高中数学 第六章 第19课时《 频率分布表》教案(学生版) 苏教版必修3
- 格式:doc
- 大小:130.00 KB
- 文档页数:3
3.频率分布直方图与折线图昆山柏庐高级中学周咏梅教学目标知识与技能1.使学生学会画频率分布直方图,能运用样本的频率分布直方图对总体的分布状况做出估计。
2.使学生会根据频率分布直方图作出频率分布折线图,能根据样本的频率分布折线图估计总体的分布状况与开展趋势。
过程与方法通过对现实生活的探究,使学生感知应用数学知识解决问题的方法。
情感态度与价值观让学生根据样本数据作出频率直方图,利用频率分布直方图对总体的估计,感受数学在数对实际生活的需要,表达数学知识与现实世界的联系。
教学重难点频率分布直方图的绘制和应用。
教学方法从学生熟悉的实际问题切入,通过列表作图,掌握频率分布直方图和折线图的画法。
教学过程:复习回忆:1:频数和频率2:频率分布表实例引入:某市政府为了节约生活用水,方案在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过 a的局部按平价收费,超过 a的局部按议价收费①如果希望大局部居民的日常生活不受影响,那么标准 a 定为多少比拟合理呢?②为了较合理地确定这个标准,你认为需要做哪些工作?通过抽样,我们获得了位居民某年的月平均用水量,如下表:由上表,大家可以得到什么信息?根据上表数据,做出频率分布表:引入介绍频率分布直方图,并与学生一起研究画法。
教师演示不同组距所画出的不同的频率分布直方图,让学生感知数学整理的科学性。
实践与探究例1〔教材例题〕从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100 的身高样本,数据如下,试做出该样本的频率分布直方图〔学生分组合作完成〕频率分布表频率分布直方图学生展示,教师总结指导教学活动:学生分组讨论四种统计图表的区别与联系1请根据刚刚所画的频率分布直方图和频率折线图对总体进行估计:2比拟几种表示频率分布的方法,看看各有哪些优点和缺乏。
共同研究分析得到结论四种图表的区别与联系:课堂练习:1.为了解某地区居民的月收入情况,一个社会调查机构调查了20210 人,并根据所得数据画出样本的频率分布直方图如下图〔最后一组包含两端值,其他组包含最小值,不包含最大值〕现按月收入分层,用分层抽样的方法在这20210 人中抽出2021人进一步调查,那么月收入在[1500,2021]〔单位:元〕的应抽取〔〕人课堂小结:1.频数分布直方图2.频率分布折线图,密度曲线。
2.2.1频率分布表2.2.2频率分布直方图与折线图三维目标1.知识与技能(1)通过实例体会分布的意义和作用.(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图.(3)通过实例体会频率分布直方图、频率折线图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.2.过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.3.情感态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.点难点重点:会列频率分布表,画频率分布直方图、频率折线图.难点:能够用图形解决问题.从现实生活入手,引导学生分析得出概念,让学生真正参与到概念的形成过程中来.通过对典型事例的分析,向学生介绍什么是频率分布表,画频率分布直方图、频率折线图.通过学生讨论、交流频率分布表,画频率分布直方图、频率折线图的特征,结合例题及变式训练,掌握列频率分布表,画频率分布直方图、频率折线图的方法.教学建议根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳频率分布直方图、折线图的特征,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主观能动性,让每一个学生充分地参与到学习活动中来.【问题导思】如下样本是随机抽取近年来北京地区7月25日至8月24日的最高气温.【提示】 分析上面两样本的高温天数的频率用下表表示:8月8日至8月24日.1.频率分布表:当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.2.制作频率分布表的步骤:(1)求全距,决定组数和组距,组距=全距组数;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; (3)登记频数,计算频率,列出频率分布表.频率分布表能够反映出总体的部分特征,我们还学过哪些更为直观地体现数据分布规律的方法?【提示】 频率分布直方图与折线图.1.(1)定义:我们用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图,简称频率直方图.(2)绘制步骤①先制作频率分布表;②建立直角坐标系:把横轴分成若干段,每一段对应一个组的组距,竖轴等于该组的频率组距,并标上一些关键点; ③画矩形:在横轴上,以连结两相邻两点的线段为底,以纵轴上频率组距为高作矩形,这样得一系列矩形,就构成了频率分布直方图.2.频率分布折线图定义:将频率分布直方图中各个相邻的矩形的上底边的中点顺次连结起来,就得到频率分布折线图,简称频率折线图.3.总体分布密度曲线频率折线图的优点是它反映了数据的变化趋势,如果将样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑曲线,称这条光滑曲线为总体分布的密度曲线.例1名女生的身高数据如下:145.5149.5149.6151.9153.0153.5153.6 154.0154.1154.3154.6 155.0155.3155.6 155.7155.8156.1156.2156.5157.0157.1157.0157.2157.3157.4157.5157.5157.7 157.8158.0158.1158.3 158.5158.8158.9 159.0158.8159.0160.8160.9161.6162.8 162.9 163.0163.0164.2164.9165.1167.0 169.5根据样本列出相应的频率分布表.【思路探究】根据题中的数据,先求全距,然后决定组距与组数,最后列表求解.解通过样本数据可以看出,这组数据的最大值与最小值的差为24,可将其分成6组,组距为4.从第1组[145.5,149.5)开始,将频数累计、各组的频数、各组的频率填入表中,得频率分布表为:规律方法列频率分布表的注意事项:(1)计算全距,需要找出这组数据的最大值和最小值.