人口指数增长模型及Logistic模型
- 格式:doc
- 大小:88.82 KB
- 文档页数:8
数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。
面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。
数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。
1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。
其中,最常用的人口增长模型之一是指数增长模型。
指数增长模型假设人口增长的速度与当前人口数量成正比。
简单来说,人口数量每过一段时间就会翻倍。
这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。
2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。
通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。
除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。
这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。
3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。
通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。
例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。
此外,数学建模还可以用于评估不同人口政策的长期影响。
通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。
4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。
通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。
这些模型可以为城市规划、资源配置和社会发展提供重要参考。
在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。
例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。
人口预测的数学模型与预测方法分析人口预测是对未来一定时期内人口数量和结构的变动进行估计和预测的过程。
人口预测在社会经济发展规划、城市规划、教育医疗资源配置等方面具有重要的参考价值。
为了准确预测人口的变动趋势,需要建立合理的数学模型和选择适当的预测方法。
人口预测的数学模型主要包括线性回归模型、指数模型、Logistic模型等。
线性回归模型是一种用来描述两个变量之间线性关系的统计模型,可以用来预测人口随时间的变化。
指数模型假设人口数量按照指数规律增长或减少,适用于人口增长较快的情况。
Logistic模型则适用于人口增长速度放缓后的情况,它是一种描述增长速度逐渐趋近于饱和的模型。
在选择数学模型时,需要综合考虑以下几个因素:人口历史变动趋势、人口自然增长率、人口迁移和流动情况、政策调控等因素。
同时,还需根据实际情况对模型的参数进行合理的设定和修正,以提高预测的准确性。
在预测方法上,常用的有趋势线法、复合增长率法、比较推理法、时间序列分析法和系统动力学方法等。
趋势线法是基于历史数据的发展趋势来进行预测,适用于人口变动趋势比较稳定的情况。
复合增长率法是将历史数据中的增长率按一定规则进行加权平均,再用来推算未来人口的增长率。
比较推理法通过对不同因素的比较和推理,来估计未来人口的变化。
时间序列分析法是根据时间序列数据的历史模式来预测未来的变化趋势。
系统动力学方法则是通过对不同因素的动态关系建立模型,用来探索人口变动的内在机制和规律。
在具体应用时,可以结合不同的数学模型和预测方法,进行多角度的分析和预测。
同时,还需要不断对模型进行修正和优化,以适应不断变化的人口变动趋势和社会经济背景。
此外,还应该注意对预测结果的不确定性进行评估和把握,提供多种可能性的预测结果,为决策者提供科学的参考依据。
毕业设计——第一章绪论1.研究背景2.国内外研究现状3.人口概念介绍人口增长模型及其应用孙建锋第二章人口增长模型的概述1.马尔萨斯模型(人口指数增长模型)2.Logistic 模型(人口阻滞增长模型)3.年龄移算法模型4.L eslie 人口增长模型5.灰色 GM(1,1)预测模型6.人口发展方程7.各模型的优缺点对比第三章基本人口预测1.出生人数的预测2.死亡人数的预测3.分年龄分性别人口数预测4.人口总数预测第四章人口实例预测1.数据准备2.模型应用与求解3.结果分析4.结论及相关建议第一章绪论1.1研究背景人口问题是联系社会经济发展最基本、最复杂问题,受到世界各国诸多领域的关注.就人口规模的发展而言存在极大地差异,如,某些发展中国家人口生育率过高;而某些发达国家的生育率过低,甚至为负増长,这些现象会引发一系列社会经济问题,如,失业、老龄化,进而影响社会稳定.人口问题事关国计民生,是影响经济社会发展全局的重大问题。
以人为本的科学发展观必然要求我们在一切发展序列中首先关注人口发展,中国人口发展在中国经济社会发展框架中具有绝对优先的工具价值和目的意义。
人口发展对一个国家经济、社会协调和可持续发展具有重要影响。
发现人口问题、制定相应政策、采取合适措施对人口发展进行调节,是政府保证经济社会协调和可持续发展的重要内容。
众所周知,人口众多是我国基本的国情,人口问题一直以来就是中国经济发展的绊脚石,中国是人口第一大国,固然有地大物博,资源丰富的美誉,但按人口数量平均下来,也就成了人均占有量不足的基本国情。
中国在世纪之交的2000 年进行了全国第五次人口普查,国家许多重大社会、政治,经济问题的研究都要依据人口的数量。
为此,进行人口预测是有效地控制人口发展与资源关系不可缺少的手段之一,同时也是人口决策的重要依据.对人口进行预测,做到人口有计划地发展不仅能有效地处理好人类与资源的关系,而且对于经济发展的预测,各个生态专项规划及制定建设决策都有重要的借鉴意义,也是我国经济稳定、高效、协调发展的保证。
中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。
人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。
