RN8302用户手册
- 格式:pdf
- 大小:2.02 MB
- 文档页数:69
用户指南BlackBerry 8320 SmartphoneSWDT202512-202512-05312007-011内容BlackBerry 基础 (11)切换应用程序 (11)为快捷键分配应用程序 (11)设置所有者信息 (11)打开待机模式 (11)关于链接 (11)为 PIN 创建链接 (12)展开文件夹 (12)折叠文件夹 (12)BlackBerry 基础快捷方式 (12)按快捷键时没有应用程序打开 (12)快捷方式 (13)BlackBerry 基础快捷方式 (12)电话快捷方式 (13)相机快捷方式 (13)消息快捷方式 (14)键入快捷方式 (14)搜索快捷方式 (15)附件快捷方式 (15)浏览器快捷方式 (16)媒体快捷方式 (16)地图快捷方式 (17)日历快捷方式 (17)电话 (19)电话基础 (19)紧急呼叫 (21)音量 (21)语音拨号 (22)语音邮件 (24)单键拨号 (24)电话会议 (25)呼叫方 ID (26)呼叫记录 (27)呼叫等待 (28)呼叫转移 (29)呼叫阻止 (30)固定拨号 (31)智能拨号 (33)TTY 支持 (33)多个电话号码 (34)电话选项 (35)电话快捷方式 (13)电话疑难解答 (37)语音拨号 (22)通过语音命令拨打电话 (22)通过语音命令拨打分机号 (22)使用耳机 (21)通过语音命令查看您的电话号码 (22)通过语音命令检查无线网络覆盖水平 (39)通过语音命令检查电池电量 (40)设置语音拨号语言 (22)关闭语音命令的选择列表 (22)设置语音命令的匹配灵敏度 (23)关闭语音提示 (23)设置语音拨号的播放选项 (23)改善数字语音识别 (23)语音拨号疑难解答 (41)相机 (43)放大或缩小拍摄主体 (43)拍摄照片 (43)更改照片的闪光灯模式 (43)更改图片的取景器大小 (43)查看剩余照片数 (43)相机选项 (43)相机快捷方式 (13)相机疑难解答 (46)电子邮件 (47)电子邮件基础 (47)电子邮件文件夹 (49)已发送消息 (50)电子邮件过滤器 (52)电子邮件转发 (55)消息选项 (56)消息列表选项 (58)消息快捷方式 (14)消息疑难解答 (61)PIN 消息 (65)PIN 消息基础 (65)已发送消息 (50)消息列表选项 (58)消息快捷方式 (14)消息疑难解答 (61)SMS 文本短信 (75)SMS 文本短信基础 (75)已发送消息 (50)小区广播 (78)消息选项 (56)消息列表选项 (58)消息快捷方式 (14)消息疑难解答 (61)MMS 短信 (87)MMS 短信基础 (87)MMS 短信附件 (90)消息选项 (56)消息列表选项 (58)消息快捷方式 (14)消息疑难解答 (61)键入 (99)键入内容基础 (99)输入法 (101)拼写检查器 (103)单词表 (104)自动图文集 (106)键入快捷方式 (14)键入内容疑难解答 (108)搜索 (109)关于搜索 (109)搜索消息 (109)搜索标准 (109)查看已保存搜索的列表 (110)更改保存的搜索 (110)删除保存的搜索 (110)按联系人或主题搜索消息 (110)在消息、附件或网页中搜索文本 (49)搜索包含特定信息的管理器数据和消息 (111)搜索快捷方式 (15)附件 (113)附件基础 (113)文档附件 (114)电子表格附件 (115)媒体附件 (116)演示文稿附件 (116)vCard 联系人附件 (117)附件快捷方式 (15)附件疑难解答 (118)同步 (119)关于同步 (119)前提条件:电子邮件无线同步 (119)通过无线网络同步电子邮件 (119)通过无线网络删除电子邮件 (119)前提条件:数据无线同步 (120)通过无线网络同步管理器数据 (120)关于同步冲突 (120)管理电子邮件同步冲突 (120)管理数据同步冲突 (121)关于备份和恢复设备数据 (121)前提条件:数据无线恢复 (121)删除所有设备数据 (121)在设备上清空计算机上已删除的邮件文件夹 (121)同步疑难解答 (122)浏览器 (125)浏览器基础 (125)链接、图片和网页地址 (127)网页请求 (129)书签 (130)Web Feed (132)浏览器选项 (134)浏览器安全性 (137)浏览器推入 (139)浏览器快捷方式 (16)浏览器疑难解答 (141)应用程序 (143)添加应用程序 (143)查看应用程序的属性 (143)删除第三方应用程序 (143)在添加应用程序之前接收设备密码提示 (143)查看应用程序数据库的大小 (143)应用程序疑难解答 (144)媒体 (145)媒体文件管理 (145)歌曲、铃声和视频 (147)图片 (150)媒体卡选项 (153)媒体快捷方式 (16)媒体疑难解答 (155)地图 (157)地图基础 (157)导航 (158)地图选项 (158)地图快捷方式 (17)地图疑难解答 (160)GPS 技术 (161)关于 GPS 技术 (161)获取 GPS 位置 (161)防止他人跟踪您的位置 (161)GPS 技术疑难解答 (161)联系人 (163)联系人基础 (163)邮件列表 (165)呼叫方 ID (26)类别 (167)地址查找 (168)SIM 卡电话簿 (169)联系人列表选项 (171)联系人疑难解答 (172)日历 (173)日历基础 (173)会议 (175)日历选项 (177)日历快捷方式 (17)日历疑难解答 (179)任务 (181)任务基础 (181)类别 (167)任务列表选项 (184)记事 (187)记事基础 (187)类别 (167)记事列表选项 (189)闹钟 (191)关于闹钟 (191)打开闹钟 (191)使闹钟静音 (191)计算器 (193)使用计算器 (193)转换度量单位 (193)蓝牙技术 (195)蓝牙技术基础 (195)蓝牙技术选项 (196)蓝牙技术疑难解答 (198)日期和时间 (199)设置日期和时间 (199)从无线网络自动获得日期和时间 (199)日期和时间疑难解答 (199)通知配置文件 (201)通知基础 (201)LED 通知 (203)自定义通知 (204)通知配置文件疑难解答 (206)BlackBerry Messenger (209)联系人 (209)对话 (211)可用性 (213)显示屏和键盘 (215)背光灯 (215)显示选项 (215)键盘选项 (217)主题 (218)显示疑难解答 (219)语言 (221)更改显示语言 (221)添加显示语言 (221)删除显示语言 (221)关于输入语言 (221)设置输入语言 (102)关闭用于切换输入语言的快捷方式 (221)设置语音拨号语言 (22)设置联系人显示选项 (171)语言疑难解答 (222)无线网络覆盖 (223)查找有关无线覆盖指示符的信息 (223)关闭无线连接 (223)网络连接指示符 (223)打开无线覆盖通知 (204)通过语音命令检查无线网络覆盖水平 (39)关于首选无线网络列表 (224)在首选网络列表中添加网络 (224)更改首选无线网络的顺序 (225)从首选无线网络列表中删除无线网络 (225)关闭数据服务 (225)关于漫游 (226)手动切换无线网络 (226)确定网络连接和服务状态 (226)Wi-Fi连接设置 (226)高级 Wi-Fi 连接设置 (229)UMA 连接设置 (232)无线网络覆盖疑难解答 (232)电源和电池 (235)关闭设备 (235)将设备设置为自动打开或关闭 (235)检查电池电量 (235)通过语音命令检查电池电量 (40)复位设备 (235)延长电池寿命 (235)SIM 卡 (237)关于 SIM 卡电话簿 (169)加载 SIM 卡电话簿 (169)在 SIM 卡中添加联系人 (169)将联系人从 SIM 卡复制到地址簿 (169)将联系人从地址簿复制到 SIM 卡 (170)更改 SIM 卡联系人 (170)删除 SIM 卡联系人 (170)在 SIM 卡上存储 SMS 文本短信 (80)关于 SIM 卡安全性 (239)通过 PIN 码保护您的 SIM 卡 (239)更改 SIM 卡的 PIN 码 (239)更改电话号码的显示名称 (239)安全性 (241)安全性基础 (241)加密 (242)密码管理器 (243)高级安全性 (246)智能卡 (247)VPN 设置 (248)软件令牌 (249)安全性疑难解答 (249)第三方应用程序控制 (251)关于第三方程序的权限 (251)复位第三方应用程序的连接权限 (251)关于第三方应用程序的直接 Internet 连接 (251)为第三方应用程序建立直接 Internet 连接 (251)设置第三方应用程序的权限 (251)第三方应用程序的连接权限 (252)关于第三方应用程序的交互权限 (252)关于第三方应用程序的数据权限 (253)打砖块 (255)关于打砖块 (255)打砖块胶囊 (255)打砖块计分 (256)玩打砖块游戏 (256)调节音量 (21)设置挡板速度 (256)在打砖块高分网站提交分数 (257)在打砖块网站上查看高分 (257)服务预订 (259)关于服务预订 (259)接受服务预订 (259)删除服务预订 (259)疑难解答 (261)BlackBerry 基础疑难解答 (261)电话疑难解答 (37)语音拨号疑难解答 (41)相机疑难解答 (46)消息疑难解答 (61)键入内容疑难解答 (108)附件疑难解答 (118)同步疑难解答 (122)浏览器疑难解答 (141)应用程序疑难解答 (144)媒体疑难解答 (155)地图疑难解答 (160)GPS 技术疑难解答 (161)联系人疑难解答 (172)日历疑难解答 (179)蓝牙技术疑难解答 (198)日期和时间疑难解答 (199)通知配置文件疑难解答 (206)显示疑难解答 (219)语言疑难解答 (222)无线网络覆盖疑难解答 (232)安全性疑难解答 (249)诊断报告 (273)缩写词列表 (277)法律声明 (281)10BlackBerry 基础切换应用程序1.在任意应用程序中,按菜单键。
青岛青表三相导轨使用说明书-电表ModbusRTU通讯.总结DTSD2026—N型三相四线DSSD2026-N型三相三线多功能电力仪表使用说明书青岛青表电器仪表有限公司青岛青表三相导轨使用说明书-电表ModbusRTU通讯.总结1。
概述DTSD2026—N三相四线(新型导轨式)多功能电能仪表(以下简称电能仪表),是为了适应电网改造设计开发的导轨式有功、无功组合式电能仪表。
它具有较高的准确度和可行性。
本仪表采用国际先进的超低功耗大规模集成电路技术及SMT工艺制造的优良产品。
产品制造标准符合GB/T17215。
321-2008《1级和2级静止式交流有功电能表》、GB/T17215.322-2008《1级和2级静止式交流无功电能表》等电力行业标准对三相静止式电能表全部技术要求,是对需要进行无功电量考核的企业、变电站或电厂最理想的选择,亦适合输配电或配网自动化用表。
本产品可供计量参比频率为50Hz电网中的三相交流有功和无功电能,并能进行正、反向电能计量和红外及RS485通讯功能。
通信规约符合DL/T645—2007《多功能电能表通信规约》及MODBUS_RTU通信规约.能测量、记录、显示当前电能表的各相电压、电流、有功功率、无功功率、视在功率、功率因数、频率等运行参数,具有精度高、可靠性好、宽负荷、低功耗、误差曲线平直、抗干扰能力强等特点。
产品特点:1.采用专用计量芯片做为计量运算,精度高,工作可靠2.具有正、反向ABC三相分相有功及无功电能3.具有ABC三相电流、电压、功率、功率因数,视在功率,显示功能4.采用具有背光的LCD屏,显示清晰直观5.具有红外遥控翻屏显示功能,方便用户查用信息6.具有红外及RS485通讯接口,能够实现远程监控,是电网改造的极佳选择2、主要规格及技术参数2。
1 电能表规格:注:额定电流栏中,括号前的数值为标定电流值Ib,括号内的数值为额定最大电流值Imax。
特殊电压、电流规格需预订. 2。
RN8302三相四线电子式电能表样表 使用说明书深圳市锐能微科技有限公司 第1 页 版本1.0RN8302样表使用说明书一、型号规格型号规格样表是公司是演示RN8302计量芯片功能和性能而专门设计的,具有有功无功计量,电压、电流有效值、功率、功率因数,相角等电参数显示,此外还具有全失压检测功能和电力互感器二次侧开短路检测功能。
样表样表规格规格规格::额定电压 220V AC标定电流 1.5(6)A标准频率 50Hz脉冲常数 6400imp /kwh 6400imp /kvarh精度等级 有功 0.5S 级无功 2.0级二、主要功能主要功能1、显示功能通过上下按键可以显示查看相关寄存器的内容,工作象限图; 显示内容有中文和单位等字符提示。
电表上电后显示芯片DeviceID 值830200。
显示内容列表:显示序号、显示项目1) 8302002) CheckSum1 EMM 校表数据效验和(ADDR B1 6AH )3) CheckSum2 NVM1、NVM2、系统配置寄存器校验和(ADDR B1 8BH )4) UA A 相电压有效值5) UB B 相电压有效值6) UC C 相电压有效值7) USUM 电压矢量和有效值8) IA A 相电流有效值9) IB B 相电流有效值10) IC C 相电流有效值11) ISUM 电流矢量和有效值12) PA (有符号) A 相有功功率13) PB (有符号) B 相有功功率14) PC (有符号) C 相有功功率15) PT (有符号) 合相有功功率16)QA(有符号)A相无功功率17)QB(有符号)B相无功功率18)QC(有符号)C相无功功率19)QT(有符号)合相无功功率20)SA A相视在功率21)SB B相视在功率22)SC C相视在功率23)ST 合相视在功率24)PFA(有符号)A相功率因数25)PFB(有符号)B相功率因数26)PFC(有符号)C相功率因数27)PFT(有符号)合相功率因数28)EPA A相有功能量寄存器29)EPB B相有功能量寄存器30)EPC C相有功能量寄存器31)EPT 合相有功能量寄存器32)正向EPA A相正向有功能量寄存器33)正向EPB B相正向有功能量寄存器34)正向EPC C相正向有功能量寄存器35)正向EPT 合相正向有功能量寄存器36)反向EPA A相反向有功能量寄存器37)反向EPB B相反向有功能量寄存器38)反向EPC C相反向有功能量寄存器39)反向EPT 合相反向有功能量寄存器40)正向EQA A相正向无功能量寄存器41)正向EQB B相正向无功能量寄存器42)正向EQC C相正向无功能量寄存器43)正向EQT 合相正向无功能量寄存器44)反向EQA A相反向无功能量寄存器45)反向EQB B相反向无功能量寄存器46)反向EQC C相反向无功能量寄存器47)反向EQT 合相反向无功能量寄存器48)ESA A相视在能量寄存器49)ESB B相视在能量寄存器50)ESC C相视在能量寄存器51)EST 合相视在能量寄存器52)UFREF 电压线频率53)YU1 采样通道UA基波相角寄存器54)YU2 采样通道UB基波相角寄存器55)YU3 采样通道UC基波相角寄存器56)YI1 采样通道IA基波相角寄存器57)YI2 采样通道IB基波相角寄存器58)YI3 采样通道IC基波相角寄存器59)YIN 采样通道IN基波相角寄存器60)FUA A相基波电压有效值61)FUB B相基波电压有效值62)FUC C相基波电压有效值63)FIA A相基波电流有效值64)FIB B相基波电流有效值65)FIC C相基波电流有效值66)HUA A相谐波电压有效值67)HUB B相谐波电压有效值68)HUC C相谐波电压有效值69)HIA A相谐波电流有效值70)HIB B相谐波电流有效值71)HIC C相谐波电流有效值72)IA-NUM1 NVM1 A相电流有效值73)IB-NUM1 NVM1 B相电流有效值74)IC-NUM1 NVM1 C相电流有效值75)互感器开路指示:开路显示ERR1,报警灯亮结合Ia Ib Ic 具体指明某相开路事件发生76)互感器短路指示:短路显示ERR2,报警灯亮结合Ia Ib Ic 具体指明某相短路事件发生全失压检测功能2全失压检测功能停电后(或三相电压低于临界电压时),电表在6V电池供电下,能够可靠检测ABC相电流线路中的电流发生情况。
