【高考四元聚焦】高三数学一轮复习 第62讲 圆锥曲线的综合问题对点训练 理
- 格式:doc
- 大小:83.00 KB
- 文档页数:4
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线的综合问题●知识梳理分析几何是联系初等数学与高等数学的纽带,它自己重视于形象思想、 推理运算和数形联合,综合了代数、三角、几何、向量等知识. 反应在解题上,就是依据曲线的几何特色准确地变换为代数形式,依据方程画出图形,研究几何性质. 学习时应娴熟掌握函数与方程的思想、数形联合的思想、参数的思想、分类与转变的思想等,以达到优化解题的目的.详细来说,有以下三方面:( 1)确立曲线方程,本质是求某几何量的值;含参数系数的曲线方程或变化运动中的圆锥曲线的主要问题是定值、最值、最值范围问题,这些问题的求解都离不开函数、方程、不等式的解题思想方法 . 有时题设设计的特别隐蔽,这就要求仔细审题,发掘题目的隐含条 件作为解题打破口 .( 2)分析几何也能够与数学其余知知趣联系,这种综合一般比较直观,在解题时保持思想的灵巧性和多面性,能够顺利进行转变,即从一知识转变为另一知识.( 3)分析几何与其余学科或本质问题的综合,主要表此刻用分析几何知识去解相关知 识,详细地说就是经过成立坐标系, 成立所研究曲线的方程, 并经过方程求解往返答本质问题. 在这一类问题中“本质量”与“数学量”的转变是易犯错的地方,这是由于在座标系中 的量是“数目” ,不单有大小还有符号 .●点击双基1. ( 2005 年春天北京, 5)设 abc ≠0,“ ac >0”是“曲线 ax 2+by 2=c 为椭圆”的 A. 充足不用要条件B. 必需不充足条件C. 充足必需条件D. 既不充足又不用要条件 2 2分析: ac >0 曲线 ax +by =c 为椭圆 .答案: B2. 到两定点 A (0, 0), B ( 3, 4)距离之和为 5 的点的轨迹是A. 椭圆所在直线 C. 线段 ABD. 无轨迹分析:数形联合易知动点的轨迹是线段: = 4,此中 0≤ x ≤ 3.AB3答案: C3. 若点( x , y )在椭圆 4x 2+y 2=4 上,则x y 的最小值为2B. - 1C.-23D. 以上都不对3分析:y的几何意义是椭圆上的点与定点( 2, 0)连线的斜率 . 明显直线与椭圆相x2切时获得最值,设直线 = ( - 2)代入椭圆方程( 4+k 2)x 2-4 2 +4 2-4=0.y k xk x k令 =0, k =± 23 .3∴ k min =- 23 .3答案: C4. ( 2005 年春天上海, 7)双曲线 9 2- 16 y 2=1 的焦距是 ____________.x分析:将双曲线方程化为标准方程得x2y221 21 ,- 1 =1. ∴ a =9 , b =16 19 16c 2=a 2+b 2= 1 + 1 =25 .9 16 144∴ c = 5, 2c = 5.126答案:565. ( 2004 年春天北京)若直线+ -3=0 与圆 x 2+ y 2=3 没有公共点,则mx ny系式为 ____________;以( m , n )为点 P 的坐标,过点 P 的一条直线与椭圆公共点有 ____________个 .分析:将直线 mx +ny - 3=0 变形代入圆方程x 2+y 2=3,消去 x ,得(2+2) y 2- 6 ny +9-3 2=0.m nm22令 <0 得 m +n <3.又 m 、n 不一样时为零,2 2∴ 0<m +n <3.223 , | m |< 3 ,由 0<m +n <3,可知 | n |<m 、n 知足的关2 2 x y再由椭圆方程 a = 7 , b = 3 可知公共点有 2 个.2 2答案: 0<m +n <3 2 ●典例分析【例 1】 (2005 年春天北京, 18)如图, O 为坐标原点,直线 l 在 x 轴和 y 轴上的截距分别是 a 和 b ( a >0, b ≠ 0),且交抛物线 y 2=2px (p >0)于 M ( x 1, y 1),N ( x 2, y 2)两点 .lyMOa xb N( 1)写出直线 l 的截距式方程;( 2)证明: 1+1=1;y 1y 2 b ( 3)当 =2 时,求∠的大小 .a pMON分析:易知直线l 的方程为 x + y =1 ,欲证 1+1=1,即求 y1y 2 的值,为此只要aby 1 y 2by 1 y 22=2px 交点的纵坐标 . 由根与系数的关系易得 121 2的值,从而证得 求直线 l 与抛物线 y y +y 、y y 1+ 1 = 1. 由 OM · ON =0 易得∠ MON =90° . 亦可由 k OM ·k ON =- 1 求得∠MON =90° . y 1 y 2 b( 1)解:直线 l 的截距式方程为x + y=1.a b①( 2)证明:由①及 y 2=2 消去x可得by 2+2-2 =0.pxpaypab②点、 的纵坐标 y 1、 y 2 为②的两个根,故 y 1+ 2=2 pa , 1 y 2=-2. M Npab2 pa所以 1 + 1y 1 y 2 = b1== .y 1 y 2y 1 y 2 2 pa b ( 3)解:设直线 OM 、 ON 的斜率分别为k 1、 k 2,则 k 1=y 1,k 2=y 2.x 1 x 2当 a =2p 时,由( 2)知, y 1y 2=- 2pa =- 4p 2,2222由 y 1 =2px 1, y 2 =2px 2,相乘得( y 1y 2)=4p x 1 x 2,x 1x 2= ( y 1 y 2 ) 2 =( 4 p 2 ) 2=4p 2,4 p 2 4 p 2所以 ky 1 y 2 4 p 21k 2===- 1.x 1 x 24 p 2所以 OM ⊥ ON ,即∠ MON =90° .