最新人教版高中数学必修五基本不等式的证明备课资料
- 格式:pdf
- 大小:21.75 KB
- 文档页数:2
3.4 基本不等式 ab ≤2b a + [教学目标]1. 探索并了解基本不等式的证明过程。
2. 从基本不等式的证明过程了解不等式证明的常用思路:由条件到结论,或由结论到条件。
3. 能利用基本不等式进行简单的应用。
4. 通过对问题的探究思考、广泛参与,培养学生严谨的思维习惯和数形结合的思想。
5. 通过对问题的引入培养学生的爱国主义情操。
[重 点]: 应用数形结合的思想理解基本不等式,并从不同角度探究基本不等式2b a ab +≤。
[难 点]:从不同角度探索基本不等式的证明过程。
[教学方法]:启发、引导、讲解。
[教学准备]:Z+Z 课件[教学过程]:一、 导入新课(多媒体展示24届国际数学家大会会标)问:你能在这个图中找出一些相等关系或不等关系吗?如何寻找?(引导学生作出其几何图形,多媒体展示该几何图形。
)问:四个全等的直角三角形的面积之和与大正方形的面积有什么关系呢? 答:四个全等的直角三角形的面积之和不大于大正方形的面积。
(多媒体动态演示变化过程,引导学生注意何时相等。
)问:同学们已学过从具体情境中抽象出不等关系并把其表示出来的相关练习,请同学们用不等式表示上述不等关系。
为了表示方便,我们可设直角三角形的两直角边的长分别为b a ,。
答:四个全等的直角三角形的面积之和为ab 2,大正方形的面积为22b a +,则 ab b a 222≥+当直角三角形变为等腰直角三角形,即b a =时,正方形EFGH 缩为一个点时有ab b a 222=+。
问:如何证明 ab b a 222≥+,当且仅当b a =时取等号。
答:由()02222≥-=-+b a ab b a ,所以ab b a 222≥+ 当且仅当()02=-b a ,即b a =时取等号。
[板书]:一般的,对于任意实数b a ,,都有ab b a 222≥+,当且仅当b a =时取等号。
问:当0,0>>b a 时,以a ,b 代替此式中b a ,的可得到一个什么样的关系式? 答:ab b a 2≥+二、.新课探究[板书]:若0,0>>b a ,则2b a ab +≤,当且仅当b a =时取等号。
精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
第一课时 3.4基本不等式2a b +≤(一)教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;教学重点:2a b +≤的证明过程;教学难点:理解“当且仅当a=b 时取等号”的数学内涵教学过程:一、复习准备:1. 回顾:二元一次不等式(组)与简单的线形规划问题。
2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。
你能在这个图案中找出一些相等关系或不等关系吗?二、讲授新课:1. 教学:基本不等式2a b +≤①探究:图形中的不等关系,将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。
由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。
当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。
(教师提问→学生思考→师生总结)②思考:证明一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥,(a>0,b>0)2a b +≤2a b +≤:用分析法证明:要证 2a b +≥(1), 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。
当且仅当a=b 时,(4)中的等号成立。
⑤练习:已知x 、y 都是正数,求证:(1)yx x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.⑥探究:课本第110页的“探究”:(结论:如果把2b a +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.)2. 小结:①两正数a 、b 的算术平均数与几何平均数成立的条件。
教师学科教案[ 20 – 20 学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
高二数学 教·学案
【学习目标】
12
a b
+≤
;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;
2.过程与方法:通过例题的研究,2
a b
+≤
,并会用此定理求某些函数的最大、最小值。
3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。
【学习重点2
a b
+≤
,会用此不等式证明不等式,会用此不等式求某些函数的最值
【学习难点】利用此不等式求函数的最大、最小值。