三相多功能计量芯片RN7302深圳市锐能微科技有限公司 第1 页 版本1.0RN7302用户手册V1.0 日期: 2014-1-15目录1 芯片介绍 (3)1.1 芯片特性 (3)1.2 功能框图 (4)1.3 管脚定义 (5)1.4 典型应用 (7)2 系统功能 (8)2.1 电源监测 (8)2.2 工作模式 (8)2.3 系统复位 (8)2.4 计量模式 (9)2.5 睡眠模式 (16)2.6 中断 (16)3 寄存器 (18)3.1 参数寄存器列表 (18)3.2 参数寄存器说明 (22)3.3 配置和状态寄存器列表 (26)3.4 配置和状态寄存器说明 (29)3.5 复位和模式切换 (49)3.6 写保护 (50)4 校表方法 (51)4.1 概述 (51)4.2 功率校表法 (51)4.3 功率校表法举例 (55)4.4 脉冲校表法 (56)5 通信接口 (58)5.1 SPI地址空间描述 (58)5.2 SPI接口信号说明 (58)5.3 SPI帧格式 (58)5.4 SPI写时序 (60)5.5 SPI读时序 (60)5.6 SPI接口可靠性设计 (61)6 电气特性 (62)7 芯片封装 (64)1 芯片介绍1.1 芯片特性◆计量✓提供全波、基波有功电能,5000:1动态范围内,非线性误差<0.1%,满足0.5S和0.2S 级有功电能表精度要求✓提供全波、基波无功电能,5000:1动态范围内,非线性误差<0.1%✓提供全波、基波RMS、PQS视在电能✓提供有功、无功功率方向,支持无功四象限判断✓具有潜动启动功能,启动阈值可调✓电表常数可调✓提供有功、无功、视在的快速脉冲计数✓提供3路全波、基波,有功、无功和视在脉冲输出◆测量✓提供全波、基波和谐波三相电压电流有效值,2000:1动态范围内,测量误差<0.2% ✓提供全波、基波有功、无功、RMS和PQS视在功率,2000:1动态范围内,测量误差<0.1%✓提供全波、基波功率因数,测量误差<0.2%✓提供电压线频率,测量误差<0.02%✓提供6路相角,测量误差<0.02°✓提供7路ADC瞬时采样数据,典型应用下采样率8Khz✓提供灵活地ADC同步采样数据缓存768x24bit ,64或128点每周波,便于谐波分析✓提供电压矢量和有效值,2种电流矢量和有效值✓提供7路过零检测,过零阈值可设置✓提供电压相序错检测✓提供失压指示,失压阈值可设置✓提供电压暂降检测✓提供过压、过流检测✓提供谐波、三相不平衡度、闪变和电压波动、电压骤升骤降、电压中断等电能质量参数软件库◆软件校表✓提供7路ADC通道增益校正✓提供7路ADC通道相位校正,其中A、B、C三路电流通道支持分段相位校正✓提供功率增益校正✓提供有功、无功功率分段相位校正✓提供有功、无功、有效值Offset校正✓提供直流offset自动校正功能✓提供校验和寄存器,对校表数据自动校验◆适用于三相三线、三相四线制◆单+3.3V 电源供电,具有电源监控功能◆ 内置1.25V ±1% ADC 基准电压,温度系数典型值5ppm/℃,最大15ppm/℃ ◆ 具有高速SPI 接口,传输速率可达3.5Mbps ,提供写保护功能 ◆ 具有一个中断输出引脚 ◆ 工作电压范围:3.0V-3.6V ◆ 工作温度范围:-40℃-85℃ ◆ 采用LQFP32绿色封装1.2 功能框图891112131429322262562728321247基准电压HPF ADC1516系统控制和寄存器单元AVCC VO DVCC AGND DGND IAP IAN IBP ICP IBN ICN INP INNVAP VBP VCP VCN REFV XIXOSDOSCLK SCSN 2423HPFRSTN5VAN 10VBN C T R O L &D A T A B U SSPID2F脉冲输出引脚复用配置有功功率无功功率视在功率电压电流有效值ADCADC 时钟振荡电路171819CF1CF2数字信号处理CF3INTN SDIPGA 30ADCADCADCADCPGA PGA PGA PGAPGA PGA 功率因数过压过流检测过零检测电压暂降检测相角相序检测电压线频率20波形缓存电源管理稳压模块RN7302图1-1 系统框图1.3 管脚定义RN730224182219211731302827252629578436211112131491015162023IAP IAN AGND IBP IBN AVCC ICP ICNSCLK SDO INTN DVCC RSTN CF1CF2CF3V A PV A NV B PV B NV C PV C NI N PI N ND V C C D G N D V O X I X O S D I S C S N 32RE F V图1-2 管脚排列图表1-1 RN7302 管脚功能说明引脚 标识 特性 功能描述1,2 IAP , IAN 输入 电流采样通道A 的正、负模拟输入引脚。
44 SCHEMATICS 12/1/2005INDEXPAGE3. DC Panel Schematic4. DC Panel to Junction box wire list5. Junction Box Schematic6. Junction Box Tree Schematic7. AC Panel Schematic part 1, (for vendor)8. AC Panel Schematic part 29. Isolation Transformers – 2 pages11. Battery Panel Face Layout12. Battery Panel Schematic, (for vendor)13. Battery Panel Schematic, 120VAC boats14. Battery Panel Schematic, 230VAC boats.15. Cut sheet for AC wires in module stage16. Cut sheet for DC cables – Stage 24A, 26 and 56 18. Cut sheet for Options20. Hull harness wire list25. Deck harness wire list29. Hull harness schematics32. Deck harness schematics37. Engine Panel Wiring Schematic38. Automatic Fire Extinguisher Schematic39. High water pump Schematic35'(10/3)TRANSFORMER 2TRANSFORMER 1(10/3)35'QB AFT14' 6"4'QB FWD 2'22'44 AC WIRES MODULE STAGEREV. 11-15-05PORT SALON 6'13'4'14'VB OUTLETMDP(14/3)MDP7'7'GFI5'13'6"GFI8'GALLEYFWD HEAD8'(14/3)PORT SALON28'32'25'26'18'(14/3)(14/3)(14/3)(10/3)(10/3)WATER HEATERFWD AIR CONDPUMP RELAYAFT AIR CONDMICROWAVE(14/3)AFT HEAD 8'ENG BOX 38'18'(14/3)(14/3)AC POWER RELAY FEED(14/3)FWD AIR RELAY6'AFT AIR RELAYPAGE 1REVISION DATE: 1-04-05 44 DC CABLESSTAGE 24A-MODULEWIRE SIZE COLOR LENGTH EYE EYE DESCRIPTION FWD HOUSE BATTERY2/O RED5' 6"3/8"3/8"BATT TO FUSE-HOUSE1 2/O YELLOW6'5/16"3/8"BATT TO GND-HOUSE12/O YELLOW3' 6"5/16"3/8"BUSS TO BUSS AFT HOUSE BATTERY2/O RED2'3/8"3/8"BATT TO FUSE-HOUSE2 3/O RED6'3/8"3/8"FUSE TO STUD-HOUSE22/O YELLOW2' 6"5/16"3/8"BATT TO GND-HOUSE2 START BATTERY2ga RED8'3/8"3/8"BATT TO SW-START2ga YELLOW2' 6"5/16"3/8"BATT TO GND-START YANMAR STARTER2ga RED16'3/8"3/8"START TO STUD-YAN2ga YELLOW10'3/8"3/8"ENGINE TO GND-YAN WINDLASS2ga RED27'1/4"5/16"BREAKER TO BOX-WL2ga YELLOW28.5'3/8"5/16"GND TO BOX-WL GNDS4ga GREEN/YELL32'1/4"38"ARCH GND4ga GREEN/YELL8' 6"1/4"1/2"CHAINPLATE PORT 14ga GREEN/YELL8' 6"1/4"1/2"CHAINPLATE STBD 1PAGE 2REVISION DATE: 1-04-05 44 DC CABLESSTAGE 26-ENGINEWIRE SIZE COLOR LENGTH EYE EYE DESCRIPTION FIRE EXTINGUISHER16-2WHITE DUPLEX21'FIRE EXT16 GA BROWN/BLUE15'BLOWER RELAY GNDS4ga GREEN/YELL2' 8"1/2"3/4"CHAINPLATE PORT 2 4ga GREEN/YELL2' 8"1/2"3/4"CHAINPLATE STBD 210 ga GREEN/YELL30'FUEL FILL GRD HIGH WATER PUMP10ga RED/GREEN8 INCHES HIGH WATER JUMPER 10ga RED/GREEN8 INCHES HIGH WATER JUMPER10ga RED8 INCHES HIGH WATER JUMPERSTAGE 56-ELECTRICALWIRE SIZE COLOR LENGTH EYE EYE DESCRIPTION FIRE EXTIGUISHER16ga WHITE/BROWN4'SHUTDOWN BYPASS 16ga RED2' 6"SHUTDOWN POWER16ga YELLOW2' 6"SHUTDOWN NEG16-2WHITE/BLACK DUPLEX12'FIRE EXTIGUSHER WINDLASS2ga RED1' 6"5/16"5/16"BOX TO MOTOR-WL2ga RED1' 6"5/16"5/16"BOX TO MOTOR-WL16 ga YELLOW1' 6"5/16"F-spade WINDLASS BOX NEG. GNDS4ga GREEN/YELL4' 2"1/4"3/8"MAST POST TO KEEL SHORE POWER 110-3ROMEX21'SHORE POWER 1SHORE POWER 210-3ROMEX21'SHORE POWER 2 PHONE22 GA GREY SHIELD25'PHONE LINE STERN LIGHT16 GA GREY/YELLOW3'STERN LIGHT16 GA YELLOW3'STERN LIGHT GND Q-B READING LIGHTS14GA BLUE8'STBD READING LT14GA YELLOW8'STBD READING LT(-)14GA BLUE10'PORT READING LT14GA YELLOW10'PORT READING LT(-)PAGE 3REVISION DATE: 1-04-05 44 DC CABLESOPTIONSMODULE STAGE 24AINVERTER (120V)2/O RED3' 6"3/8"3/8"FUSE TO STUD option2/O YELLOW4'5/16"3/8"INV TO GND1/0YELLOW/GREEN4'5/16"1/4INV CASE TO GND2/O RED1' 6"3/8"3/8"INV TO FUSE10/3ROMEX13'INVERTER IN10/3ROMEX13'INVERTER OUT INVERTER (230V)2ga RED2' 6"1/4"5/16"ISOLATOR TO SOLENOLD option2ga RED2' 6"1/4"5/16"ISOLATOR TO SOLENOLD1/0YELLOW/GREEN4'3/8"1/4INV CASE TO GND2/O RED3' 6"3/8"3/8"FUSE TO STUD10/3ROMEX13'INVERTER IN10/3ROMEX13'INVERTER OUTBOW THRUSTER3/O RED2'3/8"3/8"FUSE TO FUSE JUMPER option3/O RED10.5'3/8"3/8"FUSE TO SW3/O RED10'3/8"3/8"SW TO MOTOR3/O YELLOW20'3/8"3/8"NEG BUSS TO MOTOR HALYARD2ga RED24'1/4"3/8"BREAKER TO BOX-HAL option2ga YELLOW18'3/8"3/8"GND TO BOX-HAL2ga RED2'1/4"5/16"BOX TO MOTOR-HAL2ga RED2'1/4"5/16"BOX TO MOTOR-HAL2ga RED7 INCHES3/8"3/8"HALYARD JUMPER16 ga YELLOW 6 INCHES HALYARD JUMPER BATTERY CHARGER8ga ORANGE/GREEN5' 6"START BATT STUD option8ga OR/RED5' 6"HOUSE BATT STUD8ga YELLOW5' 6"TO NEG. BUS BAR14-3ROMEX13'BATT CHARGER ICEMAKERoption14-3ROMEX33'ICEMAKER WASHER/DRYERoption10-3ROMEX36'WASHER/DRYER12V WATERMAKER8 GA RED/BROWN22'WATERMAKER POS. option8GA YELLOW10'WATERMAKER GRD. PORT ELEC HALYARD 2 GA RED26'1/43/8BREAKER TO BOX-HAL option 2 GA YELLOW22'3/83/8GROUND TO BOX-HAL2 GA RED2'1/45/16BOX TO MOTOR-HAL2 GA RED2'1/45/16BOX TO MOTOR-HAL2 GA RED8 INCHES1/41/4HALYARD JUMPER16 GA YELLOW 6 INCHES HALYARD JUMPERTRI-CABIN OPTION16 GA BLUE/WHITE3' 6"FLOOR COURTESY LIGHT16 GA YELLOW3' 6"FLOOR COURTESY LIGHT (-)16 GA RED/BLUE15'CO ALARM16 GA YELLOW15'CO ALARM (-)16 GA BLUE15'CABIN LIGHTS16 GA YELLOW15'CABIN LIGHTS (-)100AMP ALTERNATOR 2 GA RED3'1/4"5/16"ISO TO START RESET option 2 GA RED3'1/4"5/16"ISO TO HOUSE RESET2 GA RED14'1/4"5/16"ALT TO ISOLATORPAGE 4REVISION DATE: 1-04-05 44 DC CABLESOPTIONSENGINE STAGE 26GENERATOR STARTER2ga RED7'5/16"3/8"START TO STUD-GEN option 2ga YELLOW2' 6"5/16"3/8"ENGINE TO GND-GEN100AMP ALTERNATOR2ga YELLOW3'1/4"3/8"ALT. GND TO ENG. GND option16 ga WHITE/RED5'TACH16 ga BLUE5'DASH LAMPDECK RIGGING STAGE 34SONY STEREO12 GA RED19'STEREO POWER option12 GA YELLOW19'STEREO GROUND12 GA ORANGE/GREEN19'STEREO MEMORY16 GA WHITE/BLUE6'STARBOARD SPEAKER POS16 GA WHITE/BLACK6'STARBOARD SPEAKER NEG16 GA WHITE/ORANGE20'PORT SPEAKER POS16 GA WHITE/YELLOW20'PORT SPEAKER NEGELECTRICAL STAGE 56AUTO PILOT8 GA RED6'AUTO PILOT POS. option8 GA YELLOW6'AUTO PILOT GRD.CHART PLOTTER10 GA RED36'CHART PLOTTER POS. option10 GA YELLOW36'CHART PLOTTER GRD.RADAR10 GA RED/YELLOW6'RADAR POWER option10 GA YELLOW6'RADAR GROUND。
