初中八年级数学 13.4最短路径问题 学案
- 格式:doc
- 大小:465.98 KB
- 文档页数:5
13.4 课题学习最短路径问题(第一课时)一、内容和内容解析1.内容利用轴对称研究某些最短路径问题。
2.内容解析最短路径问题是人教版八年级上册第十三章第四节内容,本节课以一个实际问题为载体开展对“最短路径问题”的课题研究,让学生将实际问题抽象为数学中线段之和最小问题,并建立数学模型,学会用数学的眼光观察现实世界.初步了解利用图形变换——轴对称的方法来解决最值问题,体会用数学的思维思考现实世界。
从内容上来看,在本章节之前学生已经学习了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,以及简单的轴对称知识,这为过渡到本节的学习起着铺垫作用。
本节课既轴对称知识运用的延续,从初中数学的角度来看,也是中考数学的热点问题之一,本节课的教学内容是解决中考最值综合问题的基础,具有承上启下作用。
本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。
二、目标和目标解析1.目标(1)能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。
(2)通过实际问题的提出,能够抽象为数学问题,并建立数学模型,利用所掌握的数学知识完成严谨的推理过程,然后再解决实际问题。
体会数学在实际生活中的价值。
2.目标解析达成目标 1 的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线",把实际问题抽象为数学的线段和最小问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。
达成目标 2 的标志是:课题学习本身是考察综合能力,注重现实背景,学生能从生活中自己发现问题,并抽象成数学模型,掌握转化的探究方法,将不熟悉的模型转化成所学过简单的数学模型,通过合作探究,解决问题。
三、教学问题诊断分析已形成的:我校八年级学生已经学习轴对称相关的简单知识,掌握了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,思维活跃,敢于尝试,具备一定的动手操作能力和小组合作意识,同时也具备一定的数学抽象能力和数学建模能力。
13.4课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只需连结这两点,与直线的交点即为所求.以下图,点A,B 分别是直线l 异侧的两个点,在l 上找一个点C,使CA +CB最短,这时点 C 是直线 l 与 AB 的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只需找到此中一个点对于这条直线的对称点,连结对称点与另一个点,则与该直线的交点即为所求.CA +CB最短,以下图,点 A,B 分别是直线 l 同侧的两个点,在 l 上找一个点 C,使这时先作点 B 对于直线 l 的对称点 B′,则点 C 是直线 l 与 AB′的交点.为了证明点 C 的地点即为所求,我们不如在直线上此外任取一点C′,连结 AC′,BC′,B′ C′,证明 AC+CB <AC′+ C′ B.以下:证明:由作图可知,点 B 和 B′对于直线l 对称,因此直线 l 是线段 BB′的垂直均分线.由于点 C 与 C′在直线 l 上,因此 BC =B′ C, BC′= B′ C′.在△ AB′ C′中, AB′< AC′+ B′ C′,因此 AC +B′ C< AC′+ B′ C′,因此 AC +BC<AC ′+ C′ B.【例 1】在图中直线l 上找到一点M,使它到A,B 两点的距离和最小.剖析:先确立此中一个点对于直线l 的对称点,而后连结对称点和另一个点,与直线l 的交点 M 即为所求的点.解:以下图: (1)作点 B 对于直线 l 的对称点B′;(2)连结 AB′交直线 l 于点 M.(3)则点 M 即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转变到一条直线上,而后用“两点之间线段最短”解决问题 .2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转变为一条线段的长,是解决距离之和最小问题的基本思路,无论题目怎样变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个中心,全部作法都同样.警误区利用轴对称解决最值问题应注意题目要求依据轴对称的性质、利用三角形的三边关系,经过比较来说明最值问题是常用的一种方法.解决这种最值问题时,要仔细审题,不要只注企图形而忽视题意要求,审题不清致使答非所问.3.利用平移确立最短路径选址选址问题的重点是把各条线段转变到一条线段上.假如两点在一条直线的同侧时,过两点的直线与原直线的交点处组成线段的差最大,假如两点在一条直线的异侧时,过两点的直线与原直线的交点处组成的线段的和最小,都能够用三角形三边关系来推理说明,往常依据最大值或最小值的状况取此中一个点的对称点来解决.解决连结河两岸的两个点的最短路径问题时,能够经过平移河岸的方法使河的宽度变为零,转变为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们往常利用轴对称、平移等变换把不在一条直线上的两条线段转变到一条直线上,进而作出最短路径的方法来解决问题.【例 2】如图,小河畔有两个乡村A, B,要在河畔建一自来水厂向 A 村与 B 村供水.