当数据很多时,可选一个数当参照;(2)将一批数据分组,目的是要描述数据的分布规律,要根据数据多少来确定分组数目.一般来说,数据越多,分组越多;(3)将数据分组,决定分点时,一般使分点比数据多一位小数,并且把第一组的起点稍微减小一点;(4)列频率分布表时,可通过逐一判断各个数据落在哪个小组内,以“正”字确定各个小组内数据的个数.变式训练某班50名同学参加数学测验,成绩的分组及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.列出频率分布表;解频率分布表如下:例494 498 493 505 496 492 487 483 508 511495 494 483 485 511 493 505 485 501 503493 509 509 512 484 509 510 495 497 498504 498 483 510 503 497 502 511 497 500493 509 510 493 491 497 515 503 515 518510 514 509 499 493 499 509 492 505 489494 501 509 498 502 500 508 491 509 509499 495 493 509 496 509 505 499 486 491492 496 499 508 485 498 496 495 496 505499 505 493 501 510 496 487 511 501 496(1)列出样本的频率分布表;(2)画出频率分布直方图、频率分布折线图;(3)估计重量在[494.5,506.5)g的频率以及重量不足500 g的频率.【思路探究】列频率分布表→画频率分布直方图→作频率分布折线图→利用分布表或直方图进行估计解(1)在样本数据中,最大值是518,最小值是483,它们相差35.若取组距为4 g,则由于354=834,要分9组,组数合适.于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下:[482.5,486.5),[486.5,490.5),…,[514.5,518.5]. 列表:分组 频数 频率 [482.5,486.5) 8 0.08 [486.5,490.5) 3 0.03 [490.5,494.5) 17 0.17 [494.5,498.5) 20 0.20 [498.5,502.5) 14 0.14 [502.5,506.5) 10 0.10 [506.5,510.5) 19 0.19 [510.5,514.5) 6 0.06 [514.5,518.5]3 0.03 合计1001.00(2)(3)重量在[494.5,506.5)g 的频率为 0.20+0.14+0.10=0.44. 设重量不足500 g 的频率为b , 由b -0.48500-498.5=0.62-0.48502.5-498.5,得b ≈0.53.因此重量不足500 g 的频率约为0.53. 规律方法1.在列频率分布表时,全距、组距、组数有如下关系: (1)若全距组距为整数,则全距组距=组数; (2)若全距组距不为整数,则全距组距的整数部分+1=组数. 2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况.若样本容量不超过100,按照数据的多少常分为5~12组.一般样本容量越大,所分组数越多.3.作频率分布直方图时,纵坐标表示频率与组距的比值,一定不能标成频率.变式训练下表给出了某校从500名12岁男孩中随机抽选出的120人的身高情况(单位:cm):身高范围[122,126)[126,130)[130,134)[134,138)[138,142) 人数58102233身高范围[142,146)[146,150)[150,154)[154,158]人数20116 5(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.解(1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158]50.04合计120 1.00(2)(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19.所以可以估计身高小于134 cm的人数占总人数的19%.类型3频率分布直方图的应用例3月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图2-2-1所示),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第3组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数最多?有多少件?(3)经过评比,第4组和第6组分别有10件,2件作品获奖,这两组哪组获奖率较高?图2-2-1【思路探究】 根据频率之和等于1,可求出第3小组的频数,进而求参评作品数,然后求出第四组和第六组的获奖率即可.解 (1)依题意得第3小组的频率为: 42+3+4+6+4+1=15,又第3小组频数为12, 故本次活动的参评作品数为1215=60(件). (2)根据频率分布直方图可看出第4组上交的作品数量最多,共有:60×62+3+4+6+4+1=18(件).(3)第4组获奖率是1018=59.第6组上交作品数量为: 60×12+3+4+6+4+1=3(件).第6组的获奖率为23>59,显然第6组的获奖率较高.规律方法频率分布直方图所表示的意义:(1)频率分布直方图中有多少小矩形,这组数据就分多少组.且每一个小矩形在横轴上的线段长即为组距.(2)在频率分布直方图中,每个小矩形的高和频数及频率均成正比,即矩形越高,频数越多、频率越大.(3)在频率分布直方图中,每个小矩形的面积等于相应各组的频率,而各组频率之和等于1,因此各小矩形的面积和也等于1.变式训练为了解某校初中毕业生中男生的体能状况,从该校初中毕业班学生中抽取若干名男生进行铅球测试,把所得数据(精确到0.1 m)进行整理后,分成6组画出频率分布直方图的一部分(如图2-2-2),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.图2-2-2(1)请将频率分布直方图补充完整;(2)该校参加这次铅球测试的男生有多少人?(3)若成绩在8.0米以上(含8.0米)的为合格,试求这次铅球测试的成绩的合格率.