离散系统的时域及变换域分析讲解
- 格式:doc
- 大小:234.00 KB
- 文档页数:8
第七章离散时间系统的时域分析§7-1 概述一、离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。
离散时间系统:处理离散时间信号的系统。
混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。
二、连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。
例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。
例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。
四、典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ 下图表示了)(n k −δ的波形。
这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。
例如:)()0()()(k f k k f δδ=,)()()()(000k k k f k k k f −=−δδ。
2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。
用它可以产生(或表示)单边信号(这里称为单边序列)。
3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。
(a) 0.9a = (d) 0.9a =−(b) 1a = (e) 1a =−(c) 1.1a = (f) 1.1a =−4、 单边正弦序列:)()cos(0k k A εφω+双边正弦序列:)cos(0φω+k A五、离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。
第二章离散时间信号与系统的变换域分析 2.1 序列的Z变换 Z变换的定义 Z变换的收敛域逆Z 变换 Z变换的性质与定理 Z变换与拉氏变换的关系 Z变换的定义抽样信号进行拉氏变换得: Z变换的定义 Z变换的定义例1:求序列 x (n)= an u(n) 的Z变换。
解:为保证收敛,则若 a = 1, 则 Z变换的定义例2:求序列x(n)= -an u(-n-1)的Z变换。
解: Z变换的定义例3:求序列 x (n)= (1/3)|n| 的Z变换。
解: Z变换的收敛域 Z 变换的收敛域对于任意给定的序列x(n) ,使其Z变换收敛的所有z值的集合称为X(z)的收敛域。
其收敛的充要条件是满足绝对可和条件,即:根据级数收敛的阿贝尔定理 Z变换的收敛域 1.有限长序列 x(n)仅在有限长的时间间隔n1≤n ≤ n2内,序列值不全为零,其它时间全为零,即 Z变换的收敛域2.右边序列 x(n)在n ≥n1时,序列值不全为零,在n n1时序列值全为零,此时有收敛域为如为因果序列,其收敛域为 Z变换的收敛域 3.左边序列 x(n)在n n2以外序列值全为零,仅在n ≤ n2时有非零值,其z变换为Z变换的收敛域 4.双边序列双边序列的序列值n可取任何整数值,其z变换为 Z变换的收敛域如果序列Z变换可表达成有理分式的形式:称分子多项式的零点为X(z)的零点,分母多项式的零点为X(z)的极点,因为极点z变换不存在,因此在收敛域内应没有极点,故可通过取X(z)的极点为边界来确定其收敛半径。
Z变换的收敛域例求单位阶跃序列 u(n) 的z变换,并确定其收敛域。
解:由于u(n)为因果序列,其Z变换收敛域为,因函数在z=1处有一极点,极点应在收敛域外,因此可取,求得u(n)的z变换收敛域为。
Z变换的收敛域例求序列逆Z变换逆Z变换从给定的Z变换表达式(包括收敛域)求原序列的过程称为逆z变换。
其实质是求X(z)的幂级数展开式各项的系数。
离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。
本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。
在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。
2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。
通过设置函数发生器的频率和振幅,我们可以产生不同的信号。
接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。
使用合适的采样率,我们可以准确地获取模拟信号的离散样本。
最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。
2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。
通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。
通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。
2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。
例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。
通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。