(1)若要使厂部到A,B 村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B 两村的水管最短,应建在什么地方?剖析: (1)到 A,B 两点距离相等,可联想到“ 线段垂直均分线上的点到线段两头点的距离相等”,又要在河畔,因此作AB 的垂直均分线,与EF 的交点即为切合条件的点.(2)要使厂部到 A 村、 B 村的距离之和最短,可联想到“ 两点之间线段最短”,作A(或B)点对于 EF 的对称点,连结对称点与 B 点,与 EF 的交点即为所求.解: (1)如图 1,取线段AB 的中点 G,过中点 G 画 AB 的垂线,交EF 于 P,则 P 到 A,1B 的距离相等.也可分别以A、 B 为圆心,以大于2AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点 P 即为所求.(2)如图 2,画出点 A 对于河岸 EF 的对称点 A′,连结 A′ B 交 EF 于 P ,则 P 到 A,B的距离和最短.【例 3】如图,从 A 地到 B 地经过一条小河( 河岸平行 ),今欲在河上建一座与两岸垂直的桥,应怎样选择桥的地点才能使从 A 地到 B 地的行程最短?思路导引:从 A 到B 要走的路线是A→ M→ N→B,以下图,而MN是定值,于是要使行程最短,只需AM+ BN 最短即可.此时两线段应在同一平行方向上,平移MN到AC,从 C 到 B 应是余下的行程,连结BC的线段即为最短的,此时不难说明点N 即为建桥地点,MN即为所建的桥.解: (1)如图2,过点 A 作AC 垂直于河岸,且使AC等于河宽.(2 )连结BC 与河岸的一边交于点N.(3)过点N 作河岸的垂线交另一条河岸于点M.则MN为所建的桥的地点.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转变在一条线段上,进而解决这个问题,运用轴对称性质,能将两条线段经过近似于镜面反射的方式转变成一条线段,如图,AO+ BO=AC 的长.因此作已知点对于某直线的对称点是解决这种问题的基本方法.【例 4】 ( 实质应用题 ) 茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图 a 所示两直排(图中的 AO,BO) ,AO 桌面上摆满了橘子,OB 桌面上摆满了糖果,站在 C 处的学生小明先拿橘子再拿糖果,而后到 D 处座位上,请你帮助他设计一条行走路线,使其所走的总行程最短?图 a图b解:如图b.(1)作 C 点对于 OA 的对称点 C1,作 D 点对于 OB 的对称点 D1,(2) 连结 C1D 1,分别交OA,OB 于 P,Q,那么小明沿C→P→ Q→ D 的路线行走,所走的总行程最短.5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的重点.先做出此中一点关于对称轴的对称点,而后连结对称点和另一个点,所得直线与对称轴的交点,即为所求.依据垂直均分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的重点距离的最值问题的有效方法.【例 5】以下图, A,B 两点在直线的距离之差最大.运用轴对称变换及三角形三边关系是解决一些l 的双侧,在l 上找一点C,使点 C 到点A、 B剖析:本题的打破点是作点A(或 B)对于直线 l 的对称点 A′ (或 B′ ),作直线 A′ B( AB′ )与直线 l 交于点 C,把问题转变为三角形随意两边之差小于第三边来解决.解:以下图,以直线l 为对称轴,作点 A 对于直线l 的对称点A′,A′ B 的连线交l于点 C,则点 C 即为所求.原因:在直线 l 上任找一点 C′ (异于点 C),连结 CA ,C′ A,C′ A′,C′ B.由于点 A, A′对于直线 l 对称,因此 l 为线段 AA′的垂直均分线,则有 CA= CA′,因此CA-CB= CA′ - CB= A′ B.又由于点 C′在 l 上,因此 C′ A=C′ A′ .在△A′ BC′中,C′A- C′ B=C′ A′ - C′ B<A′ B,因此 C′ A′ - C′B< CA-C B.点拨:依据轴对称的性质、利用三角形的三边关系,经过比较来说明最值问题是常用的一种方法.。
课题学习最短路径问题——轴对称在解决“最短路径问题”的应用一、新课导入1.导入课题:屏幕展示教材第85页问题1的文字和图标.2.学习目标:(1)能利用轴对称变换解决实际问题.(2)能利用作图解决生活中的轴对称问题.(作图建模)3.学习重、难点:重点:路径极值问题的转换方法.难点:路径极值问题的说理证明.二、分层学习1.自学指导:(1)自学内容:教材第85页的问题1.(2)自学时间:8分钟.(3)自学方法:经历“作图——探究——归纳——总结”过程,体验用轴对称的性质解决生活中的求最短距离问题的实质.(4)自学参考提纲:①轴对称具有什么性质?如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.②思考:问题1中的情境问题可以转化怎样的几何问题?试作出几何图形来表示.③马从A到河边再到B的路径是一个折线,求折线的最小值,可联想到两点之间的距离,所以可将三个点转化到同一直线上.④如图,AC如何转化使A、C、B在同一直线上呢?作B点关于l的对称点B′,连接AB′,交l于点C,则A、C、B′在同一直线上.⑤按“两点之间线段最短”,A通过怎样的变换确定的C点保证变换后的A′C=AC,且A′、C、B在同一直线上呢?作A点关于l的对称点A′,则A′C=AC,且A′、C、B在同一直线上.2.