解(1)由频率分布直方图的意义可知,各小组频率之和为1,故第6小组的频率为:1-(0.04+0.10+0.14+0.28+0.30)=0.14,易知第6小组与第3小组的频率相等,故两个小长方形等高.(2)由(1)知,第6小组的频率是0.14.频数是7,现设参加这次测试的男生有x人,根据频率定义,得7x=0.14,即x=50.即该校参加这次铅球测试的男生有50人.(3)由图可知,第4、5、6小组成绩在8.0米以上,其频率之和为:0.28+0.30+0.14=0.72,故合格率为72%.易错易误辨析忽视频率分布直方图中的纵坐标而致误典例有一容量为500的样本,把数据分成7组,它的频率分布直方图如图2-2-3所示,根据其频率分布直方图估计数据落在[15.5,24.5)内的数量.图2-2-3【错解】 由频率分布直方图可知,数据落在[15.5,18.5)内的频率为0.054,落在[18.5,21.5)内的频率为0.06,落在[21.5,24.5)内的频率为0.075,所以数据落在[15.5,24.5)内的数量有500×(0.054+0.06+0.075)=94.5≈95,所以估计数据落在[15.5,24.5)内的有95个.【错因分析】 没有看懂纵坐标所表示的意义,错把纵坐标表示的数据作为频率了,其实它表示的是频率组距.若要计算频率,则要知道组距.从横坐标中明显可看出组距为3.【防范措施】 1.明确图表的意义,尤其是横、纵坐标的意义. 2.挖掘图表中的隐藏信息弄清所求问题.3.选用适当的关系式沟通已知和未知之间的关系,计算出所求问题.【正解】 由频率分布直方图可知,其组距为3,所以数据落在[15.5,18.5)内的频率为0.054×3,落在[18.5,21.5)内的频率为0.06×3,落在[21.5.24.5)内的频率为0.075×3.所以数据落在[15.5,24.5)内的数量有500×(0.054×3+0.06×3+0.075×3)=283.5≈284.所以估计数据落在[15.5,24.5)内的有284个.课堂小结1.几种表示样本分布方法的比较: 方法 优点缺点频率分 布表在数量表示上比较确切不够直观形象,损失了样本的一些信息,分析数据分布的总体趋势变化不太方便频率分布 直方图能够很容易地表示大量数据,非常直观地表示数据分布的形状,使我们看到在频率分布表中看不清楚的数据模式从直方图本身不能得出原始的数据内容,把数据表示成直方图后,原有的数据信息被抹掉了频率分布 折线图能反映数据的变化趋势原有的具体数据信息被抹掉了(1)频率组距×组距=频率,即小长方形的高乘以宽即为落在相应区间数据的频率.(2)频数样本容量=频率,样本容量×频率=频数.当堂检测1.从某校高一年级书法能力测试中抽取100人的成绩统计如下表,则分数为3分的人数的频率为________.分数5432 1人数2010303010【解析】分数为∴频率为30100=0.3.【答案】0.32.一个容量为600的样本,若某组的频率为0.3,则该组的频数为________.【解析】600×0.3=180.【答案】1803.一个容量为20的数据样本,分组和频数为:[10,20)2个、[20,30)3个、[30、40)4个、[40,50)5个、[50、60)4个、[60、70]2个,则样本数据在区间[20,40)上的频率为________.【解析】3+42+3+4+5+4+2=0.35.【答案】0.354.某市100位居民的月均用水量(单位:t)的频率分布直方图如图2-2-4,请作出对应的频率分布折线图,并说明该市居民用水量的大致情况.图2-2-4解连结频率分布直方图中各个相邻的矩形的上底边的中点,即得频率分布折线图.高中数学打印版由图可知,该市100位居民的用水量呈一定的对称性,且是“单峰”的.这说明,大部分居民的月均用水量集中在一个中间值附近,只有少数居民的月均用水量很多或很少.由此推测这一城市全体居民月均用水量的情况也大致如此.校对完成版本。
2.2.1 频率分布表2.2.2 频率分布直方图与折线图[学习目标] 1.理解用样本的频率分布估计总体分布的方法.2.会列频率分布表,画频率分布直方图、频率分布折线图.3.能够利用图形解决实际问题.知识点一 频率分布表与频率分布直方图 1.频率分布表当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布,我们把反映总体频率分布的表格称为频率分布表. 2.频率分布直方图把横轴分成若干段,每一段对应一个组的组距,然后以此线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组的频率.这些矩形就构成了频率分布直方图.[思考] 为什么要对样本数据进行分组?答 不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征.知识点二 频率分布折线图与总体密度曲线 1.频率分布折线图如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连结起来,就得到频率分布折线图,简称频率折线图.如图所示.2.总体分布的密度曲线如果将样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑曲线,我们称这条光滑曲线为总体分布的密度曲线.如图所示.题型一频率分布直方图的绘制例1为了了解一大片经济林的生长情况,人们随机测量其中的100株树木的底部周长(单位:cm),得到如下数据:135981021109912111096100103 125 97 117 113 110 92 102 109 104 112 105 124 87 131 97 102 123 104 104 128 109 123 111 103 105 92 114 108 104 102 129 126 97 100 115 111 106 117 104 109 111 89 110 121 80 120 121 104 108 118 129 99 90 99 121 123 107 111 91 10099 101 116 97 102 108 101 95 107 101 102 108 117 99 118 106 119 97 126 108 123 119 98 121 101 113 102 103 104 108(1)列出频率分布表;(2)绘制频率分布直方图、频率分布折线图.解(1)从数据中可以看出,这组数据的最大值为135,最小值为80,故极差为55,可将其分为11组,组距为5.列频率分布表如下:(2)画频率分布直方图、频率分布折线图如图所示.反思与感悟 1.