评论:此题主要考察直线、 抛物线等基本知识, 考察运用分析几何的方法分析问题和解决问题的能力 .【例 2】 (2005 年黄冈高三调研考题)已知椭圆C 的方程为x 2+ y 2=1( a >b >0),双a 2b 2x 2 y 2121曲线a 2-b 2 =1 的两条渐近线为 l 、l ,过椭圆 C 的右焦点 F 作直线 l,使 l ⊥ l ,又 l 与l 2 交于 P 点,设 l 与椭圆 C 的两个交点由上至下挨次为A 、B . (以下列图)ylPl 2AOFx Bl 1( 1)当 l 1 与 l 2 夹角为 60°,双曲线的焦距为4 时,求椭圆 C 的方程;( 2)当 FA =λ AP 时,求 λ的最大值 .分析:( 1)求椭圆方程即求、 b 的值,由l 1与l2的夹角为 60°易得b=3,由双曲aa3线的距离为 4 易得 a 2+b 2=4,从而可求得 a 、b .( 2)由 FA =λ AP ,欲求 λ 的最大值,需求A 、P 的坐标,而 P 是 l 与 l 1 的交点,故需求 l 的方程 . 将 l 与 l 2 的方程联立可求得 P 的坐标,从而可求得点A 的坐标 . 将 A 的坐标代入椭圆方程可求得λ的最大值 .解:( 1)∵双曲线的渐近线为 y =± bx ,两渐近线夹角为60°,a又 b<1,a∴∠ POx =30°,即 b=tan30 ° = 3.a3∴ a = 3 b .又 a 2+b 2=4,∴ a 2=3,b 2=1.故椭圆 C 的方程为x 22+y =1.3( 2)由已知 l : y = a( x -c ),与 y = bx 解得 P ( a 2,ab),ba ccca 2abFA=cc) .由得 (,λ APA11将 A 点坐标代入椭圆方程得( c 2+λa 2)2+λ2a 4=( 1+λ) 2a 2c 2. ∴( e 2+λ) 2+λ2=e 2( 1+λ) 2.∴ λ2= e4e 2 =-[( 2- e 2)+ 2 ]+3≤3-2 2 . e 222 e 2∴ λ的最大值为2 - 1.评论:此题考察了椭圆、双曲线的基础知识,及向量、定比分点公式、重要不等式的应用. 解决此题的难点是经过恒等变形, 利用重要不等式解决问题的思想 . 此题是培育学生分析问题和解决问题能力的一道好题 .【例 3】 设椭圆中心是坐标原点,长轴在x 轴上,离心率= 3,已知点(0, 3)2 2到这个椭圆上的点的最远距离是 7 ,求这个椭圆方程, 并求椭圆上到点P 的距离等于 7 的点的坐标 .分析:设椭圆方程为x2+ y2=1,由 e =3知椭圆方程可化为x 2+4y 2=4b 2,而后将距离a 2b 22转变为 y 的二次函数,二次函数中含有一个参数b ,在判断距离有最大值的过程中,要议论y =- 1能否在 y 的取值范围内,最后求出椭圆方程和P 点坐标 .2解法一:设所求椭圆的直角坐标方程是x2 y 2=1,此中 a >b > 0 待定 .a+2b 2由 e 2c2=a 2b 2=1-(b2可知b1 e2 = 13 1 ,即 a =2b .=a 2 a 2a ) =4 =a222322y 229设椭圆上的点 ( x ,y )到点 P 的距离为 d ,则 d =x +(y - 2 ) =a ( 1- b 2)+y - 3y + 4 =4b 2-3y 2- 3y + 9 =- 3(y + 1)2 +4b 2+3,此中- b ≤ y ≤b .42假如b <1,则当y =- b 时2(从而 )有最大值,由题设得(7)2=( + 3)2,由2ddb 2此得 b = 7 - 3> 1,与 b < 1矛盾 .222所以必有 b ≥1成立,于是当 y =-127 222 2 时 d (从而 d )有最大值, 由题设得 () =4b +3,由此可得 b =1, a =2.故所求椭圆的直角坐标方程是x 2 +y 2=1.4由 y =- 1及求得的椭圆方程可得,椭圆上的点(-3 ,- 1),点(3,- 1)到222点 P 的距离都是7 .解法二:依据题设条件,设椭圆的参数方程是x =a cos θ,y =b sin θ, 此中 a > b > 0 待定,0≤ θ< 2π,∵ e = 3,2 ∴ a =2b .设椭圆上的点( x , y )到点 P 的距离为 d ,则d 2=x 2+( y -3)2=a 2cos 2θ +( b sin θ-3)2=- 3b 2·(sin θ+1) 2+4b 2+3.222b假如1>1,即 b <1272,则当 sin θ=- 1 时, d (从而 d )有最大值,由题设得() =2b2( +3) 2,由此得b =7-3>1,与 <1矛盾 .b22 2b 2所以必有1≤1 成立,于是当 sin θ=-1时, d 2(从而 d )有最大值,由题设得(7 )2b2b2=4b 2+3.由此得 b =1, a =2. 所以椭圆参数方程x =2cos θ, y =sin θ.消去参数得 x2+y 2=1,由 sin θ=1 ,cos θ=±3知椭圆上的点 (- 3,-1),( 3 ,4222- 1)到 P 点的距离都是7 .2评论:此题表现认识析几何与函数、三角知识的横向联系,解答中要注意议论.