自学:认真阅读教材第85页内容,参照自学参考提纲试着找出解决问题的办法.3.助学:(1)师助生:①明了学情:最短路径问题是轴对称知识在生活中的运用,寻找解题思路是个难点.②差异指导:先引导学生回忆“两点之间,线段最短”的结论,完成②,然后在②的基础上寻找解决③的办法及依据.(2)生助生:学生之间相互交流帮助.4.强化:(1)指名学生说明这样作图的依据,重点让学生明白此类题的作图方法.(2)练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹).解:如图:P点即为该点.1.自学指导:(1)自学内容:教材第86页的问题2.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,边看文字,对照图形,边体会教材上作图的方法和依据.(4)自学参考提纲:①回忆问题1是用什么办法解决最短路线问题的?作对称点.②问题2中点A、点B在河的两侧,而河岸存在两条直线,这个问题怎么解决?通过图形变化,转化为求一条直线两侧的点的最短距离.③由于河宽一定,要求AM+MN+NB最小,实际上就是要求AM+NB最小?④如何在直线b上确定一点N,使A′N=AM?将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则A′N=AM.2.自学:学生结合自学参考提纲研学课文内容.3.助学:(1)师助生:①明了学情:问题2较问题1更复杂,本质上是一回事,注意了解学生的思维障碍.②差异指导:a.先引导学生回忆“两点之间,线段最短”的结论,然后引导学生思考如何将AM、NB转化到同一直线上.(2)生助生:学生之间相互交流帮助.4.强化:(1)指名学生说明这样作图的依据,重点让学生说明作图的思路、依据及方法.(2)完成教材第93页15题.解:过A作关于MN的对称点A′,过B作关于l的对称点B′,连接A′B′交MN于P,交l于Q点,连接AP、BQ.则A→P→Q→B就是所示的最短路径.(3)教材第87页“归纳”.三、评价1.学生的自我评价(围绕三维目标):学生相互交谈自己的学习收获有哪些?困惑在哪里?2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(每题20分,共60分)1.作图在直线l上找一点C,使AC+BC最小.解:2.要在燃气管道l上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?试作图确定泵站并加以说明.解:如图,P处即为泵站的位置.3.如图,已知牧马营地在P处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线.解:如图AP+AB即为最短的放牧路线.二、综合应用(20分)4.如图,M、N分别是△ABC的边AB、AC上的点,在边BC上求作一点P,使△PMN的周长最小.解:如图:作点M关于BC的对称点M′,连接M′N,交BC于点P,则△PMN的周长最小.三、拓展延伸(20分)5.如图,已知直线MN与MN异侧两点A、B,在MN上求作一点P,使PA-PB最大,请说明理由.解:如图,作B点关于MN的对称点B′,连接AB′并延长,交MN于点P,点P即为所求.理由:点A,B′,P在同一条直线上时,PA-PB′最大,即PA-PB最大.。
第十三章轴对称13.4 课题学习最短路径问题一、教学目标1.能利用轴对称、平移等变换解决简单的最短路径问题.2.体会图形的变化在解决最值问题中的作用,感受由实际问题转化为数学问题的思想.二、教学重难点重点:利用轴对称、平移等变换解决简单的最短路径问题.难点:体会图形的变化在解决最值问题中的作用.三、教学过程【新课导入】[复习导入]1.如图,连接A、B两点的所有连线中,哪条最短?你的依据是什么?(②最短,依据“两点之间,线段最短”)2.如图,P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?你的依据是什么?(PC 最短,依据“垂线段最短”)3.如图,直线l是线段AB的对称轴,C是直线l上任意一点,则AC和BC的大小关系是什么?你的依据是什么?(AC=BC.依据“线段垂直平分线上的点到线段两端点的距离相等”.)4.如图,如何做点A关于直线l的对称点?(作法:(1)过点A作直线l的垂线,垂足为O;(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点.可简记为:作垂线;取等长)教师带领学生复习与最短路径相关的知识,为本节课的学习做准备.【新知探究】知识点1牧人饮马问题[提出问题]引例如图,若点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?这里强调一下两点的位置:直线l异侧的两个点.[课件展示]教师利用多媒体展示如下动画过程:[提出问题]你找到的是哪个点?[学生回答]学生观察后,发现第3条线段很明显是最短的.依据是“两点之间,线段最短”.[提出问题]根据这个依据,你可以得到作法吗?[课件展示]教师利用多媒体展示如下作图过程:作法:连接AB,与直线l相交于一点C.点C即为所求作的点.[课件展示]教师利用多媒体展示如下问题1:问题1 如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?[提出问题]这是一个实际问题,那么我们怎样把它转化成数学问题呢?[小组讨论]学生分组讨论,教师引导学生可分别把A地、B地看成点,把笔直的河边看成直线,再用数学语言描述一下问题.学生讨论完毕,教师点名每组代表回答,教师纠错.