在列频率分布表时,极差、组距、组数有如下关系:(1)若极差组距为整数,则极差组距=组数.(2)若极差组距不为整数,则极差组距的整数部分+1=组数.2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规律能较清楚地呈现出来,组数太多或太少都会影响了解数据的分布情况,一般样本容量越大,所分组数越多.跟踪训练1 美国历届总统中,就任时年纪最小的是罗斯福,他于1901年就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,5 1,60,62,43,55,56,61,52,69,64,46,54,48(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图;(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.解(1)以4为组距,列表如下:(2)从频率分布表中可以看出60%左右的美国总统就任时的年龄在50岁至60岁之间,45岁以下以及65岁以上就任的总统所占的比例相对较小.题型二频率分布直方图的应用例2为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率约是多少?解 (1)频率分布直方图是以面积的形式来反映数据落在各小组内的频率大小的, 因此第二小组的频率为42+4+17+15+9+3=0.08.因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校全体高一年级学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.反思与感悟 1.频率分布直方图的性质: (1)因为小矩形的面积=组距×频率组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小. (2)在频率分布直方图中,各小矩形的面积之和等于1. (3)频数相应的频率=样本容量. 2.频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.跟踪训练2 如图所示是总体的一个样本频率分布直方图,且在[15,18)内频数为8. (1)求样本在[15,18)内的频率; (2)求样本容量;(3)若在[12,15)内的小矩形面积为0.06,求在[18,33)内的频数.解 由样本频率分布直方图可知组距为3.(1)由样本频率分布直方图得样本在[15,18)内的频率等于475×3=425.(2)∵样本在[15,18)内频数为8,由(1)可知,样本容量为8425=8×254=50.(3)∵在[12,15)内的小矩形面积为0.06,故样本在[12,15)内的频率为0.06,故样本在[15,33)内的频数为50×(1-0.06)=47,又在[15,18)内频数为8,故在[18,33)内的频数为47-8=39.频率分布直方图的应用例3 为了解某地居民的月收入情况,一个社会调查机构调查了20 000 人,并根据所得数据画出样本的频率分布直方图如图所示(最后一组包含两端值,其他组包含最小值,不包含最大值).现按月收入分层,用分层抽样的方法在这20 000 人中抽出200 人进一步调查,则月收入在[1 500,2 000)(单位:元)的应抽取________人.分析 首先求出频率,再利用频数=样本容量×频率求解.解析 月收入在[1 500,2 000)的频率为1-(0.000 2+0.000 5×2+0.000 3+0.000 1)×500=0.2,故应抽取200×0.2=40(人). 答案 40解后反思 在频率分布直方图中,矩形的面积=频率组距×组距=频率,各矩形表示的频率之和为1.解题时常用到频数=样本容量×频率.1.下列关于样本频率分布折线图与总体密度曲线的关系的说法中,正确的是________. ①频率分布折线图与总体密度曲线无关; ②频率分布折线图就是总体密度曲线;③样本容量很大的频率分布折线图就是总体密度曲线;④如果样本容量无限增大,分组的组距无限减小,那么频率分布折线图就会无限接近于总体密度曲线. 答案 ④ 解析________. 答案 320解析 依题意得40n =0.125,∴n =400.125=320.3.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.答案 12解析 志愿者的总人数为20(0.24+0.16)×1=50,所以第三组人数为50×0.36×1=18,所以有疗效的人数为18-6=12.4.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是________.答案140解析设所求人数为N,则N=2.5×(0.16+0.08+0.04)×200=140.1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.。
第20课时频率分布直方图和折线图【学习导航】知识网络学习要求1.频率分布直方图的作法,频率分布直方图更加直观形象地反映出总体分布的情况;2.频率分布折线图的作法,优点是反映了数据的变化趋势,如果样本容量足够大,分组的组距足够小,则这条折线将趋于一条曲线,称为总体分布的密度曲线。
【课堂互动】自学评价案例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表(1)在EXCEL工作表中输入数据,光标停留在数据区中;(2)选择“插入/图表”,在弹出的对话框中点击“柱形图”;(3)点击“完成”,即可看到如下频数条形图.案例2 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,数据如下(单位:cm)。
试作出该样本的频率分布直方图和折线图. 【解】上一课时中,已经制作好频率分布表,在此基础上, 我们绘制频率分布直方图. (1)作直角坐标系,以横轴表示身高,纵轴表示组距频率; (2)在横轴上标上150.5,153.5,156.5,…,180.5表示的点。
(为方便起见,起始点150.5可适当前移);(3)在上面标出的各点中,分别以连结相邻两点的线段为底作矩形,高等于该组的组距频率至此,就得到了这组数据的频率分布直方图,如下图150.5 153.5 156.5 159.5 162.5 165.5 168.5 171.5 174.5 177.5 180.8同样可以得到这组数据的折线图.频率150.5 153.5 156.5 159.5 162.5 165.5 168.5 171.5 174.5 177.5 180.8【小结】1.利用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图(frequency histogram),简称频率直方图。