因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。
本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。
方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。
这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。
通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。
建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。
常用的数学模型包括指数增长模型、Logistic增长模型等。
在本文中,我们以Logistic增长模型为例。
Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。
Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。
参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。
参数估计可以通过拟合历史数据来完成。
常用的参数估计方法包括最小二乘法、最大似然估计等。
模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。
为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。
如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。
预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。
通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。
例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。
结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。
Malthus模型和Logistic 模型随着社会的发展,人口问题与经济、资源、环境、社会的冲突日益成为制约国家发展的瓶颈,了解了人口增长函数,也就掌握了人口的发展动态和发展规律,这对国家的发展有重要意义。
1798年.英国人口学家和政治经济学家马尔萨斯以两个假设为前提:第一,食物为人类生存所必须;第二,人的性本能几乎无法限制,提出了闻名于世的人口指数增长模型,即Malthus人口模型:人口总数为p(t),人口的出生率为b,死亡率为d。
任取时段【t, t + dt ],在此时段中的出生人数为b p(t)dt ,死亡人数为d p(t)dt。
假设出生数及死亡数与p(t)及dt均成正比,而且以矩形取代了曲边梯形的面积。
在时段【t, t+dt ]中,人口增加量为p(t dt)- p(t)〜d p(t), 它应等于此时段中的出生人数与死亡人数之差,即d p(t) =b p(t) dt —d p(t) dt = a p(t) dt,其中a=b—d称为人口的净增长率。
于是p(t)满足微分方程^=ap(t). (1)dt若已知初始时刻t=t0时的人口总数为P0,那么p(t)还满足初始条件t=t0 时,p(t) =p0. (2)可以求得微分方程(1)满足初始条件⑵ 的解为(设a是常数) p(t)=p c e a(t _t0), ⑶即人口总数按指数增长。
模型参数的意义和作用:t0为初始时刻(初始年度),P0为初始年度t0的人口总数,a为每年的人口净增长率,b为人口出生率,d 为人口死亡率。
Malthus 人口模型所说的人口并不一定限于人,可以是认可一个生物群体,只要满足类似的性质即可。
现在讨论模型的应用和正确性。
例如,根据统计数据知在1961 年全世界人口为30.6 亿,1951 年-1961 年十年每年人口净增长率约为0.02。
取t o=1961, p o=3.06*109和a =0.02,就有9 0.02(t-t0)p(t)=3.06*10 *e ,用这个公式倒计算全世界在1700-1961 年间的人口总数,并把计算结果与实际统计数据作比较可以发现它们是比较符合的。
数学模型在人口统计学中的应用人口统计学是研究人口数量、结构、分布及其变化规律的一门学科。
随着信息技术的发展和数据收集的完善,数学模型在人口统计学领域的应用越来越广泛。
数学模型可以帮助我们更好地理解人口变化的模式、预测未来的趋势,并为政策制定者提供科学的决策依据。
本文将介绍数学模型在人口统计学中的几个典型应用。
一、人口增长模型人口增长是人口统计学中的基本概念之一。
数学模型可以帮助我们描述和解释人口增长的过程。
经典的人口增长模型有指数增长模型和Logistic增长模型。
指数增长模型假设人口在没有外界因素的情况下以一个固定的增长速率呈指数增长。
这个模型可以用下面的微分方程来描述:dP/dt = kP其中,P表示人口数量,t表示时间,k表示增长率。
这个模型的解是一个指数函数,可以很好地拟合一些人口增长较为迅速的情况。
Logistic增长模型在指数增长模型的基础上考虑了环境资源的有限性。
它将人口增长率与环境资源的可持续性联系起来。
Logistic增长模型可以用下面的微分方程描述:dP/dt = kP(1 - P/K)其中,P表示人口数量,t表示时间,k表示增长率,K表示环境资源的承载能力。
这个模型的解是一个S形曲线,可以很好地描述人口增长的饱和趋势。
二、人口分布模型人口分布是人口统计学中的另一个重要方面。
数学模型可以帮助我们分析人口的空间分布及其影响因素。
格里德斯(Gutmann R.P.)提出的Gridded Population Model就是一种常用的人口分布模型。
Gridded Population Model将地理空间划分成一系列的格网,使用统计学方法估算每个格网中的人口数量。
这个模型结合了人口普查数据、地理信息系统和空间插值技术,可以精确地估算不同区域的人口分布情况。
除了Gridded Population Model,还有一些其他的人口分布模型,例如地理加权回归模型(Geographically Weighted Regression, GWR),它可以用于分析人口分布与地理环境之间的关系。
表1 美国人口统计数据指数增长模型:rt e x t x 0)(=Logistic 模型:()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭解:模型一:指数增长模型。
Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人口为0x ,因为⎪⎩⎪⎨⎧==0)0(x x rxdt dx由假设可知0()rt x t x e = 经拟合得到:}2120010120()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x ey x t a r a x =+=⇒=+⇒=====程序:t=1790:10:1980;x(t)=[ ]; y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t);plot(t,x(t),'r',t,x1,'b') 结果:a =r= x0=所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = , 输入:t=2010;x0 = ;x(t)=x0*exp*t)得到x(t)= 。
即在此模型下到2010年人口大约为 610⨯。
模型二:阻滞增长模型(或 Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为 x 的减函数,如设)/1()(m x x r x r -=,其中 r 为固有增长率 (x 很小时 ) ,m x 为人口容量(资源、环境能容纳的最大数量), 于是得到如下微分方程:⎪⎩⎪⎨⎧=-=0)0()1(xx x x rx dt dxm 建立函数文件function f=curvefit_fun2 (a,t)f=a(1)./(1+(a(1)/*exp(-a(2)*(t-1790))); 在命令文件中调用函数文件 % 定义向量(数组) x=1790:10:1990; y=[ 76 ... 92 204 ];plot(x,y,'*',x,y); % 画点,并且画一直线把各点连起来 hold on;a0=[,1]; % 初值% 最重要的函数,第1个参数是函数名(一个同名的m 文件定义),第2个参数是初值,第3、4个参数是已知数据点 a=lsqcurvefit('curvefit_fun2',a0,x,y); disp(['a=' num2str(a)]); % 显示结果 % 画图检验结果 xi=1790:5:2020; yi=curvefit_fun2(a,xi); plot(xi,yi,'r'); % 预测2010年的数据 x1=2010;y1=curvefit_fun2(a,x1) hold off 运行结果: a= y1 =其中a(1)、a(2)分别表示()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭中的m x 和r ,y1则是对美国美国2010年的人口的估计。
《数学模型》实验报告实验名称:如何预报人口的增长成绩:____________实验日期:2009年4月22日实验报告日期:2009年4月26日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到”地球在变小",人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义•本节介绍几个经典的人口模型•3.3.1模型I:人口指数增长模型(马尔萨斯Malthus,1766--1834)1)模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2)模型建立及求解据模型假设,在t到时间内人口数的增长量为5两端除以,得到5即,单位时间人口的增长量与当时的人口数成正比令,就可以写出下面的微分方程:5如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得5两端积分,并结合初值条件得显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3)模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正•图3-24)模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的•这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的•人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.3.3.2模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在一一或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1)模型假设地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2)模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t)的减函数,特别是当P(t)达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令用代替指数增长模型中的导出如下微分方程模型:⑵这是一个Bernoulli方程的初值问题,其解为在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic 模型).其图形如图3-3所示.图3-33)模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4)模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线. 但我们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程一一这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗[FS:PAGE]事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑•、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。
中国人口增长预测模型中国是全球人口最多的国家之一,人口增长对社会经济发展和资源分配产生重大影响。
因此,准确预测中国的人口增长对于政府决策和社会规划至关重要。
本文将介绍一个基于趋势分析和数学模型的中国人口增长预测模型。