[课件展示]教师利用多媒体展示如下转化过程:问题转化一:那么该实际问题就转化为这样的数学问题:如图,点A,B分别是直线l同侧的两个点,如何在l上找到一个点C,使得AC+CB的最小?这里注意强调点A,B的位置:是直线l同侧的两个点.[课件展示]教师利用多媒体展示如下动画:[提出问题]你找到的是哪个点?[学生回答]学生观察后,发现很难找到点的位置.[课件展示]教师利用多媒体展示如下两幅对比图:[提出问题]你能找出两幅图中,A,B两点的位置有什么不同吗?(同侧、异侧)[课件展示]教师利用多媒体展示如下动画:[提出问题]我们分析,如果我们能把点B“移”到l 的另一侧B′处,同时对于直线l 上的任一点C,都保持CB 与CB′的长度相等,就能把这个“同侧”的问题转化为“异侧”的问题. 那么怎么找到B′呢?(作出点B关于直线l的对称点B′,利用轴对称的性质,可以得到CB′=CB.)[课件展示]教师利用多媒体展示如下动画:此时,问题就转化为:当点C在l的什么位置时,AC+CB′最小.[学生回答]很明显,连接AB′,与l的交点即为点C.[课件展示]教师利用多媒体展示如下作图过程:作法:(1)作点B关于直线l的对称点B′;连接AB′,交直线l于点C.点C即为所求作的点.[提出问题]怎样证明点C的位置即为所求?在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.[学生思考]给学生思考时间,教师提示,蓝色的两条线段相等,绿色的两条线段相等,A、C、B在一条直线上.学生思考完毕,教师点名学生说出自己的答案,教师纠错.[课件展示]教师利用多媒体展示如下证明过程:证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.∴AC +BC=AC +B′C=AB′,∴AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC +BC<AC′+BC′.即AC +BC 最短.[归纳总结]利用”牧人饮马“模型解决最值问题的应符合的条件:(1)定直线l;(2)两定点A,B,且两定点在直线l的同侧;(3)所求作的动点C在直线l 上.解决”牧人饮马“问题的步骤:(1)找:由轴对称的性质,作其中一个定点(如B)关于直线l 的对称点(B′);(2)连:连接另外一个定点(A)与对称点(B′);(3)交:连线与直线l 的交点(C′)所在的位置即为所求作的点(C).[课件展示]教师利用多媒体展示如下例题:例1 如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,F是AD边上的动点,则BF+EF的最小值为( B )A.7.5 B.5 C.4 D.不能确定教师根据“牧人饮马”模型解决最值问题的应符合的条件,在图中依次找到定直线、两定点、一动点.【解析】∵△ABC为等边三角形,D是BC边的中点,∴点B与点C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长即为BF+EF的最小值.思考:作点E关于AD的对称点可以吗?为什么不选择这个方法?知识点2造桥选址问题[课件展示]教师利用多媒体展示如下问题1:问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直)[提出问题]这是一个实际问题,我们同样需要把它转化成数学问题来解决.经过了刚才我们对问题1的转化,你能将这个实际问题转化为数学问题吗?[小组讨论]学生分组讨论,教师引导学生可分别把A地、B地和造桥的起始两个位置看成点,把河岸看成直线,再用数学语言描述一下问题.学生讨论完毕,教师点名每组代表回答,教师纠错.[课件展示]教师利用多媒体展示如下转化过程:问题转化一:该实际问题就转化为这样的数学问题:N 为直线b 上一点,且NM ⊥直线a 于点M ,当点N 在直线b 的什么位置时,AM+MN+NB 最小.[课件展示]教师利用多媒体展示如下动画:[提出问题]你找到的是哪个点?[学生回答]学生观察后,发现很难找到点的位置.此时,教师引导学生发现,桥的长度是不变的,进而可得到:问题转化二:由于河岸的宽度MN 是固定的,这样问题就转化为:当点N 在直线b 的什么位置时,AM+NB 最小.[课件展示]教师利用多媒体展示如下两幅对比图:[提出问题]你能找出这两幅图有什么不同吗?(两条直线、一条直线)[课件展示]教师利用多媒体展示如下动画:[提出问题]我们分析,如果我们能把两条直线转化成一条直线,就能把这个问题转化成“引例”的问题了.[课件展示]教师利用多媒体展示如下动画:转化成了引例中的模型该折线即为最短路径[课件展示]教师利用多媒体展示如下作图过程:作法:(1)平移点A到点A′,使AA′等于河宽;(2)连接A′B,A′B与直线b的交点,即为所求作的点N;(3)过点N作NM⊥直线a于点M.点M和点N的位置即为造桥的位置.[提出问题]怎样证明造桥位置的正确性呢?在直线b上另外任取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB <AM′+M′N′+N′B.你能完成这个证明吗?[学生思考]给学生思考时间,教师提示,蓝色的两条线段相等,绿色的两条线段相等,黄色的两条线段相等,A′、N、B在一条直线上.学生思考完毕,将解题过程写在练习本上,教师巡视,帮助有困难的学生,之后教师点名学生说出自己的答案,并纠错.[归纳总结]解决”造桥选址“问题的步骤:(1)一移;(2)二连;(3)三交;(4)四垂直.在解决最短路径问题时,我们通常利用轴对称、平移等变化把未知问题转化为容易解决的问题,从而作出最短路径的选择.【课堂小结】【课堂训练】1.