深入拓展依据图形的几何性质,以P 为圆心,以 7 为半径作圆,圆与椭圆相切时,切点与P 的距离为7 ,此时的椭圆和切点即为所求. 读者不如一试 .x 2+( y - 3) 2=7,提示:由2x 2+4 2=4 2,y b得 3y 2+3y - 9=4b 2- 7,4由 =0 得 b 2=1,即椭圆方程为 x 2+4y 2=4.所求点为(-3,- 1)、( 3,- 1) .22●闯关训练夯实基础1. ( 2005 年北京东城区目标检测)以正方形的相对极点 、 为焦点的椭圆,恰ABCD A C好过正方形四边的中点,则该椭圆的离心率为102 B. 5 1A.3351D. 102C.22分析:成立坐标系,设出椭圆方程,由条件求出椭圆方程,可得e =102.2答案: D2. 已知 F 1(- 3, 0)、F 2(3, 0)是椭圆x 2 + y 2= 1 的两个焦点, P 是椭圆上的点,当m n∠ F 1PF 2=2π时,△ F 1PF 2 的面积最大,则有3=12, n =3=24 , n =6 =6, n =3=12 , n =62分析:由条件求出椭圆方程即得 m =12, n =3.答案: A3. ( 2005 年启东市第二次调研)设P ( 2 ,2 )、P (-2 ,- 2 ), M 是双曲线12y = 1上位于第一象限的点,对于命题①| 2| - |1|=2;②以线段1为直径的圆与圆xMPMP2MPx 2+y 2=2 相切;③存在常数 b ,使得 M 到直线 y =- x +b 的距离等于2| MP 1|. 此中全部正确命2题的序号是 ____________.分析:由双曲线定义可知①正确,②绘图由题意可知正确,③由距离公式及| MP 1| 可知正确 .答案:①②③4. ( 2004 年全国Ⅱ, 15)设中心在原点的椭圆与双曲线2 2- 2 2=1 有公共的焦点,且xy它们的离心率互为倒数,则该椭圆的方程是_________________.分析:双曲线中, a =1=b ,∴ F (± 1, 0), e = c= 2 . ∴椭圆的焦点为(± 1, 0),2a离心率为2. ∴长半轴长为2 ,短半轴长为1.2∴方程为x 2+y 2=1.2答案: x 2+y 2=125. ( 1)试议论方程( 1-k ) x 2+( 3-k 2) y 2=4( k ∈ R )所表示的曲线;( 2)试给出方程x 2 y2k+=1 表示双曲线的充要条件 .k 26 6k 2k 1解:( 1) 3- k 2>1-k >0 k ∈(- 1, 1),方程所表示的曲线是焦点在x 轴上的椭圆;1- k >3- k 2>0 k ∈(-3 ,- 1),方程所表示的曲线是焦点在 y 轴上的椭圆; 1-k =3-k 2>0 k =- 1,表示的是一个圆; ( 1- k )( 3- k 2) <0 k ∈(-∞,- 3 )∪( 1, 3 ),表示的是双曲线; k =1, k =-3 ,表示的是两条平行直线; k = 3 ,表示的图形不存在 .( 2)由( k 2+k - 6)( 6k 2- k -1)<0(k +3)( k -2)( 3k +1)( 2k - 1)<0 k ∈(- 3,- 1)∪( 1,2).326. ( 2003 年湖北八市模拟试题)已知抛物线y 2 =2px 上有一内接正△ AOB ,O 为坐标原点 .yAOxB( 1)求证:点 A 、 B 对于 x 轴对称; ( 2)求△ AOB 外接圆的方程 .( 1)证明:设 A ( x 1, y 1)、 B ( x 2, y 2),∵| |=|| ,∴x 2+ 22211=2+2.OAOByxy又∵ y 12=2px 1, y 22=2px 2, 22∴ x 2 - x 1 +2p (x 2- x 1) =0, 即( x 2-x 1)( x 1+x 2+2p )=0.又∵ x 1、x 2 与 p 同号,∴ x 1+x 2+2p ≠ 0. ∴ x 2- x 1=0,即 x 1=x 2. 由抛物线对称性,知点A 、B 对于 x 轴对称 .( 2)解:由( 1)知∠ AOx =30°,则y 2=2px , x =6p ,y =3 x ∴y =2 3 p .3∴ A ( 6p , 2 3 p ) .方法一:待定系数法, △ AOB 外接圆过原点 O ,且圆心在 x 轴上,可设其方程为 x 2+y 2+dx =0.将点 A ( 6p , 2 3 p )代入,得 d =- 8p . 故△ AOB 外接圆方程为 x 2+y 2- 8px =0.方法二:直接求圆心、半径,设半径为 r ,则圆心( r ,0) .培育能力7. (理)( 2004 年北京, 17)以下列图,过抛物线2=2px ( p > 0)上必定点 P (x , y )y(> 0),作两条直线分别交抛物线于(1,1)、 ( 2, 2) .yA xyB x y( 1)求该抛物线上纵坐标为p的点到其焦点 F 的距离;2yPO AxB( 2)当 PA 与 PB 的斜率存在且倾斜角互补时,求是非零常数 .解:( 1)当 y =p时, = p.2 x 8又抛物线 y 2=2px 的准线方程为x =- p,2由抛物线定义得所求距离为p-(- p) =5p.8 2 8( 2)设直线 PA 的斜率为 k PA ,直线 PB 的斜率为22=2px ,由 y=2px , y0 11相减得( y 1- y 0)( y 1+y 0) =2p ( x 1- x 0),故 ky 1y 0 =2 p(x ≠ x ) .PA1x 1 x 0 y 1 y 0y1y2的值,并证明直线AB的斜率y0 k PB.