基于RN8302的数字化三相多功能电力仪表设计俞力1 张飞2(1.郑州祥和集团有限公司,河南郑州450000;2.郑州华力信息技术有限公司,河南郑州450000)摘要:本文设计并实现了一种三相多功能电力仪表。采用高精度电能计量芯片RN8302对当前模拟量进行采集和计算,并结合高性能Contex-M3内核处理器STM32F103RC作为事件处理内核,从而实现了仪表的测量,计算,显示,通讯,输出,告警等一系列电气自动化功能。RN8302作为一款高精度的电能计量芯片大大的简化了仪表设计中模拟电路的设计,提高了产品的可靠性和精度。其内部的DSP运算内核承担了大部分的运算任务,为处理器实现更为多样化的功能节省了软硬件资源。该设计兼备了高性能的DSP数据处理能力和ARM的事件处理能力,不仅从测量精度上能够满足要求,而且从功能上也更加灵活、更加多元。关键词:RN8302;Contex-M3;STM32F103RC;数字化;电力仪表1 前言电力仪表被广泛用于输变电系统的各个环节,随着配电配网方式的不断升级和改进,老式模拟仪表已经不能够满足目前配电自动化的要求。而伴随半导体行业的不断发展,新型的数字化多功能电力仪表应运而生,其功能也在不断的增加,不仅可以显示当前电量,而且能够根据配电特点对历史运行情况进行全面的分析、记录,并能够借助于计算机技术,对所记录和存储的数据进行多分析。将单片机与电能计量芯片配合使用将成为目前的主流设计思路。而本文中采用高性能ARM 处理器和高精度电能计量芯片来实现仪表的各种功能,借助于ARM强大的事件处理能力,能够更加完善对数据的分析,更加友好的对数据的显示,更加全面的对数据的存储和上传。2 整体结构设计整个仪表的实现主要由电源,模拟量数据采集,模拟量输出,开关量输入/输出,核心数据处理,人机交互和通讯等组成。其中电能计量芯片主要用于模拟量输入的采集和电能脉冲的输出。ARM将模拟数据采集和计算结果读取并作进一步的分析,并存储分析结果,同时通过按键操作对人机交互界面进行控制,并根据通讯规约的设定对内部所存储的数据进行上传。系统结构图见表1。3硬件设计3.1模拟数据采集设计采用RN8302作为模拟信号的采集单元,其内部直接集成了运放电路,AD转换,计算内核,数据接口等。能够在单个芯片上实现,弱信号的变送,AD转换,数字化校准,测量计算,电能累计等功能。其测量非线性误差在0.1%以内,能够很好的满足国家电网要求的0.5S和0.2S级多功能电表的要求。其设计思路为,将二次信号(380V/5A)经过微型高精密变送器变为800mV的交流电压信号,经过防混叠阻容滤波后送入RN8302。RN8302会按照初始化好的参数对模拟信号进行放大,采样,计算,输出。CPU通过RN8302上集成的SPI接口对其内部各种运算结果读取。输入的模拟信号有三相电压和电流。接线方式有两表法和三表法。同时RN8302的脉冲电度输出接口可连接到数字信号输出接口,实现脉冲电度输出。(脉冲常数通过仪表设置实现)3.2核心数据处理单元核心处理单元主要由以下及部分组成:核心处理器,EEPROM和RTC。核心处理器采用STMicroelectronics公司的ARM处理器STM32F103RC,这是一款ARM® Cortex TM-M3 32位的RISC内核,工作频率为72MHz,内置高速存储器(高达256K 字节的闪存和48K字节的SRAM),并具有丰富的增强I/O端口和外设的处理器。处理器通过其上面的SPI接口从数据采集单元(RN8302)中读取当前电压,电流,功率,功率因数电度累加等。将读取的数据做历史分析,并存储分析结果。EEPROM 釆用Atmel公司的AT25系列EEPROM存储芯片AT25512。它是一款比较常用且经济的可编程电擦除只读存储器,操作简单,使用方便,性价比高,可靠性好,读写速度快。其内部集成了64K的存储空间,不仅能够满足目前数据存储的要求,并且留有部分扩展,能够最大限度地满足后期扩展需要。RTC实时时钟采用DS1302作为时钟芯片结合外部晶振和纽扣电池来实现。DS1302是由美国DALLAS公司推出的具有涓细电流充电能力的低功耗实时时钟芯片。它可以对年、月、日、周、时、分、秒进行计时,且具有闰年补偿等多种功能。3.3电源电源部分采用隔离式小功率开关电源,拓扑结构采用反击式,开关电源芯片采用LNK364。LNK364是Power Integrations公司的一款小功率、低成本、高效率开关电源控制器,其在一个芯片上包含了700V的功率MOSFET、振荡器、开关控制、高压切换的电流源、频率抖动、每个周期都检测的电流限流及热关断电路。启动及工作时的功率直接来自于漏极引脚,无需使用偏置绕组及相关电路。设计输入电压90-265VAC,输出5V 500mA、12V 100mA。3.4通讯接口485通讯接口通过处理器的通用串行通讯接口(USART)外设引出,经过光耦隔离后送入485接口芯片(MAX485),由485接口芯片将TTL电平转化成差分信号,实现两线制485通讯。3.5开关量输入输出设计4路开关量输入和2路开关量输出。4 结语设计中采用了一体化采样计算的智能电能计量芯片RN8302,使得设计简化,外围器件减少,提高了产品的可靠性。采用STM32F103RC作为管理主控器件,其内部丰富的外设和外部接口使设计产品更加灵活,其内丰富的内存空间为制作更加人性化的人机接口提供了足够的资源。参考文献[1]锐能微.RN8302用户手册V1.1[Z][2]STM32F系列ARM内核32位高性能微控制器参考手册V10_1[Z].[3JSTM32F103xCDE数据手册(英文第5版)[Z].。
6Owner's Manual for SRM 6302 / 8302 P/N 050804REV AFender Musical Instruments7975 North Hayden Road, Scottsdale, Arizona 85258 U.S.A.Fender knows the importance of sound reinforcement. From the simple box-top mixer to today's professional touring concert systems, the need to communicate, to make the connection between the performer and the audience is foremost in Fender's mind.Perhaps no other single piece of gear can make or break your band's sound.You see, your sound system is more than just a combination of dials, wires and speakers. It is an integral part of the audio chain and should be treated with special care and attention to detail.At Fender, we know what building quality musical instruments and sound reinforcement equipment is all about. In fact, many of the world's best sounding electric musical instruments and sound reinforcement equipment proudly wear the Fender name.Whether you need a simple box top powered mixer for your Saturday afternoon jam, or a professional full-size concert system, Fender has the sound reinforcement equipment to meet your needs. Likewise, your decision to purchase Fender pro audio gear is one you will appreciate with each performance for years to come.Wishing you years of enjoyment and a heartfelt thank you,Bill SchultzBill SchultzChairmanFender Musical Instruments Corporation150 Watts per Channel at 4ΩAssignable Dual Power Amplifiers9-Band Assignable Graphic Equalizer with 30mm Sliders3-Band Equalizer per Input Channel+48V DC Phantom PowerIndividual Channel Effects Level Control Both 1/4 inch Phone TRS and 3-Pin XLR Female Input ConnectorsPatch Points for Line Level Output and Power Amp Inputs and Outboard Gear Full-bodied Spring Reverb The SRM 6302 / 8302: a dual 150 watt professional powered mixer from your friends at Fender®Pro Audio. We are sure you will find your new SRM 6302 / 8302 to be both a unique and effective sound reinforcement product, providing years of trouble-free service.With ease of setup in mind, the integrated mixer/amplifier design of your SRM 6302 / 8302 makes it a complex and versatile unit, yet simple to operate. Enclosed in a boxtop style cabinet, your SRM 6302 / 8302 features individual channel preamps, an assignable dual power amplifier, +48V DC phantom power, a 9-band graphic equalizer, line and mic level channel inputs, a patch bay and much, much more. With 1/4 inch TRS phone jacks, 3-Pin XLR female input jacks and stereo RCA input jacks, your SRM 6302 / 8302 can accommodate almost any input connection and signal level.Ideal for live music, churches, auditoriums, hotel conference or meeting rooms, your SRM 6302 / 8302 is suitable for a wide variety of sound reinforcement applications. With its assignable dual power amplifier, your SRM 6302 / 8302 can feed your main front of house speakers while simultaneously providing power for stage monitors. Its front panel patch bay makes using outboard effects gear and signal processing equipment a snap. Moreover, the patch bay provides easy access for adding or rerouting power amplifiers. Designed to meet the most demanding needs of audio professionals,your SRM 6302 / 8302 will provide years of reliable, trouble-free service, day in and day out. Please read through this owner’s manual in order to more thoroughly understand the operation of your SRM 6302 / 8302.WARNING:- TO REDUCE THE RISK OF FIRE OR SHOCK HAZARD, DO NOT EXPOSE THIS UNIT TO RAIN OR MOISTURE.- NO USER SERVICEABLE PARTS INSIDE, REFER SERVICING TO QUALIFIED PERSONNEL ONLY.- ALLOW AT LEAST 3” (7.6 cm) AROUND THE UNIT FOR PROPER VENTILATION.- THIS UNIT MUST BE EARTH GROUNDED.SRM 6302/ 8302 PROFESSIONAL POWEREDMIXERF.TAPE/EFFECTS RETURN TO MONITOR -Adjusts the tape/effects signal level sent to the monitor mix from either the Effects In or Tape In jacks. Rotating the knob clockwise increases the tape/effects signal sent to the monitor mix.G. TAPE/EFFECTS RETURN TO MAIN - Adjusts the tape/effects signal level sent to the main mix from either the Effects In or Tape In jacks. Rotating the knob clockwise increases the tape/effects signal sent to the main mix.H. MAIN - The main output volume control of the SRM 6302 / 8302. Any adjustments to this control will affect the signal level at the Main Out, as well as, PA1 and PA2 depending upon the PA2 Assign switch position and patch bay configuration.well as, PA1 and PA2 depending upon the PA2 Assign switch position and patch bay configuration. L. EFFECTS - Adjusts the signal level present at the Effects Out / Footswitch jack, as well as, the signal driving the reverb. Rotating the knob clockwise increases the amount of tape/effects and reverb drive signal. When the knob is set at 0, there is no effects drive signal.M. REC OUT - Adjusts the tape out signal level of the SRM 6302 / 8302. (The Main Out signal feeds this control.) Rotating the knob clockwise increases the output level. When the knob is set at 0, there is no signal level output.O. TAPE IN - Unbalanced phono (RCA) input jacks designed for use with a tapeplayer, CD player, etc. These jacks sum the stereo left and right input signal to a mono signal useful for playingprerecorded music. Thetape/effects return to main andtape/effects return to monitor control the volume to these buses respectively.P. TAPE OUT - Unbalanced phono (RCA) output jacks designed for use with a tape recorder. They produce a mono signal. The rec out knob controls the tape out signal level.Q. PA 1 OUT / PA 2 OUT - These are speaker level output jacks designed to feed your main or monitor speaker enclosures. Remember, the minimum impedance load is 4 ohms . Connecting a load of less than 4 ohms may result in unsatisfactory performance such as overheating to the point of thermal shutdown. PA 1 Out jacks are intended for the main speakers. The use of the PA 2 Out jacks depends on the position of the PA 2 Assign switch.