如图,点A,B是直线l同侧不重合的两点,在直线l上求作一点C,使得AC+BC的长度最短.作法:①作点B关于直线l的对称点B′;②连接AB′,与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有用到的知识或方法是( D )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角2.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是( D )3.(2021•天津二模)如图所示的平面直角坐标系中,点A的坐标为(4,2),点B的坐标为(1,-3),在y轴上有一点P,使PA+PB的值最小,则点P的坐标为( D )A. (2,0) B . (-2,0) C. (0,2) D. (0,-2)【解析】如图,作B点关于y轴的对称点B',连接AB',交y轴于一点,该点即为所求的点P.过点A作x轴的垂线,交B'B的延长线于点C,则∠C=90°,设BB'交y轴于点D,则OD=|-3|=3.∵点B坐标为(1,-3) ,∴B'(-1 ,-3 ) .∵易得B'C=1+4=5,AC=2=3=5 ,∴B'C=AC.∴∠B'=45°.∴PD=B'D=1.∴OP=2 ,∴P (0,-2 ).故选D.4.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是1000米.【解析】延长AC至点A′,使得A′C=AC,连接A′B交CD于点E,连接AE,则E即为所求的点.易得A′C=AC=BD,又AC⊥CD,BD⊥CD,∠A′EC=∠BED.∴△A′CE≌△BDE(AAS),则E是CD 的中点,∴AE=500,所以AE+BE=500+500=1000.5.(2021•江西模拟)如图,等腰三角形ABC的底边BC长为10,面积是40,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为 13 .【解析】如图,连接AD,AM.∵△ABC是等腰三角形,D是BC边的中点,BC=10,∴CD=5,AD⊥BC,∴S△ABC=BC•AD=×10×AD=40,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴MA=MC,∵MC+MD=MA+MD≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长的最小值=AD+CD=8+5=13.故答案为13.6.两棵树的位置如图所示,树的底部分别为点A,B,有一只昆虫沿着A至B的路径在地面爬行,小树的树顶D处有一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小虫在AB之间何处被小鸟抓住时,小鸟飞行路程最短,在图中画出该点的位置.方法一:解:如图,作点C关于AB的对称点C′,连接DC′交AB于点E,则点E即为所求.方法二:解:如图,作点D关于AB的对称点D′,连接CD′,同样交AB于点E的位置,则点E即为所求.7.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?解:(1)作AF⊥CD,且AF=河宽;(2)作BG⊥CE,且BG=河宽;(3)连接GF,与河岸相交于E ′,D ′;(4)作DD′,EE′即为桥.8.(1)如图①,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点.(2)如图②,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点.(3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点.【变式】(2021•吉安模拟)如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,BC>AB,DE >AE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为 120° .【解析】如图,作A点关于BC的对称点A',关于ED的对称点A'',连接A'A'',A'A''与BC的交点即为所求的点M,A'A''与ED的交点即为所求的点N,∵∠B=∠E=90°,∴A、B、A'共线,A、E、A''共线,∴∠A'=∠A'AM,∠A''=∠NAE,∴∠A'AM+∠NAE=∠A''+∠A'=180°﹣∠BAE=180°﹣120°=∠60°,∴∠AMN+∠ANM=180°﹣∠MAN=180°﹣(120°﹣∠A'AM﹣∠NAE)=120°,故答案为120°.【教学反思】本节课我通过引例(两点在直线的异侧),让学生认识到找最短路径的根本是通过"两点之间,线段最短”找出解决问题的途径,接下来通过"牧人饮马”让学生带着兴趣进入教学。
13.4课题学习最短路径问题(第一课时)学习目标 1.通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短的原理.2.通过利用轴对称变换把同侧点问题转化为异侧点问题,体会数学的转化思想.3..掌握探索最短路径问题的思想方法.学习重点:利用轴对称变换及平移变换解决实际问题.学习难点:确定最短距离及理论说明.知识回顾思考:(1)图①中从点A 走到点B 哪条路最短?(2)图②中点C 与直线AB 上所有的连线中哪条线最短?以上路径选择基于什么原理?类型一:两点之间,线段最短(直接应用)问题1:如图,小区A,B 分别位于公路l 两侧,现要在公路旁建一个液化气站C,要求到两个小区的距离之和最短,问应建在什么地方?类型二:两点之间,线段最短(轴对称转化)问题2:如图,要在燃气管道l 上修建一个泵站C,分别向同侧两地A,B 供气,问泵站修在管道的什么地方,可使所用的输气管线最短?归纳情境研究两点之间距离最短问题两点位于直线异侧两点位于直线同侧图形处理方法原理对点练习1.如图,一个圆柱的底面周长为20cm,高AB 为4cm,BC 是底面的直径,一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.变式:已知点E 为圆柱外表面AB 上一点,现一只在E 处的蚂蚁要爬到圆柱内侧D 点处,试画出其最短路径。