2. 频率直方图比频率分布表更直观、形象地反映了样本的分布规律。
3.如果将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图(frequency polygon)4.频率分布折线图的的首、尾两端如何处理: 取值区间两端点须分别向外延伸半个组距,并取此组距上的x轴上的点与折线的首、尾分别相连5.如果将样本容量取得足够大,分组的组距取得足够小,则这条折线趋于一条曲线,这一曲线称为总体分布的密度曲线。
2019-2020年高中数学 6.2.1《频率分布表》教案 苏教版必修3学习要求1.感受如何用样本频率分布表去估计总体分布;2.自己亲自体验制作频率分布表的过程,注意分组合理并确定恰当的组距;【课堂互动】自学评价案例1 为了了解7月25日至8月24日北京地区的气温分布状况,我们对往年份这段时间的日最高气温进行抽样,并对得到的数据进行分析.我们随机抽取近年来北京地区7月25日至【分析】要比较两时间段的高温状况,最直接的方法就是分别统计这两时间段中高温天数.如果天数差距明显,则结论显然,若天数差距不明显,可结合其它因素再综合考虑.上面两样本8月8日至8月24日.上例说明,当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.案例2 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,数据如下(单位:cm)。
试作出该样本的样本的频率分布表。
【分析】该组数据中最小值为151,最大值为180,它们相差29,可取区间[150.5,180.5],并将此区间分成10个小区间,每个小区间长度为3,再统计出每个区间内的频数并计算相应的频率,我们将整个取值区间的长度称为全距,分成的区间的长度称为组距。
【解】(1)在全部数据中找出最大值180和最小值151,则两者之差为29,确定全距为30,决定以组距3将区间[150.5,180.5]分成10个组;【小结】编制频率分布表的步骤如下:(1)求全距,决定组数和组距,组距=全距/组数;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表.在分组时,为了容易看出规律,一般分组使每组的长度相等,组数不宜太多也不宜太少.一般地,称区间的左端点为为下组限,右端点为上组限。
我们可以采用下组限在内而上组限不在内的分组方法,也可采用下组限不在内而上组限在内的分组方法。
2.2总体分布的估计2.2.1频率分布表整体设计教材分析“频率分布表”这一节主要通过探究“北京地区的气温分布状况问题”逐步引入频率分布表.用例题说明分布表的编制过程.在实际应用中,很多问题的解答需要总体分布的信息,而总体分布则需要用样本来估计,在“北京地区的气温分布状况问题”中,要解决的是怎样通过已知数据分析比较两时间段的高温状况.频率分布是总体分布的一种近似,频率分布表具有如下特性:(1)教科书中只给出了样本容量不超过100时,分组数k在5~12组之间的情形.(2)频率分布表中的数字与分组数(组距)有关.(3)通过样本的改变让学生体会频率分布表的随机性.(4)由于随着样本容量的增加,频率分布表中的各个频率会稳定在总体相应分组的概率之上,要让学生体会频率分布表的这种随样本容量增加的规律性.(5)由于频率分布表编制的工作量一般很大,课本介绍了利用Excel制作频率分布表的方法和步骤.三维目标1.通过实例体会分布的意义和作用;学会列频率分布表;体会频率分布表的特点.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的概率分布估计总体分布.3.能根据实际问题的需求合理地选取样本,并作出合理的解释,会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.4.在教学过程中,通过学生的相互交流,来加深对频率分布表概念的理解,增强学生数学交流能力,培养学生倾听、接受别人意见的优良品质.5.通过引导学生欣赏蕴含在我们生活中与频率分布表有关的实际问题,使学生感受数学、走进数学.重点难点教学重点:用样本频率分布估计总体分布.教学难点:1.对总体分布概念的理解;2.频率分布表的编制.课时安排1课时教学过程导入新课设计思路一:(实例导入)教师出示投影胶片1:为了了解7月25日至8月24日北京地区的气温分布状况,我们对以往年份这段时间的日最高气温进行抽样,并对得到的数据进行分析.我们随机抽取近年来北京地区7月25日至8月24日的日最高气温,得到如下样本(单位:℃):7月25日至8月10日41.937.535.735.437.238.134.733.733.3 32.534.633.030.831.028.631.528.88月828.631.528.833.232.530.330.229.833.132.829.425.624.730.030.129.530.3日至8月24日怎样通过上表中的数据,分析比较两时间段的高温(≥33 ℃)状况呢?上面两样本中的高温天数的频率用下表表示:时间总天数高温天数(频数)频率7月25日至8月10日17110.6478月8日至8月24日1720.118由此表可以发现,近年来,北京地区7月25日至8月10日的高温天气的频率明显高于8月8日至8月24日.上例说明,当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.引入课题,板书课题——用样本频率分布估计总体分布.设计思路二:(情境导入)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某城市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准为a,用水量不超过a的部分按平价收费,超出部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出标准,需要做哪些工作?分析:如果标准太高,会影响居民的日常生活;如果标准太低,则不利于节水.为了确定一个较为合理的标准a,必须了解全市居民的日常用水量的分布情况.比如月均用水量在哪个范围内的居民最多,他们占全市居民的百分比情况等.由于城市的居民较多,不可能也没有必要一一调查,那如何处理呢?