同理可得 k PB =2 p( x 2 ≠ x 0).y 2y 0由 PA 、 PB 倾斜角互补知 k PA =- k PB ,即2 p 2 p,所以 y +y =- 2y ,=-y 1y 0y 2 y 0 1 2 0故y1y 2=- 2.y 0设直线 AB 的斜率为 k.AB22由 y 2 =2px 2, y 1 =2px 1, 相减得( y 2- y 1)( y 2+y 1) =2p ( x 2- x 1), 所以 k AB = y2y1= 2 p( x 1≠ x 2) .x 2 x 1 y 1y 2将 y 1+y 2=-2y 0( y 0> 0)代入得k AB =2 p =- p,所以 k AB 是非零常数 . y 1 y 2 y 0(文)以下列图,抛物线对于x 轴对称,它的极点在座标原点,点( 1,2)、 ( 1, 1)、PA xyB ( x 2, y 2)均在抛物线上 .y PO AxB( 1)写出该抛物线的方程及其准线方程;( 2)当 PA 与 PB 的斜率存在且倾斜角互补时,求y 1+y 2 的值及直线 AB 的斜率 .解:( 1)由已知条件,可设抛物线的方程为 y 2=2px . ∵点 P ( 1, 2)在抛物线上,∴ 22=2p ·1,得 p =2.故所求抛物线的方程是 y 2=4x ,准线方程是 x =- 1. ( 2)设直线 的斜率为 k PA ,直线 的斜率为 k PB .PAPB则 k PA =y 12( x 1≠ 1),k PB =y 22( x 2≠ 1) .x 1 1x 2 1∵ PA 与 PB 的斜率存在且倾斜角互补,∴ k PA =- k PB .由 A (x 1, y 1)、 B ( x 2, y 2)在抛物线上,得2y 1 =4x 1,①2y 2 =4x 2,②∴ y 12=- y 2 2 .1 y 12 1 1 y 2 2 1 4 4∴ y 1+2=-( y 2+2) . ∴ y 1+y 2=- 4. 由①-②得直线 AB 的斜率y 2 y 14=- 4) .=- 1( x ≠ xAB12x 2x 1 y 1 y 2 48.( 2003 年北京东城区模拟试题)从椭圆 x2+ y 2 =1( a > b > 0)上一点 M 向 x 轴作垂线,a 2b 2恰巧经过椭圆的左焦点 F 1,且它的长轴右端点A 与短轴上端点B 的连线 AB ∥ OM .( 1)求椭圆的离心率;( 2)若 Q 是椭圆上随意一点, F 2 是右焦点,求∠ F 1QF 2 的取值范围;( 3)过 F 1 作 AB 的平行线交椭圆于 C 、 D 两点,若 | CD |=3 ,求椭圆的方程 .解:( 1)由已知可设 (- , ),Mcy则有( c) 2y2a 2+=1.b2∵ M 在第二象限,∴ M (- c ,b 2) .a又由 AB ∥ OM ,可知 k AB =k OM .∴- b 2 =- b. ∴b =c . ∴ a = 2 b .acac2a2( 2)设 | F 1Q |= m ,| F 2Q |= n ,22则 m +n =2a , mn > 0.| F 1F 2|=2 c ,a =2c ,∴ cos ∠ 1 2= m 2 n 2 4c 2F QF2mn( m n) 22mn 4c 2 4a 2 4c2=2mn=2mn - 1= a 2 - 1≥ a 2 - 1= a 2 - 1=0.mn m n 2 a 2()2 当且仅当 m =n =a 时,等号成立 .故∠ F QF ∈[ 0, π ].122(3)∵ ∥ , CD =- b=- 2 .CD AB ka2设直线 CD 的方程为 y =-2(x +c ),2即 y =-2( x +b ).222x+ y =1,a 22b则 消去 y ,整理得y =-2(x +b ).2( a 2+2b 2)x 2+2a 2bx - a 2b 2=0.设 C (x 1, y 1)、 D ( x 2, y 2),∵ a 2=2b 2,∴ x 1+x 2=-2a 2b =- 4b 3=- b ,a 22b 24b 2x 1· x 2=-a 2b 2 =- 2b 4 =- b 2.a 2 2b 24b 22∴ | CD |= 1 k 2| x 1-x 2|=1 k 2· (x 1x 2 )24x 1x 2=1 (2 ) 2 · ( b)22b 2=9b 2 =3.22∴ b 2=2,则 a 2=4.∴椭圆的方程为 x 2+ y 2 =1.4 2 研究创新9. ( 2005 年春天上海, 22)( 1)求右焦点坐标是( 2, 0),且经过点(- 2,- 2 )的椭圆的标准方程 .( 2)已知椭圆 C 的方程是 x 2 + y 2=1( a >b >0). 设斜率为 k 的直线 l 交椭圆 C 于 A 、Ba 2b 2两点,的中点为 . 证明:当直线 l 平行挪动时,动点在一条过原点的定直线上 .AB MM ( 3)利用( 2)所揭露的椭圆几何性质,用作图方法找出下边给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.( 1)解:设椭圆的标准方程为x2+y2 =1, a >b >0,a 2b 2 ∴ a 2=b 2+4,即椭圆的方程为x 2 +y2 =1.b 2 4 b 2∵点(- 2,-2 )在椭圆上,∴4+2 =1.b24 b 2解得 b2=4或 b2=-2(舍).