【授课类型】 新授课 【学习方法】 诱思探究。
人教版必修五数学《基本不等式》PPT课件•课程介绍与目标•基本不等式概念及性质•基本不等式证明方法•基本不等式应用举例目录•拓展与提高:含参数的基本不等式问题•课程总结与回顾01课程介绍与目标人教版必修五数学教材基本不等式章节内容概述与前后知识点的联系教材版本及内容概述教学目标与要求知识与技能目标掌握基本不等式的形式、性质和应用方法,能够运用基本不等式解决简单的最值问题。
过程与方法目标通过探究、归纳、证明等过程,培养学生的数学思维和逻辑推理能力。
情感态度与价值观目标让学生感受数学的美和严谨性,培养学生的数学兴趣和数学素养。
本节课共分为引入、新课、巩固练习、小结四个部分。
课程安排时间分配重点与难点引入部分5分钟,新课部分30分钟,巩固练习部分15分钟,小结部分5分钟。
本节课的重点是基本不等式的形式、性质和应用方法;难点是运用基本不等式解决复杂的最值问题。
030201课程安排与时间02基本不等式概念及性质不等式定义及表示方法不等式的定义用不等号连接两个解析式所组成的数学式子。
不等式的表示方法常见的不等号有“<”、“>”、“≤”、“≥”和“≠”,用于表示两个量之间的大小关系。
对称性传递性可加性同向正值可乘性基本不等式性质探讨01020304当a=b 时,a<b,b>a 同时成立,反之亦然。
若a>b 且b>c ,则a>c ;若a<b且b<c ,则a<c 。
同向不等式可以相加,即若a>b 且c>d ,则a+c>b+d 。
若a>b>0且c>d>0,则ac>bd 。
特殊情况下的基本不等式均值不等式对于任意两个正数a和b,有√(ab)≤(a+b)/2,当且仅当a=b 时取等号。
柯西不等式对于任意两组实数a1, a2, …, an和b1, b2, …, bn,有(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)≥(a1b1+a2b2+...+anbn)^2,当且仅当ai/bi为常数时取等号。
《基本不等式》教案(1)教学目标1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.通过实例探究抽象基本不等式;3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.教学重点难点12a b+的证明过程;22a b+≤等号成立条件.教法与学法1.教法选择:采用讲授法、演示法、引导启发法等.2.学法指导:自主探究法、分析归纳法.充分调动学生的眼、手、脑等多种感官参与学习,既培养了他们的学习兴趣,又使他们感受到了学习的乐趣.教学过程一、设置情境,激发学生探索的兴趣在右图中,AB是圆的直径,点BC=b.过点C作垂直于二、思维拓展,课堂交流三、归纳小结,课堂延展教学设计说明1.教材地位分析《课标》对于这一节的要求:一是探索并了解基本不等式的证明过程;二是会用基本不等式解决简单的最大(小)值问题.该教材内容很好的落实了这两点要求.在前面的学习中,同学们已经基本掌握了一些常见不等式及不等式证明方法,本节内容一定程度上是前面学习的运用,也是后面系统学习不等式证明的基础.基本不等式在证明不等式的过程中是一个很重要的桥梁,放缩法证明不等式会经常用到基本不等式.另一方面,基本不等式作为求极值的的一种方法,经常运用于实际问题,而且是高考常考的知识点,通过基本不等式,常常可以将一些较为复杂的求极值的问题化为简单问题,在化归方法中起着重要的惩承接作用.2.学生现实状况分析学生对不等式的知识有了一定的了解,但对基本不等式的理解运用能力不足.这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难.这都将成为组织教学的考虑因素.。
河北省武邑中学高中数学 §3.4基本不等式第3课时教案 新人教A 版必修5备课人 授课时间课题§3.4基本不等式2a bab +≤(第3课时) 课标要求进一步掌握基本不等式2a bab +≤教 学 目 标知识目标会应用此不等式求某些函数的最值 技能目标 掌握基本不等式2a bab +≤情感态度价值观引发学生学习和使用数学知识的兴趣重点 基本不等式2a bab +≤的应用 难点 利用基本不等式2a bab +≤求最大值、最小值教问题与情境及教师活动学生活动学过程及方法1.课题导入1.基本不等式:如果a,b是正数,那么).""(2号时取当且仅当==≥+baabba2.用基本不等式2a bab+≤求最大(小)值的步骤。
2.讲授新课1)利用基本不等式证明不等式例1 已知m>0,求证24624mm+≥。
[思维切入]因为m>0,所以可把24m和6m分别看作基本不等式中的a和b, 直接利用基本不等式。
[证明]因为 m>0,,由基本不等式得2424626224621224m mm m+≥⨯⨯=⨯=⨯=当且仅当24m=6m,即m=2时,取等号。
规律技巧总结注意:m>0这一前提条件和246mm⨯=144为定值的前提条件。