可以采用随机抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.假设通过抽样我们获得了100位居民某年的月均用水量(单位:吨).推进新课新知探究(给出投影胶片2:100位居民的月均用水量)100位居民的月均用水量(单位:吨).分析:上面这些数字能告诉我们什么呢?可以看出居民月均用水量的最小值为0.2,最大值为4.3,其他在0.2到4.3之间.除此以外,很难发现这100位居民的用水量的其他信息了.实际上,我们很难从随意记录下来的数据中直接看出规律.为此,我们需要对统计数据进行整理和分析.分析研究:分析数据的一种基本方法是用紧凑的表格改变数据的排列方式.或者用图形将它们画出来.表格可以改变数据的构成形式,为我们提供了解释数据的新方式.作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.这就是我们初中学过的频数分布图和频数分布表,在此基础上我们从各个小组数据在样本容量中所占比例大小的角度进一步研究频率分布表.1.首先求极差,如何求?是多少?求极差即一组数据中的最大值与最小值的差.4.3-0.2=4.1,说明样本数据的变化范围是4.1.2.如何选定适当的组距与组数?组数是越多越好吗?通常是就样本的量而定,抽取样本的量也要视实际问题的需要来确定,并非越多越好.本例样本量是100,组数为8~12组比较适当,组距力求取整.在此问题中,如果取组距为0.5,那么有:组数=2.85.01.4==组距极差 因此可以将数据分为9组.3.选定组距与组数后为进一步分析数据还需要确定分点,将数据分组.进行数据分组后可以详细地记录每组数据在所抽取的样本中占的频数及频率.组数少了,频数及频率就有可能相应的变大,因此,样本的频率分布表可随组数的变化而改变.第N 组的频率=样本容量组频数第N 上例说明,当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表(frequency distribution table ).一般地,编制频率分布表的步骤如下:(1)求全距,决定组数和组距,组距=组数全距; (2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表.其中,整个取值区间的长度称为全距;分成的区间的长度称为组距.频率分布表的优点是:能直接反映数据在各范围内的频率和频数;其缺点是:不能直观地反映数据的频率分布.应用示例例1 从规定尺寸为25.40 mm 的一堆产品中任意抽取100件,测得它们的实际尺寸如下:制作频率分布表.分析: 根据编制频率分布表的步骤完成.解:如果把这对产品的尺寸的全体看作一个总体,则上面数据就是从总体抽取的一个容量为100的样本.在这组数据中,最小值为25.24,最大值为25.56,他们相差0.32,可取区间[25.235,25.565].我们可将此区间分成11个区间,每个区间的长度为0.03,计出每个区间内的频数,并计算相应的频率,将结果填入下表:分组 频数累计 频数 频率[25.235,25.265) 1 1 0.01[25.265,25.295) 3 2 0.01[25.295,25.325) 8 5 0.05[25.325,25.355) 20 12 0.12[25.355,25.385) 38 18 0.18[25.385,25.415)63250.25[25.415,25.445)79160.16[25.445,25.475)92130.13[25.475,25.505)9640.04[25.505,25.535)9820.02[25.535,25.565]10020.02合计100 1.00点评:这张表给出了产品尺寸处于各个区间内的个数和频率,由此可估计这一堆产品的尺寸分布情况,这就是该样本的频率分布表.在表中频数是指落在各小组内的数据的个数.频率是各组的频数与数据总数的比值.由上面的制表过程可得编制频率分布表的步骤如下:(1)计算数据中最大值与最小值的差,算出了这个差就可以知道这组数据的变动范围有多大.(2)决定组数与组距.将这一组数据分组,目的是要描述数据的分布规律,要根据数据的多少来确定分组的数目.一般来说,数据越多,分的组也越多.(3)决定分点.要使分点比数据多一位小数,并且把第一组的下限略去或把第一组的起点稍减小一点.(4)列频率分布表.登记频数,计算频率,列出频率分布表.频率分布表能反映数据在某一范围内出现的可能性.如果这一范围是由几组数据组成的,则其出现的可能性为这几组数据的频率之和.在编制频率分布表时,若题目已给出了组距和组数,可以直接列出频率分布表.例2 在编制频率分布表时,①组距不变时,不同的起始点不影响分组数;②组距不变,分组数不变时,不同起始点对应的频率分布表中的各组频率一定是不同的;③分组数越多,频率分布表就越准确地反映总体的情况.以上结论中正确的共有()A.0个B.1个C.2个D.3个分析:①错,不同的起始点可能会引起组数的增加;②错,有可能相同;③错,只能是更准确地反映样本的情况,而不是总体.答案:A点评:使学生更好地理解频率分布表的制作.例3 有一个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表;(2)估计数据小于30.5的可能性是百分之几?分析:此题已给出了组距和组数,可以直接列出频率分布表.解:(1) 样本的频率分布表如下:分组频数频率[12.5,15.5)60.06[15.5,18.5)160.16[18.5,21.5)180.18[21.5,24.5)220.22[24.5,27.5)200.20[27.5,30.5) 10 0.10[30.5,33.5] 8 0.08合计 1001.00 (2)数据大于等于30.5的频率是0.08,所以小于30.5的频率是0.92,所以数据小于30.5的可能性是92%.点评:解决总体分布估计问题的一般精简程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=组数频数). 例4 根据中国银行的外汇牌价,2005年1季度的60个工作日中,欧元的现汇买入价(100欧元的外汇可兑换的人民币)的分组与各组频数如下:[1 050,1 060),1;[1 060,1 070),7;[1 070,1 080),20;[1 080,1 090),11;[1 090,1 100),13;[1 100,1 110),6;[1 110,1 120],2.(1)列出欧元的现汇买入价的频率分布表;(2)估计欧元的现汇买入价在区间1 065~1 105内的频率;(3)如果欧元的现汇买入价不超过x 的频率的估计为0.95,求此x.