此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。
3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。
例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。
而当信号频率小于采样率的一半时,可以还原原始信号。
此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。
4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。
第七章离散信号与系统时域分析7-1 离散信号及其时域特性一、离散时间信号如果信号仅在一些离散的瞬间具有确定的数值,则称之为离散时间信号。
若选取的离散瞬间是等间隔的,则一般常用f(kT)表示,其中k=0,±1,±2,…;T为离散间隔。
一般把这种按一定规则有秩序排列的一系列数值称为序列,简记为f(k)。
本书仅讨论这种等间隔的离散时间信号。
离散时间信号可用序列{f(k)}表示。
比如也可以用数据表格形式给出,如图7-1(a)所示,或以图形方式表示,如图7-1(b)所示。
可见,f(k)具有两重意义:既代表一个序列,又代表序列中第k个数值。
离散时间信号获取的方式常有两种:一种是连续时间信号离散化,即根据抽样定理对连续时间信号进行均匀时间间隔取样,使连续时间信号在不失去有用信息的条件下转变为离散时间信号,这是目前信号数字化处理中最常用的方法之一。
另一种是直接获取离散信号,比如计算机系统中记忆器件上储存的记录,地面对人造地球卫星或其他飞行体的轨道观测记录以及一切统计数据等,这都是一些各不相同的离散时间信号。
二、离散时间信号的时域运算离散时间信号常有以下几种运算。
1.相加观看动画两个离散信号f1(k)和f2(k)相加是指它们同序号的值逐项对应相加,其和为一新的离散信号f(k),即f(k)=f1(k)+f2(k) (7-1)例如,图7-2(a),(b)所示的离散时间信号和进行相加,其结果为用图形表示如图7-2(c)所示。
离散时间信号的相加可用加法器实现。
2.两个离散信号f1(k)和f2(k)相乘是指它们同序号的值逐项对应相乘,其积为一新的离散信号f(k),即 f(k)=f1(k)f2(k) (7-2)例如,图7-2(a),(b)中的f1(k)和f2(k)相乘,其结果为用图形表示如图7-2(d)所示。
离散时间信号的相乘可用乘法器实现。
3.数乘是指对离散信号f(k)每一个取样值均乘以一个实常数a, 而得到一个新的离散信号y(k),即通常可用数乘器或比例器来实现这种运算。
实验1 离散系统的时域及变换域分析一、实验目的:1.加深对离散系统的差分方程、单位抽样响应和卷积分析方法的理解。
2.加深对离散系统的频率响应分析和零、极点分布的概念理解。
二、实验原理: 1.时域 离散系统其输入、输出关系可用以下差分方程描述:∑∑==-=-Mm mNk nm n x bk n y a)()(输入信号分解为冲激信号,∑∞-∞=-=m m n m x n x )()()(δ系统单位抽样序列h (n ),则系统响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(当00≠a N k a k ,...2,1,0==时,h(n)是有限长度的(n :[0,M]),称系统为FIR系统;反之,称系统为IIR 系统。
在MATLAB 中,可以用函数y=filter(b,a,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积。
2.变换域离散系统的时域方程为∑∑==-=-Mm mNk nm n x bk n y a)()(其变换域分析方法如下:X(z)H(z)Y (z))()()()()(=⇔-=*=∑∞-∞=m m n h m x n h n x n y 系统函数为 N N MM z a z a a z b z b b z X z Y z H ----++++++==......)()()(110110分解因式∏∏∑∑=-=-=-=---==Nk kMm m Nk kk Mm mm z dz c Kza zb z H 1111)1()1()( ,其中 m c 和 k d 称为零、极点。
在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统函数的零、极点分布图。
使用h=freqz(num,den,w)函数可求系统的频率响应,w 是频率的计算点,如w=0:pi/255:pi, h 是复数,abs(h)为幅度响应,angle(h)为相位响应。
另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统的串联。
三 、实验内容 1.时域(1.)编制程序求解下列系统的单位抽样响应,并绘出其图形。
)1()()2(125.0)1(75.0)(--=-+-+n x n x n y n y n y解 用MATLAB 计算程序如下: N=15; n=0:N-1; b=[1,-1];a=[1,0.75,0.125]; x=[n==0];y=filter(b,a,x); subplot(3,2,1); stem(n,y,'.'); axis([0,N,-1,2]); ylabel('y(n)');(2.)给定因果稳定线性时不变系统的差分方程∑∑==-=-Mm mNk nm n x bk n y a)()(对下列输入序列()x n ,求输出序列()y n 。
