第7章 常用数据结构与算法(字符串)
- 格式:ppt
- 大小:1.91 MB
- 文档页数:55
c语言数据结构与算法C语言是计算机编程的一种语言,广泛用于数据结构与算法的实现和分析。
数据结构是组织和存储数据的方式,而算法是一系列解决问题的步骤。
在C语言中,常见的数据结构包括数组、链表、栈、队列、树、图等,算法则包括排序、搜索、动态规划、贪心算法等。
以下是C语言中一些基本数据结构和算法的简要介绍:1. 数组:数组是连续存储的一组元素,可以通过索引来访问。
数组的大小在编译时确定,因此动态扩展能力有限。
2. 链表:链表是由一系列节点组成的数据结构,每个节点包含数据部分和指向下一个节点的指针。
链表的大小在运行时可以动态变化。
3. 栈:栈是一种后进先出(LIFO)的数据结构,主要操作包括压栈(push)和出栈(pop)。
栈通常用于解决递归、括号匹配等问题。
4. 队列:队列是一种先进先出(FIFO)的数据结构,主要操作包括入队(enqueue)和出队(dequeue)。
队列常用于任务调度、缓冲处理等问题。
5. 树:树是由节点组成的数据结构,每个节点包含数据部分和指向子节点的指针。
树的结构可以是二叉树、平衡树(如AVL树)、红黑树等。
树常用于表示层次关系、索引等。
6. 图:图是由节点和边组成的数据结构。
节点表示实体,边表示节点之间的关系。
图的表示方法有邻接矩阵和邻接表等。
图的应用包括最短路径、拓扑排序等。
在C语言中实现数据结构和算法,可以提高编程能力,更好地理解和解决复杂问题。
常见的算法包括冒泡排序、选择排序、插入排序、快速排序等排序算法,以及二分搜索、深度优先搜索、广度优先搜索等搜索算法。
此外,动态规划、贪心算法等高级算法也在C语言中得到广泛应用。
学习和掌握C语言的数据结构和算法,有助于提高编程水平,为解决实际问题奠定基础。
常见的数据结构与算法数据结构是计算机存储、组织和管理数据的方式。
算法是解决问题的一种方法论,包括一系列解决问题的步骤和规则。
在计算机科学中,常见的数据结构和算法可以分为以下几种类型。
1. 数组数组是一种最简单的数据结构,可以通过下标来访问和操作其元素。
数组是由相同类型的元素组成的有序集合,它的大小在创建后不可更改。
数组的插入和删除操作比较耗时,因此更适合用于查找和遍历操作。
2. 链表链表是一种线性数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
链表可以分为单向链表、双向链表和循环链表。
链表的灵活性很高,可以快速地进行插入和删除操作,但查找操作需要遍历整个链表。
3. 栈栈是一种先进后出(LIFO)的数据结构,它可以存储任意类型的数据。
栈主要用于临时存储值,例如函数调用、表达式求值等。
5. 堆堆是一种特殊的树形数据结构,它满足一定的堆序性质。
大根堆中,每个节点的值都大于或等于其子节点的值;小根堆中,每个节点的值都小于或等于其子节点的值。
堆常用于优先队列、排序算法等场景。
6. 树树是一种分层数据结构,它由一组节点和一组连接这些节点的边组成。
树的根节点没有父节点,每个其他节点都有唯一的一个父节点。
常见的树包括二叉树、平衡二叉树、红黑树等。
7. 图图是一种复杂的非线性数据结构,它由一组顶点和一组连接这些顶点的边组成。
图可以表示大量的实际问题,例如社交网络、路网规划等。
8. 排序算法排序算法是指使一组数据按照特定顺序排列的算法。
常见的排序算法包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序等。
9. 搜索算法搜索算法是指在一组数据中查找特定元素的算法。
常见的搜索算法包括线性搜索、二分搜索、插值搜索、哈希查找等。
10. 动态规划动态规划是一种用于优化问题的算法,在很多优化问题中都有着广泛的应用,例如最短路径、最长公共子序列等。
动态规划基本就是一个记忆化的递归,把重复计算的子问题存储起来,避免不必要的重复计算。
数据结构与算法 c语言(一)数据结构数据结构是指程序中使用的数据存储和组织的方式,是存储和组织数据以便于进行有效访问和操作的形式。
它们描述如何组织、索引、检索和存储数据,可以以图形、列表、树或任何其他形式来实现。
根据它的功能,数据结构可以分为三类:存储结构,查找结构和排序结构。
1.存储结构:存储结构定义数据的存储形式,结构的类型有线性结构、非线性结构和特殊结构。
a)线性结构:线性结构是最常用的存储结构,常见的线性结构有数组、线性表和栈。
b)非线性结构:非线性结构是存储数据的不规则结构,常用的非线性结构有森林、图、哈希表和布局。
c)特殊结构:特殊结构是一种特殊的数据结构,代表着不同的操作对象。
例如,编译器存储着源程序的语法树,在设计数据库时,系统存储着索引树以及索引文件。
2.查找结构:查找结构包括线性查找和二分查找,前者将数据成员与关键字一一比较,后者使用二叉树技术,在减少比较次数的同时,使得查找效率大大提高。
3.排序结构:排序结构按照一定的规则对存储在某个存储结构中的数据进行排序,用于快速查找数据。
常用的排序算法有插入排序、合并排序、快速排序等。
总之,数据结构可以视为数据的容器,使用不同的数据结构可以解决不同的问题,提高系统的效率。