2.(河边饮马问题)如图所示,牧马人从A地出发,到一条笔直的河边L饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?3.点P是直线l上的一点,线段AB∥l,能使PA+PB取得最小值的点P的位置应满足的条件是()A.点P为点A到直线l的垂线的垂足B.点P为点B到直线l的垂线的垂足C.PB=PAD.PB=AB4.如图,AD为等腰三角形ABC底边上的高,E为AC边上一点,在AD上求一点F,使EF+CF最小5.如图,M为正方形ABCD的边CD的中点,BM=10,在对角线BD上求作一点N,使MN+CN的值最小,并求出这个最小值.1、如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再返回P处,请画出旅游船的最短路径.2.某班举行文艺晚会,桌子摆成AB,AC两行,如图13-4-27,AB桌面上摆满了橘子,AC桌面上摆满了糖果,小明现在P处,准备先去拿橘子再去拿糖果,然后回到P处.请你帮他设计一条行走路线,使其所走的总路程最短.(保留作图痕迹,并简单写出作法)4.如图,小华每天都要到李奶奶家做好事,在途中她要先到草场打一捆草,再到林区捡一捆柴,然后到达李奶奶家,最后回家.试问她应该选择怎样的线路才能使行程最短?(教师提示:将小华家、李奶奶家看成点).。
八年级数学上册 13.4 课题学习最短路径问题教学设计(新版)新人教版一. 教材分析“课题学习最短路径问题”是人教版八年级数学上册第13.4节的内容。
这部分内容主要让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
教材通过引入一个实际问题,引导学生探讨并找出解决问题的方法,从而培养学生解决问题的能力和兴趣。
二. 学情分析八年级的学生已经掌握了图论的基本知识,如图的定义、图的表示方法等。
但是,对于图的最短路径问题,学生可能还没有直观的理解和认识。
因此,在教学过程中,教师需要结合学生的已有知识,通过实例讲解、动手操作等方式,帮助学生理解和掌握最短路径问题。
三. 教学目标1.知识与技能目标:让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
2.过程与方法目标:通过探讨实际问题,培养学生解决问题的能力和兴趣。
3.情感态度与价值观目标:培养学生对数学的热爱,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:最短路径问题的实际应用,图论中的最短路径算法。
2.教学难点:如何引导学生从实际问题中抽象出最短路径问题,并运用图论知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.实例讲解法:通过具体的实例,讲解最短路径问题的解决方法,帮助学生理解和掌握。
3.动手操作法:让学生亲自动手操作,加深对最短路径问题的理解。
六. 教学准备1.教学素材:准备一些实际问题的案例,以及相关的图论知识介绍。
2.教学工具:多媒体教学设备,如PPT等。
3.学生活动:让学生提前预习相关内容,了解图论的基本知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入最短路径问题,激发学生的学习兴趣。
例如,讲解从一个城市到另一个城市,如何找到最短的路线。
2.呈现(15分钟)讲解最短路径问题的定义,以及图论中最短路径算法的基本原理。
通过PPT等教学工具,展示相关的知识点,让学生直观地了解最短路径问题。
13.4 课题学习最短路径问题学案2022-2023学年人教版八年级上册学习目标•理解最短路径问题的背景与定义。
•掌握最短路径问题的求解方法。
–迪杰斯特拉(Dijkstra)算法。
–弗洛伊德(Floyd)算法。
•能够应用最短路径算法解决实际问题。
•培养解决问题的动手实践能力和团队合作能力。
课前导入最短路径问题是指在给定的图中,从一个顶点出发到达另一个顶点的最短路径。
在实际生活中,最短路径问题有很多应用,比如导航系统中的路线规划、电力传输网络中的电线铺设等。
解决最短路径问题可以提高效率和优化资源利用。
课堂学习1. 最短路径问题的定义最短路径问题是指在一个带权重的有向图或无向图中,找到两个顶点之间的最短路径。
其中,顶点代表图中的节点,边代表节点之间的连接关系,权重代表边的长度或权值。
2. 迪杰斯特拉(Dijkstra)算法迪杰斯特拉算法是解决单源最短路径问题的常用算法。
其基本思想是从起始顶点开始,逐步扩展路径,直到找到目标顶点或所有顶点都被遍历。
算法的具体步骤如下:1.创建两个集合:已确定最短路径的顶点集合S,未确定最短路径的顶点集合Q。
初始时,S中只包含起始顶点,Q中包含除起始顶点外的所有顶点。
2.初始化起始顶点到各个顶点的距离为无穷大,起始顶点到自身的距离为0。
3.从Q中选取到起始顶点距离最短的顶点u,将其加入S集合。