首先,分析历史数据是了解人口增长趋势的关键。
我们可以通过查阅官方统计数据来获得中国过去几十年的人口数量。
这些数据可以反映出不同年代的人口变化情况。
通过对这些数据进行趋势分析,我们可以更好地了解人口增长的规律。
其次,我们可以使用数学模型来预测未来的人口增长。
常用的人口增长模型包括线性增长模型、指数增长模型和Logistic增长模型。
线性增长模型假设人口每年以相同的速度增长,而指数增长模型则假设人口增长的速度与当前的人口数量成正比。
Logistic增长模型则考虑到了环境容量的限制,即人口增长速度会随着人口密度的增大而减缓。
在选择模型时,我们需要考虑人口增长的影响因素。
例如,出生率、死亡率和迁徙率等因素都会对人口增长产生影响。
因此,在构建预测模型时,我们需要综合考虑这些因素,并基于历史数据进行参数估计。
在模型构建完成后,我们可以利用计算机软件进行模拟和预测。
这些软件可以根据历史数据和模型参数,预测未来的人口数量和变化趋势。
通过不断调整模型参数,我们可以提高预测准确度,从而使我们的预测结果更具有可信度。
然而,人口增长预测也存在一定的不确定性。
例如,社会政策的改变、科技进步和自然灾害等都可能对人口增长产生重大影响。
因此,我们在使用预测模型时应该意识到这些不确定性,并将其考虑在内。
此外,随着社会的发展和科技的进步,我们可以探索更加精细化的人口增长预测模型。
例如,可以考虑区域差异和人口组成的变化,利用更多的经济、社会和环境因素来对人口增长进行建模。
这样的模型可以更好地适应中国复杂多变的人口情况。
综上所述,中国人口增长预测模型是一种重要工具,可以帮助我们了解和预测中国人口的发展趋势。
通过分析历史数据、构建数学模型并利用计算机软件进行模拟和预测,我们可以提高预测的准确性,并为政府决策和社会规划提供有力的支持。
人口增长的L o g i s t i c模型分析及其应用人口增长的Logistic模型分析及其应用作者:熊波来源:《商业时代》2008年第27期◆中图分类号:C923 文献标识码:A内容摘要:本文运用迭代的方法计算出人口极限值xm和人口增长率r,用 Logistic模型预测了我国人口未来的发展趋势,并根据预测的结果提出了相应的对策与建议。
关键词:人口 Logistic模型迭代人口增长问题相关研究最早注意人口问题的是英国经济学家马尔萨斯,他在1798 年提出了人口指数增长模型。
这个模型的基本假设是:人口的增长率是一个常数。
记t时刻的人口总数为x(t)。
初始时刻t=0时的人口为x0。
人口增长率为r,r表示单位时间内x(t)的增量与x(t)的比例系数。
那么,时刻t到时刻t+Δt内人口的增量为x(t+Δt)-x(t)=rx(t)Δt。
于是x(t)满足下列微分方程的初值问题,他的解为x(t)=x0ert。
在r>0时,人口将按指数规律增长。
但是不管生物是按算术级数、几何级数还是按指数曲线变化,随着时间增长生物数量将趋于无穷大。
然而,实际情况却不然,实验指出在有限的空间内,一开始生物以较快速度增长,到一定时期生物增长量就会减缓,生物数量趋于稳定。
历史上的人口统计数据也表明,当一个国家的社会稳定时,一定时期内马尔萨斯模型是符合实际的,但是如果时间比较长或社会发生动荡时,马尔萨斯模型就不能令人满意了。
原因是随着人口的增加,自然资源、环境条件等因素对人口增长开始起阻滞作用,因而人口增长率不断下降。
基于以上考虑荷兰生物学家Verhaust对原人口发展模型进行了改造,于1838 年提出了以昆虫数量为基础的Logistic 人口增长模型。
这个模型假设增长率r是人口的函数,它随着x的增加而减少。
最简单的假定是r是x的线性函数,其中r称为固有增长率,表示x→0时的增长率。
由r(x)的表达式可知,x=xm时r=0。
xm表示自然资源条件能容纳的最大人口数。
人口统计学中的人口增长与衰退模型人口统计学是研究人口变化规律、数量结构和特征的学科。
人口增长与衰退是其中的一个重要方面。
人口增长模型和衰退模型针对的是不同的人口现象,在研究时需要有相应的数据支撑,下面将介绍其基本定义以及一些常见的模型。
一、人口增长模型人口增长是指人口数量随时间的增加,包括自然增长和外部因素的影响。
自然增长是指出生率与死亡率的差异,外部因素则包括移民、战争和疾病等。
人口增长模型主要用来描述人口数量的变化规律,下文将介绍两种常见的模型。
1.1 指数增长模型指数增长模型认为,人口数量增长的速度与当前人口数量成正比,若人口数量为N,增长速度为r,则有:dN/dt = rN其中,dN/dt是人口数量随时间的变化率。
该模型的特点是,随着人口数量的增加,增长速度越来越快,最终可能会造成人口过剩和资源匮乏的问题。
1.2 Logistic增长模型Logistic增长模型是为了避免人口增长过快而提出的模型。
它假设人口数量增长的速度不仅与当前人口数量有关,还与最大承载能力K有关,若人口数量为N,增长速度为r,则有:dN/dt = rN(1-N/K)其中,1-N/K表示剩余生育空间的比例。
随着人口数量的增加,增长速度逐渐减缓,最终趋向于一个稳定的数量。
二、人口衰退模型人口衰退是指人口数量相对稳定或减少的过程,它涉及到出生率、死亡率、迁移率等因素。
人口衰退模型主要用来描述人口数量在长期内的变化趋势,下文将介绍两种常见的模型。
2.1 指数衰退模型指数衰退模型认为,人口数量随时间的减少速度与当前人口数量成正比,若人口数量为N,衰退速度为r,则有:dN/dt = -rN其中,符号“-”表示人口数量减少。
该模型的特点是,随着时间的推移,人口数量减少的速度越来越快,最终可能导致人口不足的问题。
2.2 Logistic衰退模型Logistic衰退模型则是为了避免人口数量减少过快而提出的模型。
它和Logistic增长模型类似,假设人口数量减少的速度不仅与当前人口数量有关,还与最低承载能力K有关,若人口数量为N,衰退速度为r,则有:dN/dt = -rN(N/K-1)其中,N/K-1表示剩余存活空间的比例。
数学建模在人口统计学中的应用人口统计学是研究人口数量、结构和变动等方面的学科,它对于社会发展、经济增长以及政策制定都具有重要意义。
而数学建模则是利用数学模型对现实问题进行描述、分析和预测的一种方法。
本文将介绍数学建模在人口统计学中的应用,并探讨其对人口问题的解决和决策制定的重要性。
一、人口增长模型人口增长是人口统计学中的一个核心研究内容,数学建模可以帮助我们理解和预测人口增长的趋势。
常见的人口增长模型有指数增长模型、Logistic增长模型等。
指数增长模型假设人口增长速率与当前人口数量成正比,可以用如下的微分方程来描述:$$\frac{dN}{dt} = rN$$其中,N表示人口数量,r表示人口增长率。