河北武中·宏达教育集团教师课时教案教问题与情境及教师活动学生活动学过程及方法例2 求证:473aa+≥-.[思维切入] 由于不等式左边含有字母a,右边无字母,直接使用基本不等式,无法约掉字母a,而左边44(3)333a aa a+=+-+--.这样变形后,在用基本不等式即可得证.[证明]4443(3)32(3)32437 333a aa a a+=+-+≥-+=+=---当且仅当43a-=a-3即a=5时,等号成立.规律技巧总结通过加减项的方法配凑成基本不等式的形式.随堂练习1[思维拓展1] 已知a,b,c,d都是正数,求证()()4ab cd ac bd abcd++≥.[思维拓展2] 求证22222()()()a b c d ac bd++≥+2)利用不等式求最值例3 (1) 若x>0,求9()4f x xx=+的最小值;(2)若x<0,求9()4f x xx=+的最大值.[思维切入]本题(1)x>0和94xx⨯=36两个前提条件;(2)中x<0,可以用-x>0来转化.解 1) 因为 x>0 由基本不等式得99()42423612f x x xx x=+≥+==,当且仅当94xx=即x=32时,9()4f x xx=+取最小值12.(2)因为 x<0, 所以 -x>0, 由基本不等式得:999()(4)(4)()2(4)()23612f x x x xx x x-=-+=-+-≥-⋅-==, 所以()12f x≤.2河北武中·宏达教育集团教师课时教案教问题与情境及教师活动学生活动学过程及方法当且仅当94xx-=-即x=-32时,9()4f x xx=+取得最大-12规律技巧总结利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正.随堂练习2[思维拓展1] 求9()45f x xx=+-(x>5)的最小值.[思维拓展2] 若x>0,y>0,且281x y+=,求xy的最小值.3.练习(1).证明:22222a b a b++≥+(2).若1->x,则x为何值时11++xx有最小值,最小值为几?4.课时小结用基本不等式2a bab+≤证明不等式和求函数的最大、最小值。
备课资料
一、课外阅读
算术平均数不小于几何平均数的一种证明方法
(局部调整法)(1)设a 1,a 2,a 3,…,a n 为正实数,这
n 个数的算术平均值记为A ,几何平均值记为G ,即n a a a A n ...21=,,...21n n a a a G 即A ≥G,当且仅当a 1=a 2=…=a n 时,A =G.特别地当n =2时,
ab b
a 2,当n =3时,33abc c
b a .
(2)用局部调整法证明均值不等式
A ≥G.设这n 个正数不全相等.不失一般性,设0<a 1≤a 2≤…≤a n ,易证a 1<A <a n ,且a 1<G <a n .在这n 个数中去掉一个最小数a 1,将a 1换成A ,再去掉一个最大数
a n ,将a n 换成a 1+a n -A ,其余各数不变,于是得到第二组正数:A ,a 2,a 3,…,a n -1,a 1+a n -A.这一代换具
有下列性质:①两组数的算术平均值不变,设第二组数的算术平均值为A 1,那么A 1=n A a a a a a A n n 1132
...+=A,②两组数的几何平均值最大.设第二组数的几何平均值为G 1,则G 1=),(...1132A a a a a Aa n n ∵A(a 1+a n -A)-a 1a n =(A -a 1)(a n -A),由a 1<A <a n ,得(A -a 1)(a n -
A)>0,则A(a 1+a n -A)>a 1a n .∴Aa 2a 3…a n -1(a 1+a
n -A )>a 1a 2…a n -1+a n .G 1>G.若第二组数全相等,则A 1=G 1,于是A =A 1=G 1>G 证明完毕.若第二组数不全相等,再作第二次替换
.仍然是去掉第二组数中的最小数b 1和最大数b n ,分别用A 1(即A)和b 1+b n -A 代替,因为有b 1<A 1<b n 且A 1=A.因而第二组数中的A 不是最小数b 1,也不是最大数b n ,不在去掉之列,在替换中不会被换掉,而只会再增加,如此
替换下去,每替换一次,新数中至少增加一个A ,经过n -2次替换,新数中至少出现n -2个A ,最多
经过n -1次替换,得到一个全部是
A 的新数组.此时新数组的算术平均值等于几何平均值.在每次替换中,数组的算术平均值不变,
始终等于A ,而几何平均值不断增大,即G <G 1<G 2<…<G k ,而G k =A k =A ,
因而G ≤A 成立.
二、课外拓展平均值不等式:平均不等式是最重要而基本的不等式之一,应用极其广泛,如能灵活运用,将产生意想
不到的效果,这类试题在数学竞赛中经常出现.请同学们课后查找资料,阅读此四个不等式的证明过程.平均值定理:设n 个正数a 1,a 2,…,a n ,记
调和平均n
n a a a n
H 1
...
1121几何平均n n n a a a G ...21,
算术平均n a a a A n
n ...21,
平方平均n a a a Q n
n 2
2
22
1....
这4个平均有如下关系:H n ≤Gn ≤A n ≤Q n ,等号成立的充要条件都是a 1=a 2=…=a n .。