4.更新与顶点u邻接的顶点v的距离,如果通过顶点u可以得到比当前已知距离更小的距离,则更新v的距离。
5.重复步骤3和4,直到Q集合为空或找到目标顶点的最短路径。
3. 弗洛伊德(Floyd)算法弗洛伊德算法是解决多源最短路径问题的常用算法。
其基本思想是通过动态规划的方式逐步求解所有顶点对之间的最短路径。
算法的具体步骤如下:1.初始化一个二维矩阵dist,矩阵中的元素dist[i][j]表示顶点i到顶点j 的最短路径长度。
2.初始化矩阵dist的初始值,如果存在直接连接的边,则dist[i][j]为边的权重,否则为无穷大。
13.4课题学习:最短路径问题导学案一、学习目标:1.能利用轴对称解决简单的最短路径问题.2.体会图形的变化在解决最值问题中的作用,感悟转化思想.重点:应用所学知识解决最短路径问题.难点:选择合理的方法解决问题.二、学习过程:课前热身1.如图,连接A、B两点的所有连线中,哪条最短?为什么?2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?问题解决---(牧马人饮马问题)问题:如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边什么地方饮马,可使所走的路径最短?探究1:现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?作法:_________________________________;(依据:____________________).探究2:点A,B分别是直线l同侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?请呈现证明过程:典例解析例1.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5B.5C.4D.不能确定例2.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C 是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)问题解决---(造桥选址问题)问题:(造桥选址问题)如图,A和B两地在一条河的两岸,现要河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)由于河岸宽度是固定的,因此当AM+NB最小时,AM+MN+NB最小.这样问题就进一步转化为:当点N在直线b的什么位置时,AM+NB最小?能否通过图形的变化(轴对称、平移等),把右图的情况转化为左图的情况?如图,将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.这样问题就转化为:当点N在直线b的什么位置时,A′N+NB最小?(请在组内讨论,并画出图形)请呈现证明过程:典例解析例3.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD′,EE′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD′E′EB的路程最短?达标检测1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()2.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BCB.CEC.ADD.AC3.有一条以互相平行的直线a、b为岸的河流,其两侧有村庄A和村庄B,现要在河上建一座桥梁MN(桥与河岸垂直),使两村庄之间的距离最短,从作图痕迹上来看,正确的是()4.如图,在△ABC中,AB=5,BC=4,AC=3.(1)用直尺和圆规作边AB的垂直平分线MN;(2)在直线MN上找一点D,使△ADC的周长最小,并求出△ADC的最小周长.5.甲、乙、丙、丁四人做接力游戏,开始时,甲和乙分别站在∠AOB内的点P与点Q处,丙站在OA上,丁站在OB上.游戏规则:甲将接力棒传给乙,乙将接力棒传给丙,丙将接力棒传给丁,最后丁跑到终点P处.如果甲、乙、丙、丁四人速度相同,试作图求出丙、丁必须站在何处,他们比赛所用时间最短.6.如图,如果A,B两地之间有两条平行的河流,现要在河上分别建一座桥,且建的桥都是与河岸垂直的.桥建在何处才能使从A到B的路径最短?(保留作图痕迹,不写作法)7.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.。
课题 13.4 课题学习 最短路径问题课型 新授课教师版本人教版八年级上册教 学 设 计教学目标1.能利用轴对称解决简单的最短路径问题.2.体会图形的变化在解决最短路径问题中的作用,感悟转化思想.3.让学生体验在数学学习活动中充满了探索与创造,在探索中学会与人合作、交流; 在探索中体验成功的快乐,增强学好数学的信心。
教学重点 体会图形的变化在解决最短路径问题中的作用,感悟转化思想 教学难点 利用轴对称解决简单的最短路径问题. 教学方法 探索式合作教学法 教学用具 多媒体辅助教学教学过程教师活动学生活动 设计意图 创设情境激趣引入相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边饮马,然后到B 地.到河边什么地方饮马可使他所走的路径最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.提出问题:(1)故事中涉及最短路径问题,我们已经学习了哪两种最短路径问题?(2)如图,连接A 、B 两点的所有连线中,哪条最短?(3)2.如图,点P 是直线l 外一点,点P 与该直线l 上各点连接的所有线段中,哪条最短?学生思考教师展示问题,并观察图片,获得感性认识在教师的引导下回顾旧知识从生活中问题出发,唤起学生的学习兴趣及探索欲望.体会数学知识来源于实践,又服务于实践为本节课的学习打下知识基础。