(See item E on page 5).R.POWER SWITCH -Turns the AC power ON and OFF. When the switch is in the OFF position, the SRM 6302 / 8302 is completely shut down.S. SUPPLY CORD - This is a grounding type supply cord to reduce the possibility of shock hazard. Completely unwind the cord from its cord wrap to prevent blocking air flow to the transformer. Be sure to connect the cord to a grounded receptacle. DO NOT ALTER THE AC PLUG.TAPE INPUT / OUTPUT JACKSPOWERONOFFRREAR PANEL OUT INL RTAPE O P SPARALLEL SPK JACKS150W4Ω MIN TOTALPARALLEL SPK JACKS150W4Ω MIN TOTALPA 2OUT PA 1OUTQParallel or series are the two basic ways which multiple speakers can be connected to a single power amplifier. When speakers are connected in parallel, their combined impedance decreases. For speakers wired in series the opposite is true, their combined impedance increases. Also, when speakers are wired in series, higher impedance speakers in the series draw more power from the amplifier than do speakers in the series with lower impedances. When speakers are wired in parallel, the opposite is true.At Fender®, we recommend connecting multiple speakers in parallel for several reasons. First, if one speaker fails, the others will continue to operate. Second, because in a series connection one speaker affects the output of the other speakers, unpredictable frequency response is a concern. Third, most speaker cabinets are already wired for parallel connections making parallel connections the most common wiring method.When using your SRM 6302 / 8302, be sure that the minimum load connected to each channel is 4 ohms. Below are two charts demonstrating how to calculate both parallel and series impedance.Additionally, power and audio signal cables are the most common sources of sound system failure. Well made and carefully maintained cables are essential to the reliability of the entire sound system. If long speaker cables are required, it is important to ensure the cable is sufficient to transfer all of the available amplifier power to the speakers rather than absorbing the power itself. As a rule of thumb, larger wires are better as they conduct more power to the speakers (larger wire has smaller gauge numbers).Below are two charts listing speaker wire gauges and recommendations for best results.*Example - If the speaker wire lengthrequired is between 25-50 feet (7.60-15.25 meters) and the speakerimpedance is 8Ω, the minimumrecommended speaker wire gauge is 16.100'-UP(30.5 m-UP)50'-100'(15.25-30.5 m)*25'-50'(7.60-15.25 m)10'-25'(3.05-7.60 m)0'-10'(0.00-3.05 m)SPEAKER WIRE GAUGESPEAKER IMPEDANCE [z]SPEAKERWIRELENGTHAWGResistance in Ω per foot(30.5 cm) @ 77º F (25º C)1816141210.00651.00409.00258.00162.001028.000640.831.322.103.325.278.3810121412141614*16181618181818184Ω*8Ω16ΩCross-Section[mm ]2The SRM 6302 / 8302 has a variety of connectors on its input / output panels. Below is a chart listing the various types and their pin outs.Before using the SRM 6302 / 8302,please read and follow the steps listedbelow:1. IMPORTANT Heed all safety warnings when operating the SRM 6302 / 8302.2. Make sure the power switch is in the OFF position and all volume levels are in the 0 position.3. Next, plug the supply cord into a power source with the correct voltage.5. Connect the speaker cables from the SRM 6302 / 8302 PA out jacks to the input jacks of the speaker cabinets.6. Connect the cord(s) from any outboard gear, microphones or other signal source(s) to the appropriate input jack(s) on your SRM 6302 / 8302's.7. First, turn all outboard gear, instruments and other equipment ON, then the SRM 6302 / 8302.8. Increase volume controls and effects level controls to their desired levels, listening for feedback or ringing.9. When shutting down the SRM 6302 / 8302, turn OFF the SRM 6302 / 8302 first then any additional outboard gear, instruments or other equipment. For more detail on setting up your SRM 6302 / 8302, please refer to the diagrams on pages 10 thru 13.Jack MICINPUTS Style Connection Pin OutBalancedInputXLRFemalePin 1 = GNDPin 2 = POSPin 3 = NEGPA 1, PA 2, EFFECTS INPUTS 1/4" TSTip = Input SignalSleeve = GNDLINE INPUTS 1/4"TRSTip = POS SignalRing = NEG SignalSleeve = GNDTAPE IN / OUT DualRCAInner Ring = SignalOuter Shell = GNDFOOTSWITCH1/4" TSTip = SignalSleeve = GND BalancedInputUnbalancedInputSwitchUnbalancedInput /OutputMAIN, MONITOR, EFFECTS OUTPUTSTip = Signal OutputSleeve = GND1/4" TS UnbalancedOutputTip = SignalSleeve = GNDPA 1, PA 2 OUT 1/4" TS SpeakerOutputGround loops are one of the mostcommon causes of hum and buzz insound reinforcement systems and otheraudio products. A ground loop usuallyoccurs if the separate pieces ofequipment are plugged into different AC circuits. Also, if the audio wiring is placed too close to the power cords, hums or buzzes can bleed into the system. Still, improperly maintained power and audio cables are yet another cause of bothersome noise. In order to help minimize stray hums and buzzes, here are some helpful hints.1. Keep all electronics connected to the sound system on the same electrical circuit.2. Keep audio signal cables away from the ACpower cords.3. Use balanced cables when applicable.4. Always plug the SRM 6302 / 8302 into agrounded AC electrical outlet.5. Be sure to use properly maintained cords andcables with the SRM 6302 / 8302.The SRM 6302 / 8302 is covered ingenuine Tolex®for long life and lastinggood looks. To clean the cabinet, use asponge with a light soapy solution.Avoid spilling any liquids on the operatingsurface, heat sink, grille, volume and tone controls,switches and line cord. ALWAYS unplug the SRM6302 / 8302 before cleaning it or approaching it withfluids. Before plugging in the SRM 6302 / 8302 waituntil the unit has completely dried.If the SRM 6302 / 8302 is set up butdoes not function, please check thefollowing items:• Is the SRM 6302 / 8302's power cord properlyplugged into an electrical outlet?• Is there power at the outlet?• (If applicable) does your instrument have power?• Are the volume control knobs on the SRM6302 /8302 turned above the 0 position?• Are the volume control knobs on your instrumentsturned above their minimum position?• Is the mic/instrument properly plugged into theSRM 6302 / 8302?• Is the mic/instrument turned on?• Are your audio cables frayed, cut or damaged?• If using a condenser mic, is the phantom powerturned on?• If using an outboard gear, are the cordsproperly connected?• Is there power to the outboard gear?