利用这个模型,我们可以预测未来人口数量的变化趋势,从而为人口规划与管理提供依据。
二、人口结构模型人口结构指的是不同年龄、性别和种族等群体在人口总数中所占的比例和分布情况。
人口结构模型可以帮助我们分析和预测不同人口群体的变化趋势,从而为社会政策制定提供科学依据。
其中,常见的人口结构模型有Alvarez-Mathieson模型和Lee-Carter模型等。
Alvarez-Mathieson模型基于生态位模型,通过设定生育率、死亡率和迁移率等参数,来预测不同年龄和性别群体的人口数量。
这种模型可以帮助我们评估不同年龄段人口对经济、教育、医疗等方面的需求,为社会资源的分配提供依据。
Lee-Carter模型则是基于周期性的波动来描述人口结构变化的。
通过将人口死亡率和出生率等数据作为输入,可以预测未来不同年龄群体的人口数量。
这种模型在养老金制度、医疗保健等方面的政策制定中有着重要的应用价值。
三、人口流动模型人口流动是指人口从一个区域或国家向另一个区域或国家的迁移和流动。
人口流动模型可以帮助我们分析和预测人口迁移的趋势,为政策制定提供参考。
常见的人口流动模型有迁移概率模型和重力模型等。
迁移概率模型主要使用迁移率数据来预测人口流动的规模和方向。
数学与人口统计学数学在人口变化中的应用数学与人口统计学:数学在人口变化中的应用数学作为一门科学,有着广泛的应用领域,其中之一就是人口统计学。
人口统计学是研究人口数量、分布、组成以及变化规律的学科。
作为一个涉及大数据和复杂模型的领域,数学在人口统计学中扮演着重要的角色。
本文将探讨数学在人口变化中的具体应用。
一、人口增长模型人口统计学的一个关键问题是预测人口的增长趋势以及未来的人口规模。
通过数学模型,我们可以对人口增长进行系统的分析和预测。
常见的人口增长模型有指数增长模型、对数增长模型和Logistic增长模型。
指数增长模型描述了一个无限增长的过程,数学表达式为N(t) = N0 * e^rt,其中N(t)表示时间t时的人口数量,N0为初始人口数量,r为增长率。
对数增长模型则适用于一些具有饱和点的人口增长情况,其数学表达式为N(t) = K * ln(1 + (N0-1)/K * t),其中K为饱和点的人口数量。
Logistic增长模型结合了指数增长和对数增长的特点,常用于描述真实世界中的人口增长变化。
利用这些数学模型,我们可以预测不同地区、不同国家的人口增长趋势,为政府制定人口政策提供决策依据。
二、人口密度分析人口密度是指单位面积或单位空间内的人口数量。
通过数学计算,我们可以获得不同地区的人口密度,并进行比较和分析。
常用的计算公式是人口密度=总人口数/总面积。
通过人口密度的分析,我们可以了解人口在不同地区的分布情况,为城市规划、土地利用等提供依据。
三、人口结构与统计人口结构是指人口按年龄、性别、职业、教育程度等特征的分布情况。
通过数学方法,我们可以对人口结构进行分析。
例如,可以使用人口金字塔来表示不同年龄组人口的分布情况,以及男女性别比例的分布情况。
这些分析结果可以帮助政府了解人口组成情况,制定相关政策,如老龄化政策、教育投入政策等。
另外,对人口结构进行统计分析也是重要的研究内容之一。
这包括人口的平均年龄、出生率、死亡率、迁入率、迁出率等。
非线性成长模型中增长曲线的变化特征非线性成长模型是一种描述经济、社会或自然系统增长的数学模型。
在这种模型中,增长曲线通常不是直线,而是呈现出曲线的形状。
根据具体的非线性成长模型,增长曲线的变化特征可能会有所不同。
下面,我将介绍几个常见的非线性成长模型,并分析它们在增长曲线上的变化特征。
1. 指数增长模型:指数增长模型描述的是一种迅速的、指数级的增长过程。
在这种模型中,增长曲线呈现出逐渐上升的形态,起初增长速度较慢,但随着时间的推移,增长速度逐渐加快。
这种曲线通常会在某一点达到饱和,之后增长速度会逐渐减缓,最终趋于稳定。
2. Logistic增长模型:Logistic增长模型是一种将指数增长模型与饱和增长模型结合的模型。
在这种模型中,增长曲线一开始呈现出指数型的上升,但随着时间的推移,增长速度逐渐减缓,并最终趋于稳定。
与指数增长模型不同的是,Logistic增长模型会在饱和点附近形成S形曲线。
3. Gompertz增长模型:Gompertz增长模型是一种用于描述人口或生物增长的模型。
在这种模型中,增长曲线呈现出逐渐上升、逐渐减速的特征。
起初,增长速度较快,但随着时间的推移,增长速度逐渐减缓。
这种模型通常会在某一点达到峰值,之后增长速度会逐渐下降。
4. Sigmoid增长模型:Sigmoid增长模型描述的是一种逐渐加速然后逐渐减速的增长过程。
在这种模型中,增长曲线呈现出类似于S形的形态,起初增长缓慢,但随着时间的推移,增长速度逐渐增加,达到一个峰值,之后增长速度又逐渐减缓,最终趋于稳定。
需要注意的是,非线性成长模型中的增长曲线变化特征受到多个因素的影响,包括初始条件、系统稳定性、外部干扰等。
此外,不同的非线性成长模型可能适用于不同的领域和情境,我们需要根据具体问题选择合适的模型进行分析。
总结起来,非线性成长模型中的增长曲线通常不是直线,而是具有一定形态的曲线。
常见的非线性成长模型包括指数增长模型、Logistic增长模型、Gompertz增长模型和Sigmoid增长模型。
logistic人口模型代码Logistic人口模型是一种用于描述人口增长的数学模型。
它基于人口增长受到资源限制的假设,通过考虑出生率、死亡率和迁移率等因素,预测未来人口的变化趋势。
本文将介绍Logistic人口模型的原理、应用以及相关的计算代码。
Logistic人口模型的原理是基于人口增长的S型曲线。
在初始阶段,人口增长呈指数增长,但随着资源的有限性,人口增长逐渐趋于饱和,增长速度放缓。
模型的基本方程如下:dP/dt = r * P * (1 - P/K)其中,dP/dt表示单位时间内人口数量的变化率,r表示人口增长率,P表示当前时间的人口数量,K表示环境的承载能力,即最大人口数量。
Logistic人口模型的代码实现可以使用各种编程语言,例如Python。
下面是一个简单的Python代码示例:```pythonimport numpy as npimport matplotlib.pyplot as pltdef logistic_population_growth(r, K, P0, t):P = []P.append(P0)for i in range(1, len(t)):dP = r * P[i-1] * (1 - P[i-1]/K)P.append(P[i-1] + dP)return Pr = 0.02 # 人口增长率K = 1000 # 环境的承载能力P0 = 100 # 初始人口数量t = np.linspace(0, 100, 100) # 时间范围population = logistic_population_growth(r, K, P0, t)plt.plot(t, population)plt.xlabel('Time')plt.ylabel('Population')plt.title('Logistic Population Growth')plt.show()```上述代码使用了NumPy库来生成时间范围,matplotlib库用于绘制人口变化趋势图。