问题引导探究新知探究点1 异侧两点到直线上一点的最短路径问题1.现在假设点A,B 分别是直线 异侧的两个点,如何在 上找到一个点,使得这个点到点A ,点B 的距离的和最短?方法总结:简记:一连二找点探究点2 将军饮马问题1.如图,将军从A 地出发,到一条笔直的河边l 饮马,然后到B 地,将军到河边的什么地方饮马,可使所走的路径最短?提出问题:(1)请你将实际问题简化为数学模型(2)饮马的位置有几种选择?(3)所走路径用符号语言表述2.猜测点C 在直线 的什么位置可使路径最短方法总结:简记:一作二连三找点3.你能用所学的知识证明上图中你所作的点C 使AC +BC 最短吗?以口诀的形式展示作图方法,加深学生对问题一作图的理解记忆。
13.4 课题学习最短路径问题
【学习目标】
1.能利用轴对称解决简单的最短路径问题,
2.体会图形的变化在解决最值问题中的作用.
【重点难点】
重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题
难点:如何利用轴对称将最短路径问题转化为线段和最小问题
【学习过程】
一、自主学习:
如图所示,从A地到B地有三条路可供选择,走哪条路最近?你的理由是什么?
二、合作探究:
探究点一探索最短路径问题
活动一:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
从图中的A地出发,到一条笔直的河边l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?
精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.
你能将这个问题抽象为数学问题吗?
追问1这是一个实际问题,你打算首先做什么?
追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?
问题2:如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?
追问3:对于问题2,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?你能用所学的知识证明你的作法正确吗?
探究点二选址造桥问题
如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直.)
三、尝试应用
1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是()
2.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水
再回家,所走的最短距离是米.
4、如图所示,M、N是△ABC边AB与AC上两点,在BC边上求作一点P,使△PMN的周长最小。
四、补偿提高
5、如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.
【学后反思】
参考答案:
探究一、
追问1、
答:将A,B两地抽象为两个点,将河l抽象为一条直线.
追问2
答:(1)从A地出发,到河边l饮马,然后到B地;(2)在河边饮马的地点有无穷多处,把这些地点与A,B连接起来的两条线段的长度之和,就是从A地到饮马地,再回到B地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小(如图).
追问3
作法:
(1)作点B关于直线l的对称点B′;
(2)连接AB′,与直线l交于点C.
则点C即为所求.
证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.
∴AC+BC=AC+B′C=AB′,
AC′+BC′=AC′+B′C′.
在△AB′C′中,AB′<AC′+B′C′,
∴AC+BC<AC′+BC′.
即AC+BC最短.
探究二、
分析:从A到B要走的路线是A→M→N→B,如图所示,而MN是定值,于是要使路程最短,只要AM +BN最短即可.
解:在直线a上取任意一点M′,作M′N′⊥b于点N′,平移AM,使点M′移动到点N′的位置,点A移动到点A′的位置,连接A′B交直线b于点N,过点N作MN⊥a于点M,则路径AMNB最短.理由如下:如图,点M′为直线a上任意一点(不与点M重合),
∵线段A′N′是线段AM平移得到的
∴AA′=MN′,A′N′=AM
∴AM′+MN′+BN′=A′N′+AA′+BN′
∵MN平行AA′且MN=AA′
∴MN可以看作是AA′经过平移得到的
∴A′N=AM
∴AM+NB=A′N+NB
∵根据两点之间线段最短,得A′N+NB=A′B<A′N′+BN′
∴AM+NB=A′N+NB
∵根据两点之间线段最短,得A′N+NB=A′B<A′N′+BN′
∴AM+NB<AM′+BN′
∵MN=MN′
∴AM+MN+NB<AM′+M′N′+N′B,即路径AMNB最短.
尝试应用:
1、D;
2、1000;
3、A
4、答案如图所示:
P点就是所求做的点
补偿提高
5、思路分析:
由于两点之间线段最短,所以首先可连接PQ,线
段PQ 为旅游船最短路径中的必经线路.将河岸抽象为
一条直线BC,这样问题就转化为“点P,Q 在直线BC
的同侧,如何在BC上找到
一点R,使PR与QR 的和最
小”.。