• Are the levels on your outboard gear above theirminimum positions?If after checking all of the above the SRM 6302 /8302 is still not performing correctly, consult yourauthorized Fender Service Center.DESIGNATION TYPE PR 332 Array PART NUMBER071-6321-000 (120 V)071-6321-030 (240 V) Aust071-6321-040 (230 V) UK071-6321-060 (230 V) EuroPOWER SPECIFICATIONS120V version: 120V AC, 60 Hz, 900W230V version: 230V AC, 50 Hz, 900W240V version: 240V AC, 50 Hz, 900WPRE-AMPLIFIER SECTIONMIC INPUT IMPEDANCE 1.8 kΩLINE INPUT IMPEDANCE18.2 kΩMIC INPUT SENSITIVITY7 mVLINE INPUT SENSITIVITY65 mVCHANNEL TONE CONTROLS Low +/- 15 dB @ 30 HzMid +/- 15 dB @ 750 HzHigh +/- 15 dB @ 15 kHzGRAPHIC EQUALIZER+/- 12 dB @ 63, 125, 250, 500, 1 k, 2 k, 4 k, 8 k and 16 kHzOVERALL AMPLIFIER-3 dB @ 10 Hz to -3 dB @ 50 kHzFREQUENCY RESPONSE(Line In @ 10 mV)PHANTOM POWER+46.5 V DCPOWER AMPLIFIER SECTIONPOWER OUTPUT150W per channel, <0.05% T.H.D. + noise @ 1 kHz into 4 ΩRATED LOAD IMPEDANCE 4 ΩINPUT SENSITIVITY 1.25 V R.M.S.INPUT IMPEDANCE22 kΩDELTACOMP™RANGE20 dBDIMENSIONS Height:12 in 30.5 cmWidth:21 in53.3 cmDepth:11.75 in29.8 cmWeight:35 lbs15.9 kgPRODUCT SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.A PRODUCT OF:FENDER MUSICAL INSTRUMENTS CORP.DESIGNATION TYPE PR 332PART NUMBER071-8321-000 (120 V)071-8321-030 (240 V) Aust 071-8321-040 (230 V) UK 071-8321-060 (230 V) EuroPOWER SPECIFICATIONS120V version: 120V AC, 60 Hz, 900W 230V version: 230V AC, 50 Hz, 900W 240V version: 240V AC, 50 Hz, 900WPRE-AMPLIFIER SECTIONMIC INPUT IMPEDANCE 1.8 k ΩLINE INPUT IMPEDANCE 18.2 k ΩMIC INPUT SENSITIVITY 7 mV LINE INPUT SENSITIVITY65 mVCHANNEL TONE CONTROLS Low +/- 15 dB @ 30 HzMid +/- 15 dB @ 750 Hz High +/- 15 dB @ 15 kHz GRAPHIC EQUALIZER +/- 12 dB @ 63, 125, 250, 500, 1 k, 2 k, 4 k, 8 k and 16 kHz OVERALL AMPLIFIER -3 dB @ 10 Hz to -3 dB @ 50 kHzFREQUENCY RESPONSE (Line In @ 10 mV)PHANTOM POWER+46.5 V DCPOWER AMPLIFIER SECTIONPOWER OUTPUT150W per channel, <0.05% T.H.D. + noise @ 1 kHz into 4 ΩRATED LOAD IMPEDANCE 4 ΩINPUT SENSITIVITY 1.25 V R.M.S. INPUT IMPEDANCE 22 k ΩDELTACOMP ™RANGE20 dB DIMENSIONSHeight:12 in 30.5 cm Width:21 in 53.3 cm Depth:11.75 in 29.8 cm Weight:36 lbs16.3 kgPRODUCT SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.。
(三相国网表)校表通讯协议范文版本号:V2.4.4一、帧数据格式1.写数据帧格式·功能:主站向从站请求设置数据(或编程)·控制码:C=14H注1:P0P1P2为密码,PA表示该密码权限。
2.从站应答帧(1)从站正常应答帧·控制码:C=94H·数据域长度:L=00H·帧格式:68HA0...A568H94H00HCS16H(2)从站异常应答帧·控制码:C=D4H·数据域长度:L=01H·帧格式:68HA0...A568HD4H01HERRCS16H二、校表帧数据波特率:2400奇偶校验:偶校验数据长度:8位停止位:1位1、部分帧数据示例:选择Un=220V,Ib=10A,脉冲常数EC=800,对应ADC输入端的信号幅度为Vu=230mv,Vi=94mv,表规格为三相四线。
2、电表清零数据标识:04F81600例:6899999999999968140D33492B3777665544333333338D34163、有功增益校正(1)数据标识:DI0DI1DI2DI3=04F81000④.完整的一个写数据帧为:6811111111111168143033432B3735333333333333338333247D23883396D235435AF31417333436C636184E8650238823882388435A435A435A2616注:按07规约的写数据帧格式(2)数据项计算①.数据项1:(2字节)脉冲常数寄存器公式:脉冲常数EC/10,再将结果装换成2字节的十六进制数。
示例:EC=800,则EC/10=80,转换成十六进制为0050②.数据项2:(2字节)HFCONST值A.公式:HFCont=INT[P某3.6某10^6某foc/(32某EC某Un某Ib某2^31)]其中,P为当PF=1.0时,中计算出的标准有功功率。
前言尊敬的用户:您好!首先非常感谢您使用我们公司的系列产品,能够为您服务是我们的荣幸!为确保您正确使用本公司产品,请仔细阅读本手册。
手册采用图文并茂的方式,配合文字的插图详细直观地阐述产品的操作,由于产品生产日期、批次不同,说明可能会与实际使用的产品有差异,请以实物为准。
最后再次感谢您的惠顾与支持,同时也希望您在使用过程中反馈一些宝贵意见。
因为这些意见,能够使我们不断地去完善产品。
因为我们都呼吁安全第一,生命无价!也希望每一位驾驶员都遵守好交通规则,快快乐乐地出门,平平安安地回家!祝各位:万事如意,事事顺心!一、外观及按键功能描述(以下所有图片仅供参考)二、购买安装须知●产品为安卓操作系统汽车中控台车机专用(以下简称安卓车机)●请您先确认产品主机及配件是否完整,然后进行插电测试(测试时无需安装内存卡)●产品通过车机USB连接,内置安卓车机录像仪APP安装包,录像仪与安卓车机USB接口直连后,安装好APP即可正常使用;●产品本身无WiFi热点,使用方式为通过数据电源线连接车机,在车机上显示,通过车机热点或者手机热点,实现手机互联查看(具体操作步骤见后)●产品针对后加装的安卓车机开发,具体适配品牌或方案商的产品为展讯,鼎威、诺威达、腾实、恒昌通、迪恩杰、云智易联、卓芯威等;(原车自带的安卓车机因操作系统被锁定,未开源,不能安装外部软件,故无法使用。
)●录像仪的安装:撕去3M胶保护膜将膜贴于静电贴上,粘贴于后视镜附近的前挡风玻璃上,并保证良好视野。
部分车主因挡风玻璃贴膜,导致静电贴无法吸附挡风玻璃,可直接通过3M胶固定录像仪;部分录像仪支架可拆卸,录像仪固定之后,往下轻推录像仪(如下图),听到“咔哒”声后,可以使录像仪与支架分离。
录像仪安装时确认水平和垂直位置之后,固定录像仪;静电贴和3M胶贴在使用之后不宜再次使用,需要更换新的胶贴。
●连接电源:用电源数据线连接车机端和录像仪端。
(请务必使用原厂电源数据线)连接完成后,若录像仪指示灯变亮,则说明连接成功。
typedef unsigned char u8;typedef signed char s8;typedef unsigned short u16;typedef signed short s16;typedef unsigned long int u32;typedef signed long int s32;typedef unsigned short WORD;typedef unsigned char BOOL;#define PinWrite_ADSCLK(x) ( (x) ? (P0_bit.no6 = 1 , PM0_bit.no6 = 1) : (PM0_bit.no6 = 0 , P0_bit.no6 = 0) ) //#define PinMode_ADSCLK(x) ( (x == GPIO_MODE_OUT) ? (PM0_bit.no6 = 0) : (PM0_bit.no6 = 1) )#define PinRead_ADSDI() (P4_bit.no4)#define PinWrite_ADSDO(x) ( (x) ? (P6_bit.no0 = 1 , PM6_bit.no0 = 1) : (PM6_bit.no0 = 0 , P6_bit.no0 = 0) ) //#define PinWrite_ADCS(x) ( (x) ? (P6_bit.no1 = 1 , PM6_bit.no1 = 1) : (PM6_bit.no1 = 0 , P6_bit.no1 = 0 ) )#define PinWrite_ADRST(x) ( (x) ? (P0_bit.no5 = 1 , PM0_bit.no5 = 1) : (PM0_bit.no5 = 0 , P0_bit.no5 = 0 ) )typedef enum {ERROR = 0 , SUCCESS = !ERROR} ErrorStatus;typedef struct {// u32 Dat : 23;// u32 S : 1;u8 Dat0;u8 Dat1;u8 Dat2 : 7;u8 S : 1;} sDF09;typedef struct {u32 Dat;} sDF11;typedef sDF11 sFsEgSh_TypeDef;#pragma vector = INTTM01_vect__interrupt void MD_INTTM01(void){TMIF01 = 0; /* INTTM01 interrupt flag clear */ SysStamp ++ ;}u16 fnStamp_Through(u16 Ago){extern u16 SysStamp;if (SysStamp >= Ago){return (SysStamp - Ago);}else{return ( (0xffff - Ago) + SysStamp);}}u16 fnHexToBcd_u16(u16 Dat){u16 Result = 0;Dat = Dat % 10000;Result += (Dat / 1000) * 0x1000;Dat = Dat % 1000;Result += (Dat / 100) * 0x100;Dat = Dat % 100;Result += (Dat / 10) * 0x10;Dat = Dat % 10;Result += Dat;return(Result);}u32 fnHexToBcd_u32(u32 Dat){u32 result = 0;Dat = Dat % 100000000;result += (Dat / 10000000) * 0x10000000;Dat = Dat % 10000000;result += (Dat / 1000000) * 0x1000000;Dat = Dat % 1000000;result += (Dat / 100000) * 0x100000;Dat = Dat % 100000;result += (Dat / 10000) * 0x10000;Dat = Dat % 10000;result += (Dat / 1000) * 0x1000;Dat = Dat % 1000;result += (Dat / 100) * 0x100;Dat = Dat % 100;result += (Dat / 10) * 0x10;Dat = Dat % 10;result += Dat;return(result);}u16 fnDFConver_Bcd16To16(s16 Dat){u16 Result;Result = abs(Dat) % 8000;Result = fnHexToBcd_u16(Result);if(Dat < 0 ) Result |= 0x8000;else Result &= 0x7fff;return(Result);}u32 fnDFConver_Bcd32To32(s32 Dat){u32 Result;Result = labs(Dat) % 80000000;Result = fnHexToBcd_u32(Result);if(Dat < 0 ) Result |= 0x80000000;else Result &= 0x7fffffff;return(Result);}sDF09 fnDFConver_Hex32ToDF09(s32 Dat) {sDF09 Result;memset(&Result , 0 , sizeof(sDF09) );if(Dat < 0) Result.S = 1;else Result.S = 0;Dat = labs(Dat) % 800000;Dat = fnHexToBcd_u32(Dat);Result.Dat0 = Dat;Result.Dat1 = Dat >> 8;Result.Dat2 = Dat >> 16;return(Result);}typedef union //公共数据运算区8字节{u8 ucTempBuf[8];u32 lTemp32;u16 wTemp16;u8 ucTemp8;}sDl645StruDataComm_TypeDef;__no_init sDl645StruDataComm_TypeDef Dl645RN8302DataComm;__no_init sDl645FrontTmp_TypeDef Dl645FrontTmp;__no_init sDl645Front_TypeDef Dl645Front;__no_init sDl645Eg_TypeDef Dl645Eg;__no_init sDl645FirmParaFile_TypeDef Dl645FirmPara;typedef struct{u8 ChkErrCnt; //读错误计数1s32 P w[12]; //{Pa Pb Pc P Qa Qb Qc Q Sa Sb Sc S} 48s32 U I[7]; //Ua Ub Uc Ia Ib Ic Inal 28s32 VectorU[9]; // 正序、负序、零序电压s32 VectorI[9]; // 正序、负序、零序电流s32 Pf[4]; //Pf Pfa Pfb Pfc 16u32 Frequency; //电网频率,单位: 4s32 YUI[3],YUU[2]; //20s32 Pulse[15]; //前台高频脉冲48//---电能脉冲---s32 Pulse_EgTmp[20]; //高频脉冲{P,Q,Ps},{Pa,Qa,Psa},{Pb,Qb,Psb},{Pc,Qc,Psc}{Fp,Fq}{Fpa,Fqa}{Fpb,Fqb}{Fpc,Fqc} u32 Pulse_Eg[20]; //低频脉冲数//---需量脉冲---s32 Pulse_NeedTmp[12];u16 Pulse_Need[12];//{PNeed,QNeed,PsNeed},{PNeeda,QNeeda,PsNeeda},{PNeedb,QNeedb,PsNeedb},{PNeedc,QNe edc,PsNeedc}48u16 