第十二章 简单回归分析
- 格式:ppt
- 大小:783.00 KB
- 文档页数:44
分层回归其实是对两个或多个回归模型进行比较。
我们可以根据两个模型所解释的变异量的差异来比较所建立的两个模型。
一个模型解释了越多的变异,则它对数据的拟合就越好。
假如在其他条件相等的情况下,一个模型比另一个模型解释了更多的变异,则这个模型是一个更好的模型。
两个模型所解释的变异量之间的差异可以用统计显著性来估计和检验。
模型比较可以用来评估个体预测变量。
检验一个预测变量是否显著的方法是比较两个模型,其中第一个模型不包括这个预测变量,而第二个模型包括该变量。
假如该预测变量解释了显著的额外变异,那第二个模型就显著地解释了比第一个模型更多的变异。
这种观点简单而有力。
但是,要理解这种分析,你必须理解该预测变量所解释的独特变异和总体变异之间的差异。
一个预测变量所解释的总体变异是该预测变量和结果变量之间相关的平方。
它包括该预测变量和结果变量之间的所有关系。
预测变量的独特变异是指在控制了其他变量以后,预测变量对结果变量的影响。
这样,预测变量的独特变异依赖于其他预测变量。
在标准多重回归分析中,可以对独特变异进行检验,每个预测变量的回归系数大小依赖于模型中的其他预测变量。
在标准多重回归分析中,回归系数用来检验每个预测变量所解释的独特变异。
这个独特变异就是偏相关的平方(Squared semi-partial correlation)-sr2(偏确定系数)。
它表示了结果变量中由特定预测变量所单独解释的变异。
正如我们看到的,它依赖于模型中的其他变量。
假如预测变量之间存在重叠,那么它们共有的变异就会削弱独特变异。
预测变量的独特效应指的是去除重叠效应后该预测变量与结果变量的相关。
这样,某个预测变量的特定效应就依赖于模型中的其他预测变量。
标准多重回归的局限性在于不能将重叠(共同)变异归因于模型中的任何一个预测变量。
这就意味着模型中所有预测变量的偏决定系数之和要小于整个模型的决定系数(R2)。
总决定系数包括偏决定系数之和与共同变异。
第十二章简单回归分析习题一、是非题1.直线回归反映两变量间的依存关系,而直线相关反映两变量间的相互线性伴随变化关系.2.对同一组资料,如相关分析算出的r越大,则回归分析算出的b值也越大. 3.对同一组资料,对r与b分别作假设检验,可得t r=t b4.利用直线回归估计X值所对应的Y值的均数置信区间时,增大残差标准差可以减小区间长度.5.如果直线相关系数r=0,则直线回归的SS残差必等于0.二、选择题1. 用最小二乘法确定直线回归方程的原则是各观察点距直线的( ).A.纵向距离之和最小 B. 纵向距离的平方和最小C. 垂直距离之和最小D.垂直距离的平方和最小E.纵向距离的平方和最大2.Y=14十4X是1~7岁儿童以年龄(岁)估计体质量(市斤)的回归方程,若体质量换成位kg,则此方程( )A 截距改变B 回归系数改变C 两者都改变D 两者都不改变E.相关系数改变4.直线回归系数假设检验,其自由度为( )A.n B. n-1C.n-2 D. 2n-1E.2(n-1)5.当r=0时,Y=a+b X回归方程中( )A a必大于零B a必大于XC a必等于零D a必大于YE a必等于b6.在多元线性回归分析中,反应变量总离均差平方和可以分解为两部分,残差是指( ).A.观察值与估计值之差B.观察值与平均值之差C.估计值与平均值的平方和之差D.观察值与平均值之差的平方和E.观察值与估计值之差的平方和三、筒答题1.用什么方法考察回归直线是否正确?2.简述回归系数方差分析Y的平方和与自由度的分解.3. 举例说明如何用直线回归方程进行预测和控制?4. 直线回归分析时怎样确定自变量和因变量?5. 简述曲线回归常用的几种曲线形式.。