由此得 a2=8,即椭圆的标准方程为x2+ y2=1.8 4 (2)证明:设直线l的方程为y=kx +m,与椭圆 C的交点 A( x, y)、B( x , y ),1122y=kx+m,则有x2+ y2=1.a 2b2222222222解得( b+a k) x +2a kmx+a m- a b =0.2222∵ >0,∴m<b+a k,即- b 2 a 2 k 2<m< b 2 a 2 k 2.2a 2 km, y+y=kx +m+kx +m=b 22b 2m,则 x +x =-b2a 2k 2 a 2k 2121212∴ AB中点 M的坐标为(-a 2 km b2 mb2 a 2k 2,b 2a 2 k 2).∴线段 AB的中点 M在过原点的直线b2x+a2ky=0上.( 3)解:以下列图,作两条平行直线分别交椭圆于A、 B和 C、 D,并分别取 AB、 CD的中点 M、 N,连接直线MN;又作两条平行直线(与前两条直线不平行)分别交椭圆于A、B 和11 C1、D1,并分别取 A1B1、C1D1的中点 M1、N1,连接直线 M1N1,那么直线 MN和 M1N1的交点 O即为椭圆中心 .C AMA1ON C1BM1DB1N 1●思悟小结在知识的交汇点处命题,是高考命题的趋向,而分析几何与函数、三角、数列、向量等知识的亲密联系,正是高考命题的热门,为此在学习时应抓住以下几点:1.客观题求解时应注意绘图,抓住波及到的一些元素的几何意义,用数形联合法去分析解决 .2.四点重视:①重视定义在解题中的作用;②重视平面几何知识在解题中的简化功能;③重视根与系数关系在解题中的作用;④重视曲线的几何特色与方程的代数特色的一致3. 注意用好以下数学思想、方法:.①方程思想;②函数思想;③对称思想;④参数思想;⑤转变思想;⑥分类思想.除上述几种常用数学思想外,整体思想、数形联合思想、主元分析思想、正难则反省想、结构思想等也是分析几何解题中不行缺乏的思想方法. 在复习中一定赐予足够的重视,真实发挥数学解题思想作为联系知识与能力中的作用,从而提升简化计算能力.●教师下载中心教课点睛本节是圆锥曲线的综合应用,主假如曲线方程的运用、变量范围的计算、最值确实定等,解决这种问题的重点是依照分析几何自己的特色,找寻一个打破口,那么怎样找到解决问题的打破口呢?(1)联合定义利用图形中几何量之间的大小关系 . ( 2)成立目标函数,转变为求函数的最值问题 . ( 3)利用代数基本不等式 . 代数基本不等式的应用,常常需要创建条件,并进行奇妙的构想 . ( 4)联合参数方程,利用三角函数的有界性. 直线、圆或椭圆的参数方程,它们的一个共同特色是均含有三角式 . 所以,它们的应用价值在于:①经过参数示曲线上点的坐标;②利用三角函数的有界性及其变形公式来帮助求解诸如最值、题.(5)结构一个二次方程,利用鉴别式≥ 0.拓展题例【例 1】( 2005 年启东市第二次调研题)抛物线y2=4px(p>0)的准线与x 轴交于 M 点,过点 M作直线 l 交抛物线于 A、 B 两点.( 1)若线段AB的垂直均分线交x 轴于 N( x ,0),求证: x>3p;00( 2)若直线l的斜率挨次为p,p2,p3,,线段AB的垂直均分线与x 轴的交点挨次为 N, N, N,,当0<p<1时,求111的值 .++ +123| N1N2 | | N2N3 || N10 N11 |(1)证明:设直线l方程为y=k(x+p),代入y2=4px.得 k2x2+(2k2p-4p)x+k2p2=0.=4(k2p- 2p)2- 4k2·k2p2>0,得 0<k2<1.令 A(x, y)、 B( x , y),则 x +x=-2k 2 p 4 p, y +y=k(x+x +2p) =4 p,112212k 21212kAB中点坐标为( 2 p k 2 p , 2 p ).k 2k垂直均分线为y - 2 p=-1(x- 2 p k 2 p) .AB k k k2令y =0,得x0= k 2 p 2 p= +2 p.k 2p2k由上可知 0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)解:∵l的斜率挨次为p,p2,p3,时,AB中垂线与x轴交点挨次为N1,N2,N3,(0<p<1) .∴点N的坐标为(2, 0). +np 2n1| N n N n+1|=| (p+2)-( p+2) |= 2(1p 2 ),p2n1p2n 1p 2n1θ简洁地表范围等问1p 2n 1| N n N n 1 |=,2(1 p 2 )13421p 3 (1 p 19 )所求的值为 2(1p 2 ) [ p +p + +p ] = 2(1 p) 2 (1p) .【例 2】 ( 2003 年南京市模拟试题)已知双曲线: x 2- y2=1( >0, > 0), B 是右C2 b 2a极点, F 是右焦点,点 A 在 x 轴正半轴上,且知足 | OA |、| OB | 、| OF | 成等比数列,过 F作双曲线 C 在第一、三象限的渐近线的垂线l ,垂足为 P .yDPEAB FxO l( 1)求证: PA · OP =PA · FP ;( 2)若 l 与双曲线 C 的左、右两支分别订交于点D 、E ,求双曲线 C 的离心率 e 的取值范围 .( 1)证法一:yDPEOABFlxl : y =- a( x -c ) . b y =- a( x - c ),bby = x .