Logistic人口发展模型一、题目描述建立Logistic人口阻滞增长模型,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与国家人口发展战略研究报告中提供的预测值进行分析比较.二、建立模型阻滞增长模型Logistic 模型阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的.阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降.若将r 表示为x 的函数)(x r .则它应是减函数.于是有:)0(,)(x x x x r dtdx==1对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即)0,0()(>>-=s r sxr x r2设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即增长率0)(=m x r ,代入2式得m x rs =,于是2式为 )1()(mx x r x r -= 3将3代入方程1得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm 4解得:rt mme x x x t x --+=)1(1)(05三、模型求解用Matlab求解,程序如下:t=1954:1:2005;x=60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74. 5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97. 5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111. 026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122. 389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129 .988,130.756;x1=60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74 .5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97 .5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111 .026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122 .389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,12 9.988;x2=61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76 .3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98 .705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026, 112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389, 123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988 ,130.756;dx=x2-x1./x2;a=polyfitx2,dx,1;r=a2,xm=-r/a1%求出xm和rx0=61.5;f=inline'xm./1+xm/x0-1exp-rt-1954','t','xm','r','x0';%定义函数plott,ft,xm,r,x0,'-r',t,x,'+b';title'1954-2005年实际人口与理论值的比较'x2010=f2010,xm,r,x0x2020=f2020,xm,r,x0x2033=f2033,xm,r,x0解得:xm= 180.9516千万,r= 0.0327/年,x0=61.5得到1954-2005实际人口与理论值的结果:根据国家人口发展战略研究报告我国人口在未来30年还将净增2亿人左右.过去曾有专家预测按照总和生育率2.0,我国的人口峰值在2045年将达到16亿人.根据本课题专家研究,随着我国经济社会发展和计划生育工作加强,20世纪90年代中后期,总和生育率已降到1.8左右,并稳定至今.实现全面建设小康社会人均GDP达到3000美元的目标,要求把总和生育率继续稳定在1.8左右.按此预测,总人口将于2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右见图1.劳动年龄人口规模庞大.我国15-64岁的劳动年龄人口2000年为8.6亿人,2016年将达到高峰10.1亿人,比发达国家劳动年龄人口的总和还要多.在相当长的时期内,中国不会缺少劳动力,但考虑到素质、技能等因素,劳动力结构性短缺还将长期存在.同时,人口与资源、环境的矛盾越来越突出.而据模型求解:2010年人口:x2010= 137.0200千万专家预测13.6亿误差为0.7% 2020年人口:x2020= 146.9839千万专家预测14.5亿误差为1.3% 2033年人口:x2033= 157.2143千万专家预测 15亿误差为4.8% 2045年人口:x2045= 164.6959千万专家预测 16亿误差为4.1%五、预测1. 1954-2005总人口数据建立模型:r=0.0327 xm=180.95162010年人口:x2010= 137.0200千万专家预测13.6亿误差为0.7% 2020年人口:x2020= 146.9839千万专家预测14.5亿误差为1.3% 2033年人口:x2033= 157.2143千万专家预测 15亿误差为4.8% 2045年人口:x2045= 164.6959千万专家预测 16亿误差为4.1% 2. 