能量法
- 格式:ppt
- 大小:1.71 MB
- 文档页数:108
第十章能量法承载的构件或结构发生变形时,加力点的位置都要发生变化,从而使载荷位能减少。
如果不考虑加载过程中其他形式的能量损耗,根据机械能守恒定律,减少了的载荷位能将全部转变为应变能储存于构件或结构内。
据此,通过计算构件或结构的应变能,可以确定构件或结构加力点处沿加力方向的位移。
但是,机械能守恒定律难以确定构件或结构上任意点沿任意方向的位移,也不能确定构件或结构上各点的位移函数。
应用更广泛的能量方法,不仅可以确定构件或结构上加力点处沿加力方向的位移,而且可以确定构件或结构上任意点沿任意方向的位移;不仅可以确定特定点的位移,而且可以确定梁的位移函数。
本章介绍的是:用应变能的概念,根据能量守恒原理来解决与弹性结构或构件变形有关问题的一般方法,这种方法称为能量法。
能量法既可用于计算构件或结构位移;也可用以解决静不定问题及其它一些问题;本章只讨论用能量方法计算位移。
§10.1 杆件的应变能计算前面我们曾讨论过拉伸(压缩)、扭转或弯曲时的变形计算。
但是在工程上还常遇到比较复杂的结构,例如图10-1中所示的桁架、刚架——是指由直杆组成的具有刚性结点的结构、拱——是指杆轴为曲线而且在铅垂载荷作用下会产生水平支座反力的结构等。
在计算这些结构上某一点或某一截面的位移时,能量法是比较简单的方法。
通过拉伸(压缩)、扭转、弯曲时的应变能分析,可见:杆件在受力变形后,都储藏有应变能。
若不计杆件变形过程中少量的热能等损失,则杆件能量守恒,外力在弹性体变形过程中所作的功W应等于杆件内储藏的应变能Vε,即Vε=W。
在第七章我们曾经分别得到等截面杆各横截面上的内力为常量时,拉伸(压缩)、扭转、弯曲(参看图10-2)时的应变能表达式如下拉伸(压缩)时2122NPF lV F lEAε=∆=此处F N=F P(10-1)圆轴扭转时 2122x P PM l V M GI εϕ== 此处M x =M P (10-2)平面弯曲时 2122P M lV M EIεθ== 此处M =M P (10-3)综合以上三个表达式中外力表达的部分,可以把应变能概括地写为12V W F εδ==(10-4) 式中 F ——在拉伸(压缩)时表示拉力(压力),在扭转或弯曲时表示集中力偶,所以此处F 称为广义力;δ——在广义力作用处与广义力F 相应的位移,称为广义位移,在拉伸(压缩)时它是与拉力(压力)相应的位移l ∆,在扭转时它是与扭转力偶矩相应的转角φ,在平面弯曲时它是与弯曲力偶矩相应的截面转角θ(如图2所示)。
浅谈偏微分方程中的基本方法——能量法
能量法是偏微分方程研究中常用的基本方法。
该方法是通过研究能量函数在某一满足有限
条件(有限时间)内如何变化并且求得最优解来解决偏微分方程问题。
能量法的基本思想
是将偏微分方程的求解转化为寻找一个能量最小的状态。
解决偏微分方程的能量法可以分为两个步骤:第一步是建立能量函数,其通常有两部分函
数组成,即势能函数和动能函数;第二步是使用最优控制来求得满足特定有限时间、特定
步长等条件下的最优状态。
在这种情况下,在指定的时间区间内,满足最小的能量函数的
值即为最优状态。
能量法的优点是能够计算出一个渐进最优的结果。
这个结果通常比迭代法的结果更准确。
而且,能量法的计算速度也快于其他方法,它可以在较短的时间内得到准确的最优解。
但当偏微分方程存在多个复杂的有限条件时,能量法很难获得满足所有有限条件的最优解,而且计算成本也会增加。
因此,在使用能量法时,需要慎重考虑条件的选择,以及确定能
量函数等问题。
总之,能量法是偏微分方程研究中常用的一种重要方法,它可以有效的解决实际问题,取
得准确的结果。
但是在使用这种方法时,需要综合考虑多种因素,使用时应慎重,以获得
最优的结果。