解得( a2,ab). ∵ | OA | 、| OB | 、 | OF | 成等比数列,∴( a2, 0).ccc∴ PA =( 0,-ab), OP =( a 2,ab),c cc b2,ab) .FP =(-cc∴ PA · OP =-a 2b 2, PA · FP =-a 2b 2.c 2c 2∴ PA · OP =PA · FP .证法二:同上得 P ( a 2,ab) .cc∴ PA ⊥x 轴,PA · OP - PA · FP =PA · OF =0.∴ PA · OP =PA · FP .y =- a(x - c ),( 2)解:bb 2x 2- a 2y 2=a 2b 2.422a222∴ b x -( x - c ) =a b ,即( b 2- a4) x 2+2 a4cx -( a 4c 2+a 2b 2) =0.b 2b 2b 2a 4c 2 22)(2 a b∵ x 1· x 2=ba 4< 0,b 2b2∴ b 4> a 4,即 b 2> a 2,c 2- a 2> a 2.∴ e 2> 2,即 e > 2 .。
2021年高考数学一轮复习 第十章 圆锥曲线 第62课 椭圆及其标准方程文(含解析)1.椭圆的定义在平面内与两定点,的距离之和等于常数(大于)的点的轨迹叫椭圆.这两定点叫做椭圆的焦点, 点满足,其中,,为正常数(1)若______,则点的轨迹为椭圆;(2)若______若______,则点的轨迹不存在.练习:、是定点,,动点满足,其中①当 时,点的轨迹是椭圆 ;②当 时,点的轨迹是线段; ③当时,点的轨迹不存在 2.椭圆的标准方程A. B . C . D. 【解析】椭圆化为,所以,, 在中,,, ,所以【变式】在椭圆中, , , ,焦点坐标为 , 。
若、是这个椭圆上的上点,过点,那么的周长是 【解析】椭圆化为,所以,所以,, ,焦点坐标为,,的周长为 【例2】(1)已知,是椭圆的两个焦点,过且垂直于轴的直线交于,两点,且,求椭圆的方程【解析】法1. 设椭圆的方程为() 由已知,得,,2222112235||||||2()22AF F F AF ∴=+=+= ,即,,故椭圆C 的方程为法2.由题意知椭圆焦点在x 轴上,设椭圆的方程为(),则 在椭圆上,又,所以 解得 故椭圆C 的方程为.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,,求椭圆的方程 【解析】设椭圆方程为.∵椭圆经过两点,则 解得∴所求椭圆方程为 【变式】求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是、,椭圆上一点到两焦点距离的和等于; (2)椭圆的长轴长等于短轴长的倍,并且经过点.图形标准方程焦点在坐标轴上时的方程焦点 ,, 焦距 ,其中 ,,的关系【解析】(1)设椭圆的标准方程为(), ∵,,∴,∴椭圆的标准方程为.(2)∵椭圆的长轴长等于短轴长的倍,并且经过点; ∴当焦点在轴上时,,;椭圆的标准方程为 当焦点在轴上时,,.椭圆的标准方程为 ∴椭圆的标准方程为,或.【例3】已知椭圆的左右两个焦点分别为、,过点的直线与椭圆相交 于两点,且,求直线的方程 【解析】容易求得当直线的斜率不存在时,其方程为,不符合题意; 当直线的斜率存在时,设直线的方程为. 由 ,得. 设,则 , ,∵,∴,∴21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++-- ,解得,即. 故直线的方程为或.第62课 椭圆及其标准方程的课后作业 1. 到两定点、的距离之和等于的点的轨迹是( ) A .椭圆 B .圆 C .线段 D .射线 【答案】C2.椭圆的右焦点到直线的距离是 ( ) A. B. C . D. 【解析】椭圆化为,所以,, 右焦点,∴.选B3. 将椭圆的一个焦点坐标为,那么实数的值为( ) A.B .C .D.【解析】椭圆标准方程为,焦点坐标为,,,, ,,即4.椭圆的焦距为,则的值是。
课题:圆锥曲线的综合问题 【要点回顾】1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则弦长|AB |=1+k 2|x 1-x 2|或 1+1k2|y 1-y 2|.【热身练习】1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1 C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条B .2条C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.5.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=0 【方法指导】1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 【直线与圆锥曲线的位置关系】[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y=k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. [自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k x -,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=+k2x 1+x 22-4x 1x 2]=2+k 2+6k21+2k2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12|MN |· d =|k |4+6k 21+2k .