(二)算法算法是一种排列和组合的解决问题的过程。
它使用一组定义明确的步骤,按照该步骤来执行,最终解决问题。
一般来说,算法分为三种类型:贪心算法、动态规划和分治法。
1.贪心算法:贪心算法通过采用试探性选择来求解问题,它从不考虑过去的结果,而是假设采用当前最好的结果,从而得到最优解。
如择优法、多项式时间的算法都属于贪心算法。
2.动态规划:动态规划是求解决策过程最优化的数学术语,它结合搜索技术,用最优方式选择最佳决策。
常见的动态规划算法应用有最小路径求解,最优工作调度等。
3.分治法:分治法是算法设计中比较常用的思想,它的思想很简单,就是将问题分解成多个子问题,分别解决,最后合并解决结果,得到整体的问题的最优解。
常用的数据结构以及算法一、关于数据的几个概念1、数据。
是对客观事物的符号表示。
在计算机科学是指所有能够输入到计算机中并能被计算机程序处理的符号集合。
包括数值、文字、图像、图像、音频、视频等形式。
2、数据项。
所谓数据项就是数据中具有独立含义的、不可再分割的最小数据单位。
是客观实体一种特征的数据表示。
3、数据元素。
是多个相关数据项的集,是一个客观实体多种特征的数据描述,是计算机程序中加工处理的基本单位。
数据元素按其组成可分为简单型数据元素和复杂型数据元素。
简单型数据元素由一个数据项组成,复杂型数据元素由多个数据项组成,它通常携带着一个概念的多方面信息。
二、数据结构的几个概念。
1、数据结构,就是相互之间存在一种或多种特定关系的数据元素的集合。
可以简单表示为:数据结构 = 数据 + 关系同一数据元素集合,所定一的关系不同,构成不同的数据结构。
数据结构包括逻辑结构和存储结构两个方面。
2、数据的逻辑结构。
是指对数据及其关系的抽象逻辑描述,对立与计算机,与机器实现无关。
根据定义的关系不同,数据的逻辑结构分为四种:集合结构。
数据元素之间未定义任何关的松散集合。
线性结构。
数据元素之间定义了次序关系的集合(全序集合),描述的是1对1关系。
树形结构。
数据元素之间定义了层次关系的集合(偏序集合),描述的是1对多关系。
图状结构。
数据元素之间定义了网状关系的集合,描述的是多对多关系。
3、数据的存储结构(亦成物理结构)是指数据结构在计算机存储器中的具体实现。
存储结构与孤立的数据元素表示形式不同,数据结构中的数据元素不但要表示其本身的实际内容,还要表示清楚数据元素之间的逻辑结构。
常见的存储结构有:顺序存储结构:特点是借助于数据元素的相对存储位置来表示数据元素之间的逻辑结构;链式存储结构:特点是借助于指示数据元素地址的指针表示数据元素之间的逻辑结构。
散列存储结构:顺序+算列。
索引存储结构:顺序+索引。
数据元素相互之间的关系称为结构。
现代计算机常用数据结构和算法现代计算机科学中常用的数据结构和算法非常多,下面是一些核心且广泛应用于软件开发、数据库系统、操作系统、编译器设计、网络编程、机器学习以及其他计算密集型任务中的数据结构与算法:常用数据结构:1. 数组:线性存储结构,通过索引访问元素,支持随机访问。
2. 链表:包括单向链表、双向链表和循环链表,通过指针链接元素,插入删除操作灵活但不支持随机访问。
3. 栈(Stack):后进先出(LIFO)的数据结构,常用于函数调用栈、表达式求值等。
4. 队列(Queue):先进先出(FIFO)的数据结构,适用于处理任务排队、广度优先搜索等问题。
5. 哈希表(Hash Table):基于散列函数实现快速查找,用于实现关联数组、缓存、唯一性检查等功能。
6. 树:如二叉树(包括二叉查找树、AVL树、红黑树)、B树、B+树、Trie树等,用于搜索、排序、文件系统索引等。
7. 图(Graphs):表示节点集合以及节点之间的关系,常见于社交网络分析、路径规划等领域。
8. 堆(Heap):一种特殊的树形数据结构,分为最大堆和最小堆,用于优先队列、堆排序等。
9. 集合与映射(Set & Map):无序不重复元素的集合和键值对结构,提供高效查找、插入和删除操作。
常用算法:1. 排序算法:快速排序、归并排序、冒泡排序、选择排序、插入排序、堆排序等。
2. 搜索算法:线性搜索、二分查找、插值搜索、哈希查找、深度优先搜索(DFS)、广度优先搜索(BFS)等。
3. 图算法:最短路径算法(Dijkstra、Bellman-Ford、Floyd-Warshall),拓扑排序,最小生成树算法(Prim、Kruskal)等。
4. 动态规划:解决具有重叠子问题和最优子结构的问题,如背包问题、最长公共子序列(LCS)等。
5. 贪心算法:在每一步都采取当前看来最优的选择,如霍夫曼编码、活动选择问题等。
6. 回溯算法和分支限界法:用于解决组合优化问题,如八皇后问题、旅行商问题等。
数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。
通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。
2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。
