13.2.2-用坐标表示轴对称
- 格式:ppt
- 大小:963.00 KB
- 文档页数:9
《用坐标表示轴对称》教学设计《13.2.2用坐标表示轴对称》教学设计教材分析:《用坐标表示轴对称》是新人教2011版八年级《数学》上册第13章第2节《作轴对称图形》第2小节的内容,隶属“图形与几何领域。
本章的主要内容是从生活中的图形入手,学习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。
在此基础上,利用轴对称,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。
而第一节主要介绍轴对称图形、图形的轴对称的概念、轴对称的基本性质、线段的垂直平分线的性质等内容。
通过本节的教学,学生通过丰富的实例认识轴对称,体会轴对称在现实生活中的广泛应用。
学情分析:学生在七年级下册已经系统学过平面直角坐标系的相关知识,并在研究了用坐标表示平移。
学生已经拥有了一定的在平面直角坐标系中研究图形的能力和方法。
加上学生已经在本章第1节的学习中非常熟练地掌握了轴对称图形、图形的轴对称的概念、轴对称的基本性质、线段的垂直平分线的性质等内容,因此,本节课的教学中,给学生留足空间和时间,以指导学生自主学习为主,附之于教师的适当帮助、指导和适时的点拨、点评,先通过学生在平面直角坐标中画出一些关于x轴或y轴对称的点,写出这些点的坐标,归纳出规律。
教学目标:1.能用坐标表示轴对称,探究点或图形的轴对称变换引起的点的坐标的变化规律,学会如何利用这种坐标变化规律在平面直角坐标系中作出一个图形的轴对称图形。
2.经历探究用坐标表示轴对称的过程,感受其应用规律。
培养学生的语言表达能力,观察能力、归纳能力。
3.通过主动探究,合作交流,培养学生的合作意识,体验成功的喜悦,获得数形结合的审美享受。
教学重难点重点:用坐标表示点关于坐标轴对称的点的坐标。
难点:找对称点的坐标之间的关系、规律。
教学准备:多媒体课件、三角尺等。
教学方法:自主探究及讲练相结合。
教学过程:一.复习回顾,引入新课提问:已知点A和一条直线MN,如何作出点A关于直线MN的对称点?设计意图:通过学生动手操作,让学生回忆轴对称的相关知识点,同时为后面在平面直角坐标系中研究点的坐标变化做好铺垫。
人教版数学八年级上册13.2.2用坐标表示轴对称 -----教学设计用坐标表示轴对称教材选择:人教版八(上)13.2画轴对称图形(2)一、内容和内容解析1.内容用坐标表示轴对称2.内容解析本节分为两课时,这是第二课时的新授课.是在学生学习了轴对称及轴对称变换的基础进行的,体现了轴对称在平面直角坐标系中的应用,体现了数形结合的数学思想.教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y 轴对称所引起的点的坐标的变化规律,并探讨了如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.为满足不同层次学生的学习需求,又进一步探究了关于直线x=m和直线y=n对称的点坐标之间的关系.本节课目的在于让学生感受图形轴对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来,为后面函数的知识的学习打下基础.通过这节课学生进一步掌握轴对称图形的知识技能,领悟数学在实际生活中的对称美.基于以上分析,确定本节课的教学重点是:探索点关于x轴或y轴对称点的坐标的变化规律,并会利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.二、目标和目标解析1.目标(1)探究点或图形的轴对称变换引起的点的坐标的变化规律,能利用这些变化规律作出一个图形关于对称轴的轴对称图形.(2)通过对用坐标表示轴对称的学习,体会对应的思想、数形结合的思想.(3)通过探究关于轴对称的点坐标之间的对应关系,培养学生的语言表达能力、观察能力、分析和归纳能力,养成良好的合作交流意识和科学研究习惯.2.目标解析(1)首先通过复习画轴对称图形,引导学生在平面直角坐标系中画出一些点关于坐标轴的对称点,然后通过观察、分析、归纳得出关于坐标轴对称的坐标规律.并探讨总结出如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形的方法.为了满足不同层次学生的学习需求,再通过一系列的变式训练,进一步引导学生探究出关于直线x=m和直线y=n对称的点坐标之间的关系.因此在平面直角坐标系中正确画出一些点的对称点是前提条件,学生上节课已经学过画一些图形的轴对称图形,有一定的经验,因此,学生能比较容易的达到本节课学习的重点目标.(2)通过在平面直角坐标系中画轴对称点和轴对称图形总结出对称点的坐标规律,体会对应思想和数形结合的思想.通过一系列的变式练习探究出关于直线x=m和直线y=n对称的点坐标之间的关系,同样体现从特殊到一般的数学思想.(3)在平面直角坐标系中探究对称点之间的坐标规律的过程中,教师利用一系列直观图象,通过动手操作、观察、分析、小组交流,利用数形结合的数学思想,归纳概括出规律,所以整个探究过程培养了学生的合作交流意识和科学研究习惯.三、教学问题诊断分析在平面直角坐标系中关于x轴对称、关于y轴对称的两点的坐标特征,这个知识内容在初一年级的时候就已学过,本课的学习看起来好像是重复,其实,深入研究,学生还是很可能遇到的问题有:1.学生在利用关于x轴、y轴对称点的坐标规律解决问题时,由于不擅长数形结合理解记忆,而只是死记硬背,因此两个坐标规律很容易记混淆.2.由于学生的学习主动性究意识不够,观察能力和空间想象能力比较薄弱。
于X 轴的对称点并写出坐标,观察关于X 轴对称的两个点的坐标有什么规律?归纳:关于横轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数。
3.在同一平面直角坐标系内描出以上各点关于Y 轴的对称点并写出坐标,观察关于Y 轴对称的两个点的坐标有什么规律?归纳:关于纵轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数。
4.按以上规律,说出点P(X , Y )经X 轴对称的对称点P 1的坐标,再说出P 1经Y 轴对称的对称点P 2坐标,观察点P 经过两次轴对称所得点P 2的坐标有什么规律?归纳:一个点经历关于横轴、纵轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数. 在以后学了“中心对称”后,两点被称为关于原点对称. 例题解析:【例1】已知)4,(),,2(b B a A -,分别根据下列条件求b a ,的值.(1)B A ,关于y 轴对称; (2)B A ,关于x 轴对称;(3)C A ,关于x 轴对称,C B ,关于y 轴对称. 解析】(1)B A ,关于y 轴对称,说明纵坐标相同,横坐标相反,2,4==b a ;(2) B A ,关于x 轴对称,说明横坐标相同,纵坐标相反,2,4-=-=b a ; (3) C A ,关于x 轴对称,C B ,关于y 轴对称,说明B A ,经过横、纵两次对称变换,即关于原点对称,横、纵坐标各互为相反数,2,4=-=b a .【例2】如图,ABC ∆中,C B A ,,的坐标分别为)2,3(),0,4(),0,0(C B A ,以D B A ,,为顶点的三角形与ABC ∆全等,求平面直角坐标系中所有符合题意的点D 的坐标. 【解析】符合题意的点的 有:点C 关于x 轴的对称点 (3,-2);点C 关于直线x =2 的对称点(1,2);还有经上述 两次轴对称变换的对称点质描点,然后观察、归纳坐标规律。
教师板书关于X 轴、Y 轴对称的两个点的坐标规律。