1963-2005总人口数据建立模型:r=0.0493 xm=150.52612010年人口:x2010= 134.1612千万专家预测13.6亿误差为1.4% 2020年人口:x2020= 140.0873千万专家预测14.5亿误差为3.4% 2033年人口:x2033= 144.8390千万专家预测 15亿误差为3.4% 2045年人口:x2045= 147.3240千万专家预测 16亿误差为7.6% 3.1980-2005总人口数据建立模型:r=0.0441 xm=156.32972010年人口:x2010= 135.2885千万专家预测13.6亿误差为0.5% 2020年人口:x2020= 142.1083千万专家预测14.5亿误差为2.0%2033年人口:x2033= 147.9815千万专家预测 15亿误差为1.3% 2045年人口:x2045= 151.3011千万专家预测 16亿误差为5.4%总体来看,1980-2005这一组数据拟合出的人口模型比较好,即与已有数据吻合,又与专家预测误差较小.从历史原因来分析:1954年之后的1959-1961年间,有三年自然灾害故而使得实际人口数据与估计有所偏颇.1960年之后为过渡时期.1983年之后开始实施“计划生育政策”,一直至今,所以1980-2005年间的数据与预测分析最好.。
《数学模型》实验报告实验名称:如何预报人口的增长成绩:___________实验日期:2009 年 4 月22 日实验报告日期:2009 年 4 月 26 日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到"地球在变小",人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义.本节介绍几个经典的人口模型.模型I:人口指数增长模型(马尔萨斯Malthus,1766--1834)1) 模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2) 模型建立及求解据模型假设,在t到时间内人口数的增长量为,两端除以,得到,即,单位时间人口的增长量与当时的人口数成正比.令,就可以写出下面的微分方程:,如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得,两端积分,并结合初值条件得.显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3) 模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正.图3-24) 模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的.我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的.这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的.人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中.模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在——或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1) 模型假设地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2) 模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t) 的减函数,特别是当P(t) 达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令.用代替指数增长模型中的导出如下微分方程模型:(2)这是一个Bernoulli方程的初值问题,其解为.在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic模型).其图形如图3-3所示.图3-33) 模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4) 模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用.不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线.但我们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程——这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗[FS:PAGE]事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时,我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑.一、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。
根据美国人口从1790年到1990年间的人口数据(如下表),确定人口指数增长模型和Logistic 模型中的待定参数,估计出美国2010年的人口,同时画出拟合效果的图形。
1860 1870 1880 1890 1900 1910 1930 1940 1950 1960 1970 1980 指数增长模型:rt e x t x 0)(=
Logistic 模型:()011m
rt
m x x t x e x -=
⎛⎫
+- ⎪⎝⎭
解:模型一:指数增长模型。
Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人
口为0x ,因为⎪⎩⎪⎨⎧==0
)0(x x rx
dt dx
由假设可知0()rt x t x e = 经拟合得到:
}2
120010120
()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x e
y x t a r a x =+=⇒=+⇒
=====
程序:
t=1790:10:1980;
x(t)=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5
123.2 131.7 150.7 179.3 204.0 226.5 ]; y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t);