3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。
4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。
5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。
二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。
常见的查找算法有线性查找、二分查找、哈希查找等。
1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。
2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。
通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。
3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。
三、图算法图算法是解决图结构中相关问题的算法。
字符串算法总结前⾔标题是骗你进来的,其实⾥⾯全是题⽬。
最近⼀直在搞字符串......把⼀些有代表性或者有⼀定难度的题放在这⾥做⼀个总结。
[CF666E] Forensic给你⼀个串S 以及⼀个字符串数组T [1..m ],q 次询问,每次问S 的⼦串S [p l ..p r ]在T [l ..r ]中的哪个串⾥的出现次数最多,并输出出现次数。
如有多解输出最靠前的那⼀个。
数据范围:|S |,∑|T |,q ≤105。
对T [1...m ]建⽴⼴义SAM ,⽤线段树合并维护出现次数。
每次查询先倍增到相应结点,然后直接线段树区间查询。
[NOI2011] 阿狸的打字机给定⼀个打字机,有加字符、删字符、打印三种操作。
给定操作序列S ,然后有Q 次询问,每次回答第x 次打印的串在第y 次打印的串中出现⼏次。
数据范围:|S |,Q ≤105⽤栈模拟建出所有打印串的Trie 树,然后构建AC ⾃动机与fail 树。
每次询问相当于问x 到Trie 的根这条路径上有多少个点能够跳fail 跳到y 。
对Trie 进⾏dfs ,⽤树状数组维护fail 树的⼦树和。
[BZOJ3670] 动物园给定⼀个串S ,求每⼀个前缀的不相交border 数。
数据范围:|S |≤107。
解法⼀:建出fail 树,然后dfs ⼀遍fail 树,⽤单调队列维护合法前缀⼤⼩。
解法⼆:先预处理出next 数组,然后类似next 数组的求法求答案,当不合法时跳next 数组。
[SCOI2013] 密码给定⼀个串的每个回⽂中⼼的扩展⼤⼩,构造满⾜条件的最⼩字典序串。
数据范围:n ≤105对这个串跑⼀遍manacher ,直接模拟即可,⽤并查集维护两个位置的字符是否相同。
最后使⽤最⼩表⽰法求出答案串。
[NOI2015] 品酒⼤会给定⼀个串S ,求∑i ∑i ≠j lcp (suf i ,suf j )。
数据范围|S |≤105。
使⽤后缀数组,按照Height 排序后合并后缀,⽤带权并查集维护答案。
数据结构与算法基础作为计算机科学中最基础的核心理论学科之一,数据结构与算法几乎涵盖了所有计算机科学的领域。
随着科技的不断发展和计算机的越来越普及,数据结构与算法的重要性也越来越被人们所认识并广泛应用于各个领域。
因此,作为一名计算机专业学生,在数据结构与算法这门学科的学习中必须掌握其基本概念和算法实现,并且应该在学习过程中注重理解算法的精髓和内涵。
一、数据结构数据结构,指数据之间的关系,包括数据的存储和组织方式。
对于计算机程序员来说数据结构是非常重要的,因为理解数据结构的本质意义,创造出合适的数据结构来满足实际应用需求并可以提高程序执行效率,而这点又可以极大地影响整个计算机的工作效率。
常见的数据结构有线性结构、树形结构、图形结构等。
这里主要介绍一些常见的数据结构:1. 线性结构:常见的有数组、链表、队列、栈等。
- 数组:数组是由相同类型的元素所组成的一组连续内存储单元,并按序号索引组成的,称为线性结构。
在数组中,查找元素的效率较高,但其插入和删除的效率非常低。
- 链表:由若干个结点组成,每个结点包含具有相同数据类型的数据元素和指向下一结点的指针(或称链),最后一个节点不指向任何结构称为空结点。
单向链表仅有一个指向下一结点的指针。
双向链表每个结点都有两个指针,均指向前后两个结点。
链表的时间效率优于数组,在插入和删除操作中,链表可以很快的完成。
- 队列:队列是一种操作受限的线性结构,它具有先进先出(FIFO)的特点。
队列有两个指针,即队首指针和队尾指针。
从队首插入和删除一个元素,从队尾删除一个元素。
插入恒等于入队操作,删除等于出队操作。
- 栈:栈是一种操作受限的线性结构,它具有先进后出(LIFO)的特点。
栈有两个主要操作:压入和弹出。
压入元素即入栈操作,弹出元素即出栈操作。
栈的应用非常广泛,比如从栈中打印寻址路径和存储路径,栈在很多算法的实现中被广泛地应用。
2. 树形结构:由结点和连接结点的边组成。
- 二叉树:二叉树是一个树形结构,它满足每个节点最多有两个子节点。