Angle[9];u16 PDirect; //4u32 ChkSum1; //4u32 ChkSum2; //4u16 Temperature; //温度4u32 ClockBat; //时钟电池4u32 BackupBat; //后备电池4u16 CF1DelayStamp;u16 CF2DelayStamp;u16 CfIn_P;u16 CfIn_q;u16 CfTime_P;u16 CfTime_q;} sDl645FrontTmp_TypeDef;typedef struct{struct sFrontPubData_TypeDef {u16 U[3]; //---电压---NNN.N6u16 VectorU[9]; // 正序电压0--2 负序电压3---5 零序电压6---8u32 I[4]; //---电流NNNN.NNNN(电流值要求3整3小,整定值要求2整4小,最高位表示方向)---16u32 VectorI[9]; // 正序电流0--2 负序电流3---5 零序电流6---8sDF09 Pw[12]; //---瞬时有功/无功/视在功率NN.NNNN---{P Pa Pb Pc Q Qa Qb Qc S Sa Sb Sc}36u16 Pf[4]; //---功率因数N.NNN--- 最高位表示方向{Pf Pfa Pfb Pfc}8 sDF05u16 Angle[9]; //---相角NNN.N--- 18//PhUb,PhUc, 以A相电压为基准,B、C相角度//(hyg) BCD码//PhIa,PhIb,PhIc,A相电流与A相电压间角度、B相电流与B相电压间角度、C相电流与C相电压间角度//Angle A,Angle B,Angle C, A相电流与A相电压间角度、B相电流与A相电压间角度、C相电流与A相电压间角度//Angle C-Angle Au32 UnblU; //电压不平衡度NNNN.NN%4u32 UnblI; //电流不平衡度NNNN.NN%4u16 FuzzyU[3]; //---电压波形失真度NN.NN%--- 6u16 FuzzyI[3]; //---电流波形失真度NN.NN%--- 6u16 WaveU[3][21]; //---相电压谐波含量NN.NN%--- 126u16 WaveI[3][21]; //---相电流谐波含量NN.NN%--- 126//---其他---u16 Frequency; //NN.NN 2u32 PPwave; //NN.NNNN 4u16 Temperature; //NNN.N 2u16 ClockBat; //NN.NN 2u16 BackupBat; //NN.NN 2u8 PDirect; //原功率方向,用于需量处理(0总/1A/2B/3C , 注意与FrontTmp不同) 1} PubData;struct sFrontPriData_TypeDef {u8 Flag; //---工作异常标志---1u8 PhaseCalStep;u16 FrontStamp;// u8 BatCalStep;u16 BatStamp;// u16 BatDetStamp;} PriData;struct sFrontPriPara_TypeDef {u32 PConstE; //有功常数u32 QConstE; //无功常数(Hex码)4u16 Crc;//2} PriPara;} sDl645Front_TypeDef; //缓冲区转换后的有效数据typedef struct{u8 FractionI;/*电流小数位数*/u8 FractionU;/*电压小数位数*/u8 FractionE;/*电能小数位数*/u8 FractionP;/*功率需量小数位数*/u16 ConstE;/*电表有功常数*/u16 Pulse_deltaE;/*数*/u8 HighPulseRate;u8 PhaseCalStep;u32 IRmsConst; //10u16 Reserve[2];u16 NOLOAD;u16 ZEROSTAR; //20u32 ChkSum1;u16 HFConst1;u16 HFConst2;u32 VRmsConst; //30u16 Reserve1;u32 PRmsConst;u16 Reserve2;u16 VGain[3]; // 42u16 IGain[4]; //48u8 PHSU[2]; // 56u32 PHSI[3];u16 PRth[4]; //70u16 UI_Offset[7];u16 P_PHS[3];/*有功相位校正寄存器*/ // 92 u16 PGain[3];/*有功增益校正寄存器*/}sDl645FirmParaFile_TypeDef;typedef struct {#pragma pack(1)struct sDl645EgPubData_TypeDef{sFsEgSh_TypeDef AllPEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef PtPEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef NtPEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef AllQEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef PtQEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef NtQEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef Qd1QEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef Qd2QEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef Qd3QEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef Qd4QEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef PtPsEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef NtPsEgSh[DL645_MAX_FL + 1];sFsEgSh_TypeDef AssEgSh;sFsEgSh_TypeDef BasePtPEgSh;sFsEgSh_TypeDef BaseNtPEgSh;sFsEgSh_TypeDef WavePtPEgSh;sFsEgSh_TypeDef WaveNtPEgSh;sFsEgSh_TypeDef CopPEgSh;sFsEgSh_TypeDef IronPEgSh;//-------------sFsEgSh_TypeDef PtPEgSha;sFsEgSh_TypeDef NtPEgSha;sFsEgSh_TypeDef PtQEgSha;sFsEgSh_TypeDef Qd1QEgSha;sFsEgSh_TypeDef Qd2QEgSha;sFsEgSh_TypeDef Qd3QEgSha;sFsEgSh_TypeDef Qd4QEgSha;sFsEgSh_TypeDef PtPsEgSha;sFsEgSh_TypeDef NtPsEgSha;sFsEgSh_TypeDef AssEgSha;sFsEgSh_TypeDef BasePtPEgSha;sFsEgSh_TypeDef BaseNtPEgSha;sFsEgSh_TypeDef WavePtPEgSha;sFsEgSh_TypeDef WaveNtPEgSha;sFsEgSh_TypeDef CopPEgSha;sFsEgSh_TypeDef IronPEgSha;//-------------sFsEgSh_TypeDef PtPEgShb;sFsEgSh_TypeDef NtPEgShb;sFsEgSh_TypeDef PtQEgShb;sFsEgSh_TypeDef NtQEgShb;sFsEgSh_TypeDef Qd1QEgShb;sFsEgSh_TypeDef Qd2QEgShb;sFsEgSh_TypeDef Qd3QEgShb;sFsEgSh_TypeDef Qd4QEgShb;sFsEgSh_TypeDef PtPsEgShb;sFsEgSh_TypeDef NtPsEgShb;sFsEgSh_TypeDef AssEgShb;sFsEgSh_TypeDef BasePtPEgShb;sFsEgSh_TypeDef BaseNtPEgShb;sFsEgSh_TypeDef WavePtPEgShb;sFsEgSh_TypeDef WaveNtPEgShb;sFsEgSh_TypeDef CopPEgShb;sFsEgSh_TypeDef IronPEgShb;//-------------sFsEgSh_TypeDef PtPEgShc;sFsEgSh_TypeDef NtPEgShc;sFsEgSh_TypeDef PtQEgShc;sFsEgSh_TypeDef Qd1QEgShc;sFsEgSh_TypeDef Qd2QEgShc;sFsEgSh_TypeDef Qd3QEgShc;sFsEgSh_TypeDef Qd4QEgShc;sFsEgSh_TypeDef PtPsEgShc;sFsEgSh_TypeDef NtPsEgShc;sFsEgSh_TypeDef AssEgShc;sFsEgSh_TypeDef BasePtPEgShc;sFsEgSh_TypeDef BaseNtPEgShc;sFsEgSh_TypeDef WavePtPEgShc;sFsEgSh_TypeDef WaveNtPEgShc;sFsEgSh_TypeDef CopPEgShc;sFsEgSh_TypeDef IronPEgShc;} PubData;#pragma pack()struct sDl645EgPubDataCrc_TypeDef{u16 AllPEgSh;u16 PtPEgSh;u16 NtPEgSh;u16 AllQEgSh;u16 PtQEgSh;u16 NtQEgSh;u16 Qd1QEgSh;u16 Qd2QEgSh;u16 Qd3QEgSh;u16 Qd4QEgSh;u16 PtPsEgSh;u16 NtPsEgSh;u16 AssEgSh;u16 BasePtPEgSh;u16 BaseNtPEgSh;u16 WavePtPEgSh;u16 WaveNtPEgSh;u16 CopPEgSh;u16 IronPEgSh;//-------------u16 PtPEgSha;u16 NtPEgSha;u16 PtQEgSha;u16 NtQEgSha;u16 Qd1QEgSha;u16 Qd2QEgSha;u16 Qd3QEgSha;u16 Qd4QEgSha;u16 PtPsEgSha;u16 NtPsEgSha;u16 AssEgSha;u16 BasePtPEgSha;u16 BaseNtPEgSha;u16 WavePtPEgSha;u16 WaveNtPEgSha;u16 CopPEgSha;u16 IronPEgSha;//-------------u16 PtPEgShb;u16 NtPEgShb;u16 PtQEgShb;u16 NtQEgShb;u16 Qd1QEgShb;u16 Qd2QEgShb;u16 Qd3QEgShb;u16 Qd4QEgShb;u16 PtPsEgShb;u16 NtPsEgShb;u16 AssEgShb;u16 BasePtPEgShb;u16 BaseNtPEgShb;u16 WavePtPEgShb;u16 WaveNtPEgShb;u16 CopPEgShb;u16 IronPEgShb;//-------------u16 PtPEgShc;u16 NtPEgShc;u16 PtQEgShc;u16 NtQEgShc;u16 Qd1QEgShc;u16 Qd2QEgShc;u16 Qd3QEgShc;u16 Qd4QEgShc;u16 PtPsEgShc;u16 NtPsEgShc;u16 AssEgShc;u16 BasePtPEgShc;u16 BaseNtPEgShc;u16 WavePtPEgShc;u16 WaveNtPEgShc;u16 CopPEgShc;u16 IronPEgShc;} PubDataCrc;struct sDl645EgPriData_TypeDef{u32 PieceEg[20];u16 Crc;} PriData;struct sDl645EgPubPara_TypeDef{u8 PExpression;u8 PtQExpression;u8 NtQExpression;u8 InvalidByte1;u16 PPlsDeltaE;u16 QPlsDeltaE;u16 PsPlsDeltaE;u8 FractionE;u8 InvalidByte2;u16 Crc;u8 fMinute;u8 InvalidByte3;} PubPara;}sDl645Eg_TypeDef; //863BYTEtypedef struct{u8 Head1;u8 Addr[6];u8 Head2;// u8 Ctl;u8 AFN : 5;u8 Persist : 1;u8 Ack : 1;u8 Dir : 1;u8 Len;struct {u8 DI0;u8 DI1;u8 DI2;u8 DI3;u8 Dat[MAX_COMPACK_SIZE - 16];} UDat;u8 Cs;u8 Tail;} sFrmDl645B_TypeDef; //DL645-2007协议帧结构void fnRN8302_Init(void){Dl645RN8302DataComm.ucTemp8 = 0xe5; // 写使能位fnRN8302_Write(0x0180,Dl645RN8302DataComm.ucTempBuf,1);Dl645RN8302DataComm.ucTemp8 = 0xA2; // 切换到EMM模式fnRN8302_Write(WMSW,Dl645RN8302DataComm.ucTempBuf,1);Dl645RN8302DataComm.ucTemp8 = 0xfa; // 写使能位fnRN8302_Write(0x0182,Dl645RN8302DataComm.ucTempBuf,1);SystemDelay(10);Dl645RN8302DataComm.ucTemp8 = 0xe5; // 写使能位fnRN8302_Write(0x0180,Dl645RN8302DataComm.ucTempBuf,1);Dl645RN8302DataComm.ucTemp8 = 0xA2; // 切换到EMM模式fnRN8302_Write(WMSW,Dl645RN8302DataComm.ucTempBuf,1);Dl645RN8302DataComm.ucTempBuf[0] = 0x77; // 计量控制位Dl645RN8302DataComm.ucTempBuf[1] = 0x77;Dl645RN8302DataComm.ucTempBuf[2] = 0x77;fnRN8302_Write(0x0162,Dl645RN8302DataComm.ucTempBuf,3);Dl645RN8302DataComm.wTemp16 = Dl645FirmPara.HFConst1;fnRN8302_Write(HFCONST1,Dl645RN8302DataComm.ucTempBuf,2);// 电压增益初始化fnRN8302_Write(GSUA,(u8 *)&Dl645FirmPara.VGain[0],2);fnRN8302_Write(GSUB,(u8 *)&Dl645FirmPara.VGain[1],2);fnRN8302_Write(GSUC,(u8 *)&Dl645FirmPara.VGain[2],2);// 电流增益初始化fnRN8302_Write(GSIA,(u8 *)&Dl645FirmPara.IGain[0],2);fnRN8302_Write(GSIB,(u8 *)&Dl645FirmPara.IGain[1],2);fnRN8302_Write(GSIC,(u8 *)&Dl645FirmPara.IGain[2],2);fnRN8302_Write(GSIN,(u8 *)&Dl645FirmPara.IGain[3],2);// 通道相位校正fnRN8302_Write(PRTH1L,(u8 *)&Dl645FirmPara.PRth[0],2);fnRN8302_Write(PRTH1H,(u8 *)&Dl645FirmPara.PRth[1],2);fnRN8302_Write(PRTH2L,(u8 *)&Dl645FirmPara.PRth[2],2);fnRN8302_Write(PRTH2H,(u8 *)&Dl645FirmPara.PRth[3],2); // 通道相位分段参数// 通道相位校正fnRN8302_Write(PHSIA,(u8 *)&Dl645FirmPara.PHSI[0],3);fnRN8302_Write(PHSIB,(u8 *)&Dl645FirmPara.PHSI[1],3);fnRN8302_Write(PHSIC,(u8 *)&Dl645FirmPara.PHSI[2],3);fnRN8302_Write(PA_PHS,(u8 *)&Dl645FirmPara.P_PHS[0],2);fnRN8302_Write(PB_PHS,(u8 *)&Dl645FirmPara.P_PHS[1],2);fnRN8302_Write(PC_PHS,(u8 *)&Dl645FirmPara.P_PHS[2],2);fnRN8302_Write(GPA,(u8 *)&Dl645FirmPara.PGain[0],2);fnRN8302_Write(GPB,(u8 *)&Dl645FirmPara.PGain[1],2);fnRN8302_Write(GPC,(u8 *)&Dl645FirmPara.PGain[2],2);fnRN8302_Write(GQA,(u8 *)&Dl645FirmPara.PGain[0],2);fnRN8302_Write(GQB,(u8 *)&Dl645FirmPara.PGain[1],2);fnRN8302_Write(GQC,(u8 *)&Dl645FirmPara.PGain[2],2);fnRN8302_Write(GSA,(u8 *)&Dl645FirmPara.PGain[0],2);fnRN8302_Write(GSB,(u8 *)&Dl645FirmPara.PGain[1],2);fnRN8302_Write(GSC,(u8 *)&Dl645FirmPara.PGain[2],2);// 通道功率OFFSET校正fnRN8302_Write(PA_OS,(u8 *)&Dl645FirmPara.UI_Offset[0],2);fnRN8302_Write(PB_OS,(u8 *)&Dl645FirmPara.UI_Offset[1],2);fnRN8302_Write(PC_OS,(u8 *)&Dl645FirmPara.UI_Offset[2],2);fnRN8302_Write(IStart_PS,(u8 *)&Dl645FirmPara.NOLOAD,2);fnRN8302_Write(ZXOT,(u8 *)&Dl645FirmPara.ZEROSTAR,2);Dl645RN8302DataComm.ucTemp8 = 0x42;fnRN8302_Write(0x0184,Dl645RN8302DataComm.ucTempBuf,1);Dl645RN8302DataComm.ucTemp8 = 0;fnRN8302_Write(0x0185,Dl645RN8302DataComm.ucTempBuf,1);Dl645RN8302DataComm.ucTemp8 = 0;fnRN8302_Write(0x0184,Dl645RN8302DataComm.ucTempBuf,1);Dl645RN8302DataComm.ucTempBuf[0] = 0x10;Dl645RN8302DataComm.ucTempBuf[1] = 0x32;Dl645RN8302DataComm.ucTempBuf[2] = 0x07;fnRN8302_Write(CFCFG,Dl645RN8302DataComm.ucTempBuf,3);Dl645RN8302DataComm.ucTempBuf[0] = 0x40; // 计量控制位默认值400000 Dl645RN8302DataComm.ucTempBuf[1] = 0x00;Dl645RN8302DataComm.ucTempBuf[2] = 0x00;fnRN8302_Write(0x0161,Dl645RN8302DataComm.ucTempBuf,3);Dl645RN8302DataComm.ucTemp8 = 0x10; // 清空采样数据缓存区fnRN8302_Write(0x0163,Dl645RN8302DataComm.ucTempBuf,1);Dl645RN8302DataComm.ucTemp8 = 0xDC; // 写保护fnRN8302_Write(0x0180,Dl645RN8302DataComm.ucTempBuf,1);Dl645FirmPara.FractionP=0x04;Dl645FirmPara.FractionI=0x04;Dl645FirmPara.FractionU=0x02;}void fnDl645Front_Exec(void){//读电压电流for(i=0;i<4;i++){Dl645FrontTmp.UI[i] = 0 ;fnRN8302_Read( 0x000b+i , (u8 *)&Dl645FrontTmp.UI[i] , 4 ) ;}for(i=0;i<3;i++){Dl645FrontTmp.UI[i+4] = 0 ;fnRN8302_Read( 0x0007+i , (u8 *)&Dl645FrontTmp.UI[i+4] , 4 ) ;}//读功率for(i=0;i<12;i++){Dl645FrontTmp.Pw[i] = 0 ;fnRN8302_Read(0x0014+i,(u8 *)&Dl645FrontTmp.Pw[i],4);if((Dl645FrontTmp.Pw[i]<30)&&(Dl645FrontTmp.Pw[i]>-30))Dl645FrontTmp.Pw[i]=0;}//读功率方向fnRN8302_Read(PQSign,(u8 *)&Dl645FrontTmp.PDirect,2);//读电压电流角度值for(i=0;i<5;i++){Dl645FrontTmp.Angle[i] = 0 ;fnRN8302_Read(YUB+i,(u8 *)&Dl645FrontTmp.Angle[i],3);Dl645Front.PubData.Angle[i] = fnHexToBcd_u16((u16)(((float)Dl645FrontTmp.Angle[i]/16777216)*3600));}//功率计算for(j=0;j<3;j++){for(i=0;i<3;i++){Dl645Front.PubData.Pw[j*4+i+1]=fnDFConver_Hex32ToDF09((s32)((Dl645FrontTmp.Pw[j*4+ i])/((Dl645FirmPara.PRmsConst))));//计算{Pa Pb Pc}、{Qa Qb Qc}、{Sa Sb Sc}}}Tempw = (s32)((Dl645FrontTmp.Pw[3])/((Dl645FirmPara.PRmsConst))) ;Dl645Front.PubData.Pw[0]=fnDFConver_Hex32ToDF09(Tempw);Tempq = (s32)((Dl645FrontTmp.Pw[7])/((Dl645FirmPara.PRmsConst))) ;Dl645Front.PubData.Pw[4]=fnDFConver_Hex32ToDF09(Tempq);// 计算总视在功率Tempws = (s32)sqrt((float)Tempw*(float)Tempw+(float)Tempq*(float)Tempq);Dl645Front.PubData.Pw[8] = fnDFConver_Hex32ToDF09(Tempws);//计算P、Q//功率因数计算//总功率因数Dl645Front.PubData.Pf[0]=fnDFConver_Bcd16To16((s16)((1000*(double)(Tempw))/(Tempws )));//电压电流计算for(i=0;i<3;i++){Dl645Front.PubData.U[i]=0x7fff&(fnDFConver_Bcd16To16((s16)(Dl645FrontTmp.UI[i+4]/(10 *(Dl645FirmPara.VRmsConst))))); //电压}TempIa = (s32)(Dl645FrontTmp.UI[0]/(Dl645FirmPara.IRmsConst));TempIb = (s32)(Dl645FrontTmp.UI[1]/(Dl645FirmPara.IRmsConst));TempIc = (s32)(Dl645FrontTmp.UI[2]/(Dl645FirmPara.IRmsConst));Dl645Front.PubData.I[0] = fnDFConver_Bcd32To32(TempIa);Dl645Front.PubData.I[1] = fnDFConver_Bcd32To32(TempIb);Dl645Front.PubData.I[2] = fnDFConver_Bcd32To32(TempIc);Dl645Front.PubData.I[3] = fnDFConver_Bcd32To32((s32)(Dl645FrontTmp.UI[3]/(Dl645FirmPara.IRmsConst)));if(Dl645FrontTmp.PDirect&0x0001) Dl645Front.PubData.I[0] |= 0x80000000;if(Dl645FrontTmp.PDirect&0x0002) Dl645Front.PubData.I[1] |= 0x80000000;if(Dl645FrontTmp.PDirect&0x0004) Dl645Front.PubData.I[2] |= 0x80000000;//频率计算if((Dl645FrontTmp.Frequency>1638400)||(Dl645FrontTmp.Frequency<1092266)) //when 50HZ is 5120 ;+- 20% frequence is 6144 and 4096Dl645FrontTmp.Frequency=1310720;Dl645Front.PubData.Frequency=fnHexToBcd_u16((u16)(65536000/(Dl645FrontTmp.Frequen cy/100)));//转换功率方向Dl645Front.PubData.PDirect = ( (Dl645FrontTmp.PDirect << 1) & 0xee) | ( (Dl645FrontTmp.PDirect >> 3) & 0x11);if(Dl645Bkgrd.PriPara.WireMode==0x01) //三相三线{Dl645Front.PubData.Angle[3]=0;Dl645Front.PubData.Angle[6]=0;}//从RN8302读出的即为脉冲数//{P,Q,Ps},{Pa,Qa,Psa},{Pb,Qb,Psb},{Pc,Qc,Psc}{Fp,Fq}{Fpa,Fqa}{Fpb,Fqb}{Fpc,Fqc} /*读电能寄存器*/for(i=0;i<3;i++){Dl645FrontTmp.Pulse[(i+1)*3] = 0;fnRN8302_Read(EPA+i,(u8 *)&Dl645FrontTmp.Pulse[(i+1)*3],3); //有功Dl645FrontTmp.Pulse[(i+1)*3+1] = 0;fnRN8302_Read(EQA+i,(u8 *)&Dl645FrontTmp.Pulse[(i+1)*3+1],3); //无功Dl645FrontTmp.Pulse[(i+1)*3+2] = 0;fnRN8302_Read(ESA+i,(u8 *)&Dl645FrontTmp.Pulse[(i+1)*3+2],3); //视在有功Dl645FrontTmp.Pulse[14+i*2] =0;fnRN8302_Read(FEPA+i,(u8 *)&Dl645FrontTmp.Pulse[14+i*2],3); //基波有功Dl645FrontTmp.Pulse[15+i*2] = 0;fnRN8302_Read(FEQA+i,(u8 *)&Dl645FrontTmp.Pulse[15+i*2],3); //基波无功}Dl645FrontTmp.Pulse[0] = 0;fnRN8302_Read(EPT,(u8 *)&Dl645FrontTmp.Pulse[0],3); //总有功Dl645FrontTmp.Pulse[1] = 0;fnRN8302_Read(EQT,(u8 *)&Dl645FrontTmp.Pulse[1],3); //总无功Dl645FrontTmp.Pulse[2] = 0;fnRN8302_Read(EST,(u8 *)&Dl645FrontTmp.Pulse[2],3); //总视在Dl645FrontTmp.Pulse[12] =0;fnRN8302_Read(FEPT,(u8 *)&Dl645FrontTmp.Pulse[12],3); //总基波有功Dl645FrontTmp.Pulse[13] =0;fnRN8302_Read(FEQT,(u8 *)&Dl645FrontTmp.Pulse[13],3); //总基波无功for(i=0;i<20;i++)//电能高频脉冲转换成低频脉冲{Dl645FrontTmp.Pulse_Eg[i]+=Dl645FrontTmp.Pulse[i];}}void fnDl645Energy_Exec(void){u8 Ep[20];if( !(Dl645FrontTmp.Pulse_Eg[0] | Dl645FrontTmp.Pulse_Eg[1] | Dl645FrontTmp.Pulse_Eg[2] | Dl645FrontTmp.Pulse_Eg[3] |Dl645FrontTmp.Pulse_Eg[4] | Dl645FrontTmp.Pulse_Eg[5] | Dl645FrontTmp.Pulse_Eg[6] | Dl645FrontTmp.Pulse_Eg[7] |Dl645FrontTmp.Pulse_Eg[8] | Dl645FrontTmp.Pulse_Eg[9] | Dl645FrontTmp.Pulse_Eg[10] | Dl645FrontTmp.Pulse_Eg[11] |Dl645Eg.PubPara.fMinute) ){return;}//Dl645Eg.PubPara.PPlsDeltaE为脉冲数,如脉冲数为800,因电能小数为2位,故此值为8for(i = 0 ; i < 12 ; i++){Ep[i] = 0;if(Dl645FrontTmp.Pulse_Eg[i]){Dl645Eg.PriData.PieceEg[i] += Dl645FrontTmp.Pulse_Eg[i];Dl645FrontTmp.Pulse_Eg[i] = 0;switch(i % 3){case 0:if(Dl645Eg.PubPara.PPlsDeltaE == 0) break;while (Dl645Eg.PriData.PieceEg[i] >= Dl645Eg.PubPara.PPlsDeltaE)//需按电能小数位数进行计算{Ep[i]++;Dl645Eg.PriData.PieceEg[i] -= Dl645Eg.PubPara.PPlsDeltaE;}break;case 1:if(Dl645Eg.PubPara.QPlsDeltaE == 0) break;while (Dl645Eg.PriData.PieceEg[i] >= Dl645Eg.PubPara.QPlsDeltaE)//需按电能小数位数进行计算{Ep[i]++;Dl645Eg.PriData.PieceEg[i] -= Dl645Eg.PubPara.QPlsDeltaE;}break;default:if(Dl645Eg.PubPara.PsPlsDeltaE == 0) break;while (Dl645Eg.PriData.PieceEg[i] >= Dl645Eg.PubPara.PsPlsDeltaE)//需按电能小数位数进行计算{Ep[i]++;Dl645Eg.PriData.PieceEg[i] -= Dl645Eg.PubPara.PsPlsDeltaE;}break;}}}for(i = 0 ; i < 8 ; i++){Ep[i+12] = 0;if(Dl645FrontTmp.Pulse_Eg[i+12]){Dl645Eg.PriData.PieceEg[i+12] += Dl645FrontTmp.Pulse_Eg[i+12];Dl645FrontTmp.Pulse_Eg[i+12] = 0;switch((i+12) % 2){case 