题,设状态变量为xk 为k阶段初的库存量,由于计划期初的库存量x1已知,计划期末的库存量通常也是给定的,为简单起见,假定x(n+1)=0,于是状态变量xk的约束条件是:决策变量uk选为阶段k的产量,它满足的约束条件是:状态转移方程为,它满足无后效性的要求。
阶段效用由两阶段组成,一部分为生产费用,另一部分为存贮费用,即:动态规划基本方程为:七、设计题目:某机床厂根据合同,在一至四月份为客户生产某种机床。
工厂每月的生产能力为10台,机床可以库存,存储费用为每台每月0.2万元,每月需要的数量及每台机床的生产成本如下表。
试确定每月的生产量,要求既能满足每月的需求,又能使生产成本和存储费用之和达到最小。
表需求量及生产成本1.构造动态规划模型○1阶段变量k把每个月作为一个阶段,k=1,2,3,4○2状态变量选择每个阶段的库存量为状态变量,可满足无后效性,由已知条件可知:x1=x5=0,单位为台○3决策变量设每个阶段的生产量为决策变量,由已知条件得0≤≤10台,○4状态转移方程状态转移方程为:=+-(是第k阶段的市场需求量)○5阶段指标第k阶段的指标费用:(,)=0.2+y(i)(>0)i=1,2,3,4.或(,)=0.2+0 (=0)其中y1=7,y2=7.2,y3=8,y4=7.6,单位为万元2.建立基本方程设最优值函数是从第k阶段的状态出发到过程终结的最小费用,按动态规划方法的逆序解基本方程又:[(,)+] (k=4,3,2,1)F5(x5)=03.逆序逆推计算○1k=4时按照问题的各种约束条件,确定状态变量x4的取值范围。