30()()x n R n =解:MATLAB 计算程序如下:N=80; n=0:N-1; b=1;a=[1,-1,0.9];x=[(n>0&(n<30))]; y=filter(b,a,x); subplot(3,2,3); stem(n,y,'.'); axis([0,N,-1,2]); ylabel('y(n)');2.变换域例1 求下列直接型系统函数的零、极点,并将它转换成二阶节形式解用MATLAB计算程序如下:num=[1 -0.1 -0.3 -0.3 -0.2];den=[1 0.1 0.2 0.2 0.5];[z,p,k]=tf2zp(num,den);disp('零点');disp(z);disp('极点');disp(p);disp('增益系数');disp(k);sos=zp2sos(z,p,k);disp('二阶节');disp(real(sos));zplane(num,den)输入到“num”和“den”的分别为分子和分母多项式的系数。
计算求得零、极点增益系数和二阶节的系数:零点0.9615-0.5730-0.1443 + 0.5850i-0.1443 - 0.5850i极点0.5276 + 0.6997i 0.5276 - 0.6997i -0.5776 + 0.5635i -0.5776 - 0.5635i 增益系数 1 二阶节1.0000 -0.3885 -0.5509 1.0000 1.1552 0.6511 1.0000 0.2885 0.3630 1.0000 -1.0552 0.7679系统函数的二阶节形式为:极点图如右图。
例2 差分方程)3(02.0)2(36.0)1(44.0)(8.0 )3(6.0)2(45.0)1(7.0)(-+-+--=-----+n x n x n x n x n y n y n y n y 所对应的系统的频率响应。
解:差分方程所对应的系统函数为3213216.045.07.0102.036.044.08.0)(--------+++-=zz z z z z z H 用MATLAB 计算的程序如下:k=256;num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi;h=freqz(num,den,w); subplot(2,2,1);plot(w/pi,real(h));grid title('实部')xlabel('\omega/\pi');ylabel('幅度')subplot(2,2,2);plot(w/pi,imag(h));grid title('虚部')xlabel('\omega/\pi');ylabel('Amplitude') subplot(2,2,3);plot(w/pi,abs(h));grid title('幅度谱')xlabel('\omega/\pi');ylabel('幅值') subplot(2,2,4);plot(w/pi,angle(h));grid title('相位谱')xlabel('\omega/\pi');ylabel('弧度')练习1.求系统54321543212336.09537.08801.14947.28107.110528.0797.01295.01295.00797.00528.0)(-----------+-+-+++++=z z z z z z z z z z z H 的零、极点和幅度频率响应和相位响应。
要求:绘出零、极点分布图,幅度频率响应和相位响应曲线。
解:用MATLAB 计算的程序如下:num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528]; den=[1 -1.8107 2.4947 -1.8801 0.9537 -0.2336]; [z,p,k]=tf2zp(num,den); disp('零点');disp(z);disp('极点');disp(p);零点-1.5870 + 1.4470i-1.5870 - 1.4470i0.8657 + 1.57795i0.8657 - 1.5779i-0.0669极点0.2788 + 0.8973i0.2788 - 0.8973i0.3811 + 0.6274i0.3811 - 0.6274i0.4910k=256;num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528];den=[1 -1.8107 2.4947 -1.8801 0.9537 -0.2336]; w=0:pi/k:pi;h=freqz(num,den,w);subplot(2,2,1);plot(w/pi,real(h));gridtitle('幅度谱')xlabel('\omega/\pi');ylabel('幅值')subplot(2,2,4);plot(w/pi,angle(h));gridtitle('相位谱')xlabel('\omega/\pi');ylabel('弧度')四、实验结果分析1、系统函数的零、极点分别关于实轴和原点对称分布2、对于稳定的因果系统,H(z)的全部极点应落在单位圆内,所以描述的系统是稳定的因果系统3、通过Matlab,可以直观的看出系统函数的幅度和相位谱的变化,为系统分析提供了有效便捷的方法五、实验心得1、通过这次实验,学会了更好地使用Matlab仿真软件,对于一些复杂的频率响应有更直观的分析。
2、通过零极点的分布,可以直观的看出来是否为稳定因果系统,比起分析零极点的值,更为便捷。
3、编程的过程中,需要静下心,认真思考,不得马虎。