由|k |4+6k 21+2k =103,解得k =±1. 【由题悟法】研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.【试一试】1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1. 【最值与范围问题】[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得 ⎩⎪⎨⎪⎧+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2.因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·m -2-m2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0. 【由题悟法】1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 【试一试】2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23. 【定点定值问题】[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).② 由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|, 故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2.由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值. 【由题悟法】1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况. 【试一试】3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pa y 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x ,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0, 则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0. 当x =a ,y =2pa b时上式恒成立,即定点为⎝ ⎛⎭⎪⎫a ,2pa b .答案:⎝⎛⎭⎪⎫a ,2pa b。
高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
第62讲 圆锥曲线的综合问题
1.已知λ∈R ,则不论λ取何值,曲线C :λx 2
-x -λy +1=0恒过定点( D ) A .(0,1) B .(-1,1) C .(1,0) D .(1,1)
解析:由λx 2-x -λy +1=0,得λ(x 2
-y )-(x -1)=0.
依题设⎩⎪⎨⎪⎧ x 2-y =0x -1=0,即⎩
⎪⎨⎪⎧
x =1y =1, 可知不论λ取何值,曲线C 过定点(1,1). 2.若点A 的坐标为(3,2),F 为抛物线y 2=2x 的焦点,点P 在抛物线上移动,为使|PA |+|PF |取最小值,P 点的坐标为( B )
A .(3,3)
B .(2,2)
C .(1
2
,1) D .(0,0)
解析:如图,根据抛物线的定义可知|PF |等于点P 到准线l 的距离|PQ |.则当A 、P ′、Q ′三点共线时|PA |+|PF |最小,此时,可求得P ′(2,2).
3.(2012·山东省高考冲刺预测)过双曲线x 2
a
2-y 2
b
2=1(a >0,b >0)上任意一点P ,引与实轴平行的直线,交两渐近线于M 、N 两点,则PM →·NP →
为定值( D )
A .a 2b 2
B .2ab
C .a 2
D .-a 2
解析:设P (x ,y ),则M (a b y ,y ),N (-a b
y ,y ),
于是PM →·PN →=(a
b
y -x,0)·(-a b
y -x,0)
=(a b y -x )(-a b
y -x ) =1b
2(b 2x 2-a 2y 2)
=a 2b 2b
2=a 2
, 所以PM →·NP →=-PM →·PN →=-a 2
,故选D.
4.(2012·山东省莱芜市上期末)若点O 和点F 分别为椭圆x 29+y 2
5
=1的中心和左焦点,
点P 为椭圆上任意一点,则OP →·FP →
的最小值为( A )
A.11
4
B .3
C .8
D .15
解析:设P (x ,y ),由题意得F (-2,0),
所以OP →·FP →
=(x +2,y )·(x ,y ) =x 2+2x +y 2
=49x 2
+2x +5 =49(x +94)2+11
4
(-3<x <3), 所以最小值为11
4,故选A.