分析:第1问学生已无障碍,下面两问要结合对频率分布表中分布意义的理解.解:(1)欧元的现汇买入价的频率分布表为分组 频数 频率[1 050,1 060) 1 0.017[1 060,1 070) 7 0.117[1 070,1 080) 20 0.333[1 080,1 090) 11 0.183[1 090,1 100) 13 0.217[1 100,1 110) 6 0.100[1 110,1 120] 2 0.033合计 601.00 (2)欧元的现汇买入价在区间1 065~1 105内的频率的估计值为 0.117×1060107010651070--+0.333+0.183+0.217+0.100×1100111011001105--=0.84. (3)因为0.017+0.117+0.333+0.183+0.217=0.867<0.95,0.017+0.117+0.333+0.183+0.217+0.100=0.967>0.95,所以x 在区间[1 100,1 110)内,且满足0.867+0.100×110011101100--x =0.95,所以x≈1 108.3.即欧元的现汇买入价不超过1 108.3的频率的估计为0.95.点评:通过对生活实例的分析,使学生更好地体会分布的意义和作用.频率分布表能反映数据在某一范围内出现的可能性.如果这一范围是由几组数据组成的,则其出现的可能性为这几组数据的频率之和.知能训练对某电子元件进行寿命追踪调查,情况如下:寿命(h ) 100~200 200~300 300~400 400~500 500~600 个数 20 30 80 40 30(1)列出频率分布表;(2)估计电子元件寿命在100 h ~400 h 以内的概率;(3)估计电子元件寿命在400 h以上的概率.解:(1)频率分布表:寿命频数频率100~200200.1200~300300.15300~400800.40400~500400.20500~600300.15合计2001(2)频率分布表可以算出,寿命在100 h~400 h的电子元件出现的频率为0.65,所以我们估计电子元件寿命在100 h~400 h的概率为0.65.(3)由频率分布表可知,寿命在400 h以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h以上的概率为0.35 .点评:结合例题配套练习,让学生熟练掌握解题过程.课堂小结总体分布情况可以通过样本来估计,频率分布是总体分布的一种近似.频率分布表编制步骤:①求极差;②决定组距与组数;③将数据分组;④列频率分布表.频率分布表具有如下特性:①分组的变化可以引起频率分布表的结构的变化.②随机性:频率分布表是由样本决定的,因此它们会随样本的改变而改变,而样本是随机抽取的.③规律性:由于频率趋近于概率的原则,若固定分组,随着样本容量的增加,频率分布表中的各个频率会稳定在总体相应分组的概率之上.作业1.课本习题2.2 1.2.现实生活中,很多问题的解决需要总体分布的信息,而总体分布需要用样本来估计.如身高、体重、考试成绩、农作物产量、某种特定新产品的各种质量指标、股票价格等.请自己查阅资料做进一步的调查了解,作出分析判断,提出建议.要注意抽样的合理性与可操作性.设计感想研究分布规律的方法应在解决实际问题的过程中探索出来,所以制作频率分布表的过程或步骤应该是在结合实例的基础上,一边实践一边总结,因此一开始例题的解决过程应是探索过程.。
7.4 频数分布表和频数分布直方图学习目标:1.了解频数分布的意义,会绘制频数分布表和频数分布直方图;2.通过经历调查、统计、研讨等活动,开展学生实践能力与合作意识;3.通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.重点、难点:了解频数分布的意义,会得出一组数据的频数分布表和频数分布直方图.决定组距与组数,数据分布规律。
一.【预学指导】七年级学生的身高在什么范围内?整体情况如何?首先,抽样测量某中学七年级40名同学的身高,结果如下(单位:cm):144 148 159 156 157 163 156 164 156 159169 163 156 162 163 164 155 162 153 155160 165 160 161 166 159 161 157 155 167162 165 159 147 162 172 156 165 157 161问:①上述共有______个数据;②这些数据中最小值是________,最大值是_______,它们相差________;③研究这些数据,大局部数据大概在怎样的范围?怎么分析?二.【问题探究】问题1:某中学为了了解八年级学生身高的范围和整体分布情况,抽样调查了八年级50名同学的身高,结果如下〔单位:cm〕:150 148 159 156 157 163 156 164 156 159 169 163 170 162 163 164 155 162 153 155 160 165 160 161 166 159 161 157 155 167 162 165 159 147 163 172 156 165 157 164 152 156 153 164 165 162 167 151 161 162怎样描述、分析这50名学生身高的分布情况?1. 组距:每组两个端点之间的距离;注意:为了使每个数据都落在相应的组内,可取比数据多一位小数来分组,并把第1组的起点略微减小一点,把上述数据“划记〞到相应的组中,得到相应数据出现的频数.2. 频数分布图(左以下图);频数分布直方图(右以下图).3.频数折线图.将每个小长方形上面一条边的中点顺次用折线连接起来的频数分布直方图.问题2:问题讨论.1、用频数分布表整理数据的步骤如何?2、绘制频数分布表时,如何分组?3、根据上面的频数分布表、频数分布直方图,你能获得哪些信息?对该校八年级学生身高的整体分布情况能做出怎样的估计?4、条形统计图、频数分布直方图,从不同的角度直观、形象地描述、分析数据.请比拟它们各自的特点.三.【拓展提升】1.根据某班40名同学的体重频数分布直方图,答复以下问题:〔1〕体重在哪个范围内的人数最多?〔2〕体重超过的同学占全班同学的百分之几?2.100个数据的分组及各组的频数如下:59.5~61.5 2 61.5~63.5 563.5~65.5 9 65.5~67.5 1567.5~69.5 21 69.5~71.5 1971.5~73.5 13 73.5~75.5 975.5~77.5 5 77.5~79.5 22试画出这组数据的频数分布直方图.四.【课堂小结】1.