plot(t,x(t),'r',t,x1,'b') 结果:a = 0.0214 -36.6198
r= 0.0214
x0= 1.2480e-016 所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = 1.2480e-016, 输入:t=2010;
x0 = 1.2480e-016; x(t)=x0*exp(0.0214*t)
得到x(t)= 598.3529。
即在此模型下到2010年人口大约为598.3529 610⨯。
1780
1800182018401860188019001920194019601980
050
100
150
200
250
300
350
模型二:阻滞增长模型(或 Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为 x 的减函数,如设)/1()(m x x r x r -=,其中 r 为固有增长率 (x 很小时 ) ,m x 为人口容量(资源、环境能容纳的最大数量), 于是得到如下微分方程:
⎪⎩
⎪
⎨⎧=-=0)0()1(x
x x x rx dt
dx
m 建立函数文件curvefit_fun2.m
function f=curvefit_fun2 (a,t)
f=a(1)./(1+(a(1)/3.9-1)*exp(-a(2)*(t-1790))); 在命令文件main.m 中调用函数文件curvefit_fun2.m % 定义向量(数组) x=1790:10:1990;
y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76 ... 92 106.5 123.2 131.7 150.7 179.3 204 226.5 251.4]; plot(x,y,'*',x,y); % 画点,并且画一直线把各点连起来 hold on;
a0=[0.001,1]; % 初值
% 最重要的函数,第1个参数是函数名(一个同名的m 文件定义),第2个参数是初值,第3、4个参数是已知数据点 a=lsqcurvefit('curvefit_fun2',a0,x,y); disp(['a=' num2str(a)]); % 显示结果 % 画图检验结果 xi=1790:5:2020;
yi=curvefit_fun2(a,xi); plot(xi,yi,'r'); % 预测2010年的数据 x1=2010;
y1=curvefit_fun2(a,x1) hold off 运行结果:
a=311.9531 0.02798178 y1 =267.1947
其中a(1)、a(2)分别表示()011m
rt
m x x t x e x -=
⎛⎫+- ⎪⎝⎭
中的m x 和r ,y1则是对美国美
国2010年的人口的估计。
1750
180018501900195020002050
050
100
150
200
250
300
第二题:
问题重述:
一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给与鼓励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量
的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):
问题分析:
鲈鱼的体重主要与鱼的身长、胸围有关系。
一般来说,鲈鱼的胸围越大,鱼
的体重会越重,身长越长,体重也越重。
但鱼的胸围与身长之间又有些必然的联
系,共同影响鱼的体重。
建模的目的是寻求鲈鱼体重与身长、胸围之间的数量规
律
模型假设:
1、鲈鱼的身长越长体重越重,体重与身长存在正相关关系;
2、鲈鱼的胸围越大体重也越重,体重与胸围存在正相关的关系;
3、鲈鱼的胸围、身长互相影响,共同作用鲈鱼的体重;
4、鲈鱼的形态近似为与胸围等周长与身长等高的圆柱体。
符号说明:
模型的建立及求解:
(一)、鲈鱼体重与身长模型的确立
为了研究鲈鱼身长与体重的关系,我们利用已测量的数据,取出身长及体重的数据,利用MATLAB软件画出散点图,如下:
身长
体重
身长与体重散点图
从图形上看,鲈鱼的体重与身长可能是二次函数关系,我们利用多项式拟合的方法,得到:
21.6247*L -59.3124*L +709.7392W
(1)
根据拟合的函数,我们画出拟合图:
200
400600800100012001400160018002000身长与体重拟合图
从拟合图上看,大部分原始数据在拟合函数附近,说明用二次函数拟合的效果较好,下面利用得出的函数对鱼的体重进行估计,用相对误差检验拟合度,得到下表:
表一、鲈鱼体重实际值与估计值对比及误差表
从表中的数据,我们可以得出鲈鱼体重的实际值与估计值的相对误差不大,
说明用二次函数拟合鲈鱼身长与体重的关系式可行的。
(二)、鲈鱼体重与胸围的模型确立
仅仅考虑鲈鱼胸围对体重的影响,我们采用与模型一相同的方法,先画出鲈鱼体重与胸围的散点图:
20
22
24
2628
30
32
胸围
体重
胸围与体重散点图
从图形上看,鲈鱼体重与胸围可能成线性关系,利用多项式拟合的方法,我们得到鲈鱼体重与胸围的函数表达式:
92*C-1497.5W (2) 根据拟合函数(2),画出胸围与体重关系的拟合图:
胸围与体重拟合图
利用拟合函数及实际数据,求出实际值与拟合值得相对误差表:
从鲈鱼胸围与体重的拟合图,及表二中的数据,我们可以得出用线性函数拟合胸围与体重的关系拟合程度高,鲈鱼体重的实际值与估计值的相对误差不大,说明用线性函数拟合鲈鱼身长与体重的关系式可行的。
(三)、建立体重与身长、胸围相互影响的模型
实际情况下,鲈鱼的体重不可能只由身长、胸围单方面影响,因此考虑建立身长、胸围共同作用体重的模型。
此模型的建立是基于假设⑶,(4),即:鲈鱼的体态用与胸围等周长,与身长等高的圆柱形来近似。
因为圆柱体的体积等于底面积乘高,底面积可以用周长
表示:π
42C
.因此可以分析得出2LC W ∝.又物体质量等于密度与体积的乘积,因
此只需根据数据求出密度即可。
于是身长、胸围与体重的关系可以表示为:
2LC W α=,问题转化为对系数α的求解。
根据已知数据,利用MATLAB 软件求解,
得到:
α≈0.0327 (3)因此,
2
.0LC
W=
0327
(4)
利用得出的函数对鱼的体重进行估测并列如下表:
根据表三的数据,可以知道模型三的拟合程度也较好,相对于模型一、二,此模型充分考虑到了身长、胸围对体重的相互影响,用此模型估计鲈鱼的体重可能会更符合实际。