例2 (2017山西临汾三模,18)如图,梯形ABCD中,∠BAD=∠ADC=90°, CD=2,AD=AB=1,四边形BDEF为正方形,且平面BDEF⊥平面ABCD.
(1)求证:DF⊥CE; (2)如果AC与BD相交于点O,那么在棱AE上是否存在点G,使得平面OBG ∥平面EFC?并说明理由.
解题导引
又PA=3,S△ABD= 1 ×3×3× 3 = 9 ,3
2
24
∴VP-ABD= 1 ×S△ABD×PA= 9 3,
3
4
同理,VF-ABD= 1 ×S△ABD×FA= 3 3,
3
4
∴V =V -V = P-BDF P-ABD F-ABD 3 3.
2
∵S△BDF=
1 2
×BD×
DF
2
BD 2
2=
1×3
3.性质定理(文字语言、图形语言、符号语言)
方法技巧
方法 1 证明直线与平面平行的常用方法
1.利用定义,证明直线a与平面α没有公共点,一般结合反证法来证明,这 时“平行”的否定应是“在平面内”或“相交”两种,只有排除这两种 位置关系后才能得出“直线a与平面α平行”这一结论. 2.利用直线与平面平行的判定定理.使用该定理时,应注意定理成立时所 满足的条件. 3.利用面面平行的性质定理,把面面平行转化为线面平行. (1)已知直线在一平面之内,若两平面平行,则该平面内的所有直线与另 一平面无公共点,推得线面平行. (2)若一条直线在两平行平面外,且与其中一平面平行,则这条直线与另 一平面平行.
(3)性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么这条直线就和交线② 平行 (简记为“线面平行⇒ 线线平行”).