0:if(Dl645Eg.PubPara.PPlsDeltaE == 0) break;while (Dl645Eg.PriData.PieceEg[i+12] >= Dl645Eg.PubPara.PPlsDeltaE)//需按电能小数位数进行计算{Ep[i+12]++;Dl645Eg.PriData.PieceEg[i+12] -= Dl645Eg.PubPara.PPlsDeltaE;}break;default :if(Dl645Eg.PubPara.QPlsDeltaE == 0) break;while (Dl645Eg.PriData.PieceEg[i+12] >= Dl645Eg.PubPara.QPlsDeltaE)//需按电能小数位数进行计算{Ep[i+12]++;Dl645Eg.PriData.PieceEg[i+12] -= Dl645Eg.PubPara.QPlsDeltaE;}break;}}}}// RxFrm为通讯数据指针,指到07协议的第1个68数据,为sFrmDl645B_TypeDef类型指针//校表进行增益校准和相位校准,可选择进行相位分段校准// 校表部分程序case 0x00f81000: //电流电压功率初校,HFCONST等参数设置if(RxFrm->Len != (12+48)) return(DL645B_ERRINFO_DATA);memcpy(&tempconst , &(RxFrm->UDat.Dat[8]) , 2);memcpy(&temphfconst , &(RxFrm->UDat.Dat[10]) , 2);memcpy(&tempub , &(RxFrm->UDat.Dat[12]) , 2);memcpy(&tempus , &(RxFrm->UDat.Dat[14]) , 4);memcpy(&tempib , &(RxFrm->UDat.Dat[18]) , 2);memcpy(&tempis , &(RxFrm->UDat.Dat[20]) , 4);Dl645FirmPara.ConstE=tempconst*10L;Dl645RN8302DataComm.ucTemp8 = 0xe5; // 写使能位fnRN8302_Write(0x0180,Dl645RN8302DataComm.ucTempBuf,1);Dl645FirmPara.HFConst1 = temphfconst;fnRN8302_Write(HFCONST1,(u8 *)&Dl645FirmPara.HFConst1,2);fnDl645File_Write(Dl645FileId_FirmPara,26,(u8 *)&Dl645FirmPara.HFConst1,2);for(i=0;i<3;i++) //{memcpy(&temppw[0] , &(RxFrm->UDat.Dat[32+4*i]) , 4);temppw[1] = tempus/tempub;temppw[1] = (temppw[1] *temppw[0])/10;fnRN8302_Read( 0x0007+ i , (u8 *)&temppw[0] , 4 ) ;ADErr=((float)temppw[0]-(float)temppw[1])/temppw[1];ADErr=(-ADErr/(1+ADErr));if(ADErr>0) Dl645FirmPara.VGain[i]=(u16)(ADErr*32768);else Dl645FirmPara.VGain[i] = (u16)(65535 + ADErr*32768);fnRN8302_Write(GSUA+i,(u8 *)&Dl645FirmPara.VGain[i],2);fnRN8302_Read( GSUA+i , Dl645RN8302DataComm.ucTempBuf , 2 ) ;}fnDl645File_Write(Dl645FileId_FirmPara,42,(u8 *)&Dl645FirmPara.VGain[0],6);for(i=0;i<3;i++) //电流增益校正{memcpy(&temppw[0] , &(RxFrm->UDat.Dat[44+4*i]) , 4);temppw[1] = tempis/tempib;temppw[1] = (temppw[1] *temppw[0])/10;fnRN8302_Read( 0x000B+ i , (u8 *)&temppw[0] , 4 ) ;ADErr=((float)temppw[0]-(float)temppw[1])/temppw[1];ADErr=((-ADErr)/(1+ADErr));if(ADErr>0) Dl645FirmPara.IGain[i]=(u16)(ADErr*32768);else Dl645FirmPara.IGain[i] = (u16)(65535 + ADErr*32768);fnRN8302_Write(GSIA+i,(u8 *)&Dl645FirmPara.IGain[i],2);}fnDl645File_Write(Dl645FileId_FirmPara,48,(u8 *)&Dl645FirmPara.IGain[0],8);tempconst = fnHexToBcd_u16(tempconst) ;ConstE.Dat0 = (((u8)(tempconst & 0x000f))<<4)&0xf0;ConstE.Dat1 = (tempconst & 0x0ff0)>>4;ConstE.Dat2 = (u8)((tempconst & 0xf000)>>12);fnDl645File_Write(Dl645FileId_HighPara , Dl645FileItemInfoOffAddr_HighPara_PConstE , (u8 *)&ConstE , 3);fnDl645File_Write(Dl645FileId_HighPara , Dl645FileItemInfoOffAddr_HighPara_QConstE , (u8 *)&ConstE , 3);i=Dl645FirmPara.FractionI;B=1;while(i--){B*=10;}B = B/1000;Dl645FirmPara.IRmsConst=((float)tempis/((float)tempib*B));fnDl645File_Write(Dl645FileId_FirmPara,10,(u8 *)&Dl645FirmPara.IRmsConst,4);i=Dl645FirmPara.FractionU;B=1;while(i--){B*=10;}B = B/100;Dl645FirmPara.VRmsConst=((float)tempus/(tempub*B));fnDl645File_Write(Dl645FileId_FirmPara,30,(u8 *)&Dl645FirmPara.VRmsConst,4);Dl645FirmPara.NOLOAD = (u16)((tempis*0.0003)/16);Dl645FirmPara.ZEROSTAR=(u16)((tempis*0.005)/4096);fnRN8302_Write(IStart_PS,(u8 *)&Dl645FirmPara.NOLOAD,2);fnRN8302_Write(ZXOT,(u8 *)&Dl645FirmPara.ZEROSTAR,2);fnDl645File_Write(Dl645FileId_FirmPara,18,(u8 *)&Dl645FirmPara.NOLOAD,4);// 功率系数计算Dl645FirmPara.PRmsConst=(u32)((float)tempus*(float)tempis/((float)tempub*(float)tempib *838.8608));fnDl645File_Write(Dl645FileId_FirmPara,36,(u8 *)&Dl645FirmPara.PRmsConst,4);memcpy(&tempub , &(RxFrm->UDat.Dat[24]) , 2);memcpy(&tempib , &(RxFrm->UDat.Dat[26]) , 2);Dl645FirmPara.PRth[0] = tempub;Dl645FirmPara.PRth[1] = tempib;fnRN8302_Write(PRTH1L,(u8 *)&Dl645FirmPara.PRth[0],2);fnRN8302_Write(PRTH1H,(u8 *)&Dl645FirmPara.PRth[1],2);memcpy(&tempub , &(RxFrm->UDat.Dat[28]) , 2);memcpy(&tempib , &(RxFrm->UDat.Dat[30]) , 2);Dl645FirmPara.PRth[2] = tempub;Dl645FirmPara.PRth[3] = tempib;fnRN8302_Write(PRTH2L,(u8 *)&Dl645FirmPara.PRth[2],2);fnRN8302_Write(PRTH2H,(u8 *)&Dl645FirmPara.PRth[3],2);fnDl645File_Write(Dl645FileId_FirmPara,70,(u8 *)&Dl645FirmPara.PRth[0],8);Dl645RN8302DataComm.ucTemp8 = 0xDC; // 写保护fnRN8302_Write(0x0180,Dl645RN8302DataComm.ucTempBuf,1);Dl645FirmPara.ChkSum1 = 0;SystemDelay(10);fnRN8302_Read( CheckSum1 , (u8 *)&Dl645FirmPara.ChkSum1 , 3 ) ;fnDl645File_Write(Dl645FileId_FirmPara,22,(u8 *)&Dl645FirmPara.ChkSum1,3);break;case 0x00f81100: //功率相位校准if((RxFrm->Len != (12+18))&&(RxFrm->Len != (12+20))&&(RxFrm->Len != (12+5))) return(DL645B_ERRINFO_DATA);if(RxFrm->Len == (12+5)){memcpy(&tempis , &(RxFrm->UDat.Dat[9]) , 4);Dl645RN8302DataComm.ucTemp8 = 0xe5; // 写使能位fnRN8302_Write(0x0180,Dl645RN8302DataComm.ucTempBuf,1);if(tempis > 0x7fffffff) ADErr=-(float)(0xffffffff - tempis)/100000;else ADErr=(float)tempis/100000;ADErr = (asin(-ADErr/1.732))*57.29578/0.017578; // 弧度转成角度if(Dl645FirmPara.PRth[0]==0 && Dl645FirmPara.PRth[1]==0 && Dl645FirmPara.PRth[2]==0 && Dl645FirmPara.PRth[3]==0){if(ADErr == 0) Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]] = 0x808080;else if(ADErr>0) Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]] = 0x808080 - (u8)ADErr;else {ADErr = -ADErr;Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]] = 0x808080 + (u8)ADErr;}}else{if(ADErr == 0) Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]] = (Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]]&0x00ff00ff)|0x8000;else if(ADErr>0) Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]] = Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]] - (((u32)((u8)ADErr)<<8)&0x0000ff00);else {ADErr = -ADErr;Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]] = Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]] + (((u32)((u8)ADErr)<<8)&0x0000ff00);}}fnRN8302_Write(PHSIA+RxFrm->UDat.Dat[8],(u8*)&Dl645FirmPara.PHSI[RxFrm->UDat.Dat[8]],3);}else{memcpy(&tempis , &(RxFrm->UDat.Dat[8]) , 4);memcpy(&tempus , &(RxFrm->UDat.Dat[12]) , 4);Dl645FirmPara.PRmsConst=((float)tempus*100/(tempis/10));fnDl645File_Write(Dl645FileId_FirmPara,36,(u8 *)&Dl645FirmPara.PRmsConst,4);Dl645RN8302DataComm.ucTemp8 = 0xe5; // 写使能位fnRN8302_Write(0x0180,Dl645RN8302DataComm.ucTempBuf,1);if((RxFrm->Len == (12+18))){tempangle[0] =0;for(i=0;i<2;i++){fnRN8302_Read( YUB+i , Dl645RN8302DataComm.ucTempBuf , 3 ) ;temppw[0] =Dl645RN8302DataComm.lTemp32 & 0x00ffffff;tempangle[i+1] = (u16)(((float)temppw[0]/16777216)*36000);}for(i=0;i<3;i++){memcpy(&tempangle[i+3] , &(RxFrm->UDat.Dat[20+2*i]) , 2);fnRN8302_Read( YIA+i , Dl645RN8302DataComm.ucTempBuf , 3 ) ;temppw[0] =Dl645RN8302DataComm.lTemp32 & 0x00ffffff;ADErr = ((((float)temppw[0]/16777216)*36000-(float)(tempangle[i+3]+tempangle[i]))/1.7578);if(Dl645FirmPara.PRth[0]==0 && Dl645FirmPara.PRth[1]==0 && Dl645FirmPara.PRth[2]==0 && Dl645FirmPara.PRth[3]==0){if(ADErr>0) Dl645FirmPara.PHSI[i] = 0x808080 - (u8)ADErr;else {ADErr = -ADErr;Dl645FirmPara.PHSI[i] = 0x808080 + (u8)ADErr;}}else{if(ADErr>0) Dl645FirmPara.PHSI[i] = Dl645FirmPara.PHSI[i] - (((u32)((u8)ADErr)<<8)&0x0000ff00);else {ADErr = -ADErr;Dl645FirmPara.PHSI[i] = Dl645FirmPara.PHSI[i] + (((u32)((u8)ADErr)<<8)&0x0000ff00);}}fnRN8302_Write(PHSIA+i,(u8 *)&Dl645FirmPara.PHSI[i],3);}}else{for(i=0;i<3;i++){fnRN8302_Read( 0x0014+i , Dl645RN8302DataComm.ucTempBuf , 4 ) ;temppw[0] =Dl645RN8302DataComm.lTemp32;memcpy(&temppw[1] , &(RxFrm->UDat.Dat[16 + 4*i]) , 4);temppw[1] = (u32)(((float)tempus/(float)tempis)*(float)temppw[1]);。