频数分布表和频数分布直方图的作用是什么?2.频数分布直方图的特点是什么?五.【反应练习】1.一组数据有80个,其中最大值为140,最小值为40,取组距为10,那么可以分成( )A.10组 B.9组 C.8组 D.7组2.在对n个数据整理时,把这些数据分成7组,那么各组的频数之和、频率之和为( )A.n和1 B.n和n C.1和n D.1和13. 某校九年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的频率分布表中,各小组频数之和等于_______;假设某一小组的频数为4,那么该小组的频率为_______;假设~这一小组的频率为,那么可估计该校九年级学生视力~范围内的人数约为________.4.某校八年级学生进行体育测试,八年级(2)班男生的立定跳远成绩绘制成如图l2—23所示的频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答以下问题.(1)该班有多少名男生?(2)假设立定跳远的成绩在米以上(包括米)为合格,那么该班的这项测试合格率是多少?9.1 单项式乘单项式力.教学重点:理解单项式相乘的法那么,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法那么解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?〔1〕体积的表示方法;〔2〕面对你的侧面积的表示方法.探索新知让学生在交流的根底上思考以下问题:〔1〕体积的表示方法:①3a·2a·a=________________=6a3,②3a·2a·b=________________=6a2b.侧面积的表示方法:3a·2a=________________=6a2.〔2〕从不同的表示中你发现了什么?〔3〕通过下面两个计算我们来进一步的探讨:〔2a2b〕〔3ab2〕=[2 ×3]•〔a2•a〕〔b•b2〕=6a3b3系数相乘相同字母相同字母〔4ab2〕〔5b〕=[4×5]•〔b2•b〕•a=20ab3系数相乘相同字母只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢?通过探索得到单项式乘单项式的计算法那么:〔1〕将它们的系数相乘;〔2〕相同字母的幂相乘;〔3〕只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ). 注:教师强调格式标准,板书过程.〔通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.〕练习1:判断正误:〔1〕3x 3·(-2x 2)=5x 3; 〔2〕3a 2·4a 2=12a 2; 〔3〕3b 3·8b 3=24b 9; 〔4〕-3x ·2xy =6x 2y ; 〔5〕3ab +3ab =9a 2b 2.练习2:课本练一练 第1、2题.例 2 计算:〔1〕(2x )3·(-3xy 2); 〔2〕(-2a 2b )·(-a 2)·14bc . 注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算.练习3:计算:〔1〕(a 2)2·(-2ab ) ;〔2〕-8a 2b ·(-a 3b 2) ·14b 2 ; 〔3〕(-5a n +1b ) ·(-2a )2;〔4〕[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】补充习题和同步练习。
第19课时 频率分布表
【学习导航】 学习要求
1.感受如何用样本频率分布表去估计总体
分布;
2.自己亲自体验制作频率分布表的过程,
注意分组合理并确定恰当的组距; 【课堂互动】
自学评价
案例1 为了了解7月25日至8月24日北京地区的气温分布状况,我们对往年份这段时间的日最高气温进行抽样,并对得到的数据进行分析.我们随机抽取近年来北京地区7月25日至8月24日的日最高气温,得到
间段的高温(≥33℃)状况呢? 【分析】
要比较两时间段的高温状况,最直接的方法就是分别统计这两时间段中高温天数.若天数差距明显,则结论显然,若天数差距不明显,可结合其他因素再综合考
虑.上面两样本中的高温天数的频率用下表
月25日至8月10日的高温天气的频率明显
高于8月8日至8月24日. 上例说明,当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.
案例2 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,数据如下(单位:cm)。
试作出该样本的样本的频率分布表。
【分析】该组数据中最小值为151,最大值为180,它们相差29,可取区间[150.5,180.5],并将此区间分成10个小区间,每个小区间长度为3,再统计出每个区间内的频数并计算相应的频率,我们将整个取值区间的长度称为全距,分成的区间的长度称为组距。
【解】(完成空格和表格)
(1)在全部数据中找出最大值 和最小值 ,则两者之差为 ,确定全距为30,决定以组距3将区间[150.5,180.5]分成 个组;
(2)从第一组[)5.153,5.150开始,分别统计各组中的频数,再计算各组的频率,并将结果 【小结】编制频率分布表的步骤如下: (1)求全距,决定组数和组距,组距=全距/组
数;
2)如果将这100个数据分为11组,则如何
分组?组距为多少?
3)画出以上数据的频率分布表。
4)如果规定尺寸在[)475.25,325.25之间的零件为合格产品抽样检查,合格品率大于
85%,这批零件才能通过检验,则这批产品
能通过检验吗? 【解】(完成空格和表格)
1)该组数据中最小值为 ,最大值为 ,它们相差 ,故可取区间[25.235,25.565],并将此区间等分成11个区间,这100个零件尺寸的全距为 25.235 - 25.565=0.33
2)组距为 。
位:
3.一本书中,分组统计100个句子中的字数,得出下列结果:字数1~5个的15句,字数6~10个的27句,字数11~15个的32句,字数16~20个的15字,字数21~25个的8句,字数26~30个的3句,请作出字数的频率分布表,并利用组中值对该书中平均每个句子包含的字数作出估计。
字数为:
4.李老师为了分析一次数学考试情况,全校抽了50人,将分数分成5组,第一组到第三组的频数10,23,11,第四组的频率为0.08,那么落在第五组(89.5~99.5分)的频数是多少?频率是多少?全校300人中分数在89.5~99.5中的约有多少人?
解:。