5.双曲线x 2-y 2
=4上一点P (x 0,y 0)在双曲线的一条渐近线上的射影为Q ,已知O 为坐标原点,则△POQ 的面积为定值 1 .
解析:如图,双曲线x 2
-y 2
=4的两条渐近线为y =±x , 即x ±y =0,设P 在另一条渐近线上的射影为R ,则
|PQ |=|x 0-y 0|2,
|PR |=|x 0+y 0|2
,
所以S △POQ =12|PQ ||PR |=|x 20-y 2
0|
4
=1.
6.椭圆x 225+y 2
16
=1和圆x 2+y 2
-4x +3=0上最近两点之间的距离为 2 ,最远两点间的距离为 8 .
解析:由题设知圆的圆心为(2,0),半径为1,本题可转化为求椭圆上的点P (x 0,y 0)到定点A (2,0)的最近、最远距离;易求得|PA |min =3,|PA |max =7,从而知所求的最近距离为2,最远距离为8.
7.(2012·柳州市第一次模拟)如图,正六边形ABCDEF 的两个顶点A 、D 为椭圆的两个焦点,其余4个顶点在椭圆上,则该椭圆的离心率是 3-1 .
解析:设正六边形的边长为2c ,则焦距为2c ,连接EA ,AD , 则在三角形EAD 中,|EA |+|ED |=2a ,DE ⊥AE ,
所以DE 2+AE 2=AD 2
,DE =12AD ,解得AE =3c ,
所以3c +c =2a ,所以e =3-1.
8.若椭圆x 2a 2+y 2b
2=1(a >b >0)与直线x +y -1=0相交于P 、Q 两点,且OP →·OQ →
=0(O 为
坐标原点).
(1)求证:1a 2+1
b
2等于定值;
(2)若椭圆离心率e ∈[
33,2
2
]时,求椭圆长轴长的取值范围.
解析:(1)证明:由⎩
⎪⎨
⎪⎧
b 2x 2+a 2y 2=a
2b
2
x +y -1=0
⇒(a 2
+b 2
)x 2
-2a 2
x +a 2
(1-b 2
)=0.①
由Δ>0⇒a 2b 2(a 2+b 2
-1)>0,
因为a >b >0,所以a 2+b 2
>1.
设P (x 1,y 1),Q (x 2,y 2),则x 1,x 2是①的两根,
所以x 1+x 2=2a 2a 2+b 2,x 1x 2=a 2-b 2
a 2+
b 2
.②
由OP →·OQ →
=0得,x 1x 2+y 1y 2=0, 即 2x 1x 2-(x 1+x 2)+1=0,③
将②代入③得,a 2+b 2=2a 2b 2
,所以1a
2+1b
2=2,为定值.
(2)由(1)a 2+b 2=2a 2b 2得2-e 2=2a 2(1-e 2
),
所以a 2
=2-e 2
-e 2=12+1-e
2
, 又
33≤e ≤22,所以52≤a ≤6
2
,长轴2a ∈[5,6]. 9.(2012·山东省淄博市第一学期期中)已知点F 1,F 2分别为椭圆C :x 2a 2+y 2b
2=1(a >b >0)
的左、右焦点,点P 为椭圆上任意一点,P 到焦点F 2的距离的最大值为2+1,且△PF 1F 2
的最大面积为1.
(1)求椭圆C 的方程;
(2)点M 的坐标为(5
4,0),过点F 2且斜率为k 的直线l 与椭圆C 相交于A ,B 两点.对
于任意的k ∈R ,MA →·MB →
是否为定值?若是,求出这个定值;若不是,说明理由.
解析:(1)由题意可知:
a +c =2+1,1
2
×2c ×b =1,
因为a 2=b 2+c 2,所以a 2=2,b 2=1,c 2
=1,
所以所求椭圆的方程为x 2
2
+y 2
=1.
(2)设直线l 的方程为y =k (x -1),
A (x 1,y 1),
B (x 2,y 2),M (5
4
,0),
联立⎩⎪⎨⎪⎧
x 2
2
+y 2=1y =
k x -
,消去y ,得
(1+2k 2
)x 2
-4k 2
x +2k 2
-2=0,
则⎩⎪⎨⎪⎧
x 1+x 2=4k 21+2k
2
x 1x 2
=
2k 2
-21+2k
2
Δ>0
.
因为MA →=(x 1-54,y 1),MB →
=(x 2-54
,y 2),
MA →
·MB →
=(x 1-54
)(x 2-54
)+y 1y 2
=-54(x 1+x 2)+x 1x 2+25
16+y 1y 2
=-54(x 1+x 2)+x 1x 2+2516+k 2
(x 1-1)(x 2-1)
=(-54-k 2)(x 1+x 2)+(1+k 2)x 1x 2+k 2
+2516
=-716
.
对任意x ∈R ,有MA →·MB →
=-716
为定值.。