材料力学13能量法
- 格式:ppt
- 大小:2.42 MB
- 文档页数:89
第十三章能量法主讲人:张能辉1引言2-研究变形体方法:微体法,能量法引言微体法几何关系i ij u ~ε微体法静力学关系物理关系ijij εσ~平衡ij σd v ⇓V控制方程数学手段ij σ边界条件初值条件ijε3-引言能量法1P P 1P 外力作用线弹性体恢复22P 变形效应外力卸除原形i P →ij ij εσ~Hooke’s Law Lineariij u ~ε线弹性体f广义载荷δ广义位移δ∝f 引进比例常数δk f =下面看能量如何写?与外力有何关系?4由能量守恒WV =ε(外力功全部转化成应变能)P26488主平面微体应变能(P264 8-8)1ii εσυε2=应变能密度i =1,2,3)(,,)6外力功与应变能杆件应变能微段d x 储存应变能∫∫⋅==dVAdAdx dV dV εεευυdAxx体积分化为面积分d x dV整个梁存储应变能积分思想: 微段的叠加==dAdx dV V εεευ变∫∫∫AlV822 EA21 2NFdx EAd ml2ρ2p外力功与应变能弯曲(忽略切应力)21zM 21zM 2zEI ευ=2z lV dxEI ε=∫Conclusion外力功与应变能应变能特点C1: 与载荷终值有关,而与加载次序无关M(a) M 、F 同时作用(b)ABF (b)先F 后M (c) 先M 后F 三种加载历史等效?FM F M M FM M M M M =+=+19互等定理23互等定理讨论2F 独立加第I 组力系F 123411121:0;0;Δ→Δ→Δ先加第II 组力系,再加第I 组力系3F 2F 21110;0:Δ′→Δ′→Δ12344F ????;21211111Δ′=ΔΔ′=Δ问1F F =k Δ保证相等27互等定理线弹性体变形能特点:大小取决于加载终值而与加载次序无关21V V =414313222121Δ+Δ=Δ+Δ⇒F F F F 21F F I 组力系12I 组力系作用点43F F II 组力系,3,4力点II 组力系作用点2212,ΔΔII 组力系在I 组力系作用点引起的沿I 组力系方向的位移4131,ΔΔI 组力系在II 组力系作用点引起的沿II 组力系方向的位移28互等定理等定功的互等定理第I 组力系在第II 组力系引起位移上所做功等于第II 组力系在第I 组力系引起位移上所做功简化:If F 1---I; F 2---IIthen F =F FF =2then F 1Δ12= F 2Δ2112FF =1If F 1= F 2, then Δ12=Δ21位移互等定理弹在对于线弹性体,若在1,2处分别作用两个大小相等的载荷,则点1处由于点2处载荷引起的位移Δ12等于处由点点2处由于点1处载荷引起的位移Δ2129Example-1实测w 1 ,w 2 ,w 3方案:1F3211.三点装位移计浪费2.一个位移计逐点测费工1新方案(位移互等定理)F323.自由端加位移计逐点加载不影响原有力系30单位载荷法32Example-1E ample1qABlx已知:梁EI=const已知梁求:w=?θA=?A38Example-2M aCB B1x x FAa 2已知:刚架M B =F a 求:Δcy =?40E l3 Example-3BA1αβ2CF已知:桁架EA, l1l2? Δ?求: Δcx=? Δcy=?43Example-4 (P20 12-5)F FR已知:小曲率曲梁AB已知:小曲率曲梁,轴线曲率半径为R求:截面A和B的相对转角46E l5(P56)Example-5 (P56)F OA BϕCA B已知:小曲率曲梁,轴线曲率半径为R求求:A的铅垂位移48余能与卡氏第二定理50。
材料力学能量法材料力学能量法是材料力学中的一种重要分析方法,它通过能量原理来研究材料的力学性能和行为。
能量法在工程应用中具有广泛的意义,可以用于解决各种复杂的材料力学问题。
本文将对材料力学能量法进行详细介绍,包括其基本原理、应用范围和计算方法等内容。
首先,我们来看一下材料力学能量法的基本原理。
能量法是以能量守恒原理为基础的一种力学分析方法,它认为在任何力学系统中,系统的总能量始终保持不变。
在材料力学中,通过能量方法可以方便地求解结构的变形、应力分布和稳定性等问题。
能量法的基本原理为系统的总能量等于外力对系统做功的总和,即系统的内能和外力对系统做功的总和保持恒定。
其次,材料力学能量法的应用范围非常广泛。
它可以用于分析材料的弹性、塑性、断裂等力学性能,也可以用于研究材料的疲劳、蠕变、冷却等行为。
在工程实践中,能量法可以应用于各种材料的设计、优化和性能评估,如金属材料、复合材料、土木工程材料等。
通过能量法分析,可以更好地理解材料的力学行为,为工程设计和材料选型提供科学依据。
最后,我们来介绍一下材料力学能量法的计算方法。
能量法的计算方法主要包括弹性能量法、弹塑性能量法和断裂能量法等。
在应用中,需要根据具体问题选择合适的能量方法,并结合数值计算和实验验证进行分析。
在计算过程中,需要考虑材料的本构关系、加载条件和边界约束等因素,以确保计算结果的准确性和可靠性。
综上所述,材料力学能量法是一种重要的力学分析方法,具有广泛的应用前景和深远的理论意义。
通过能量法分析,可以更好地理解材料的力学性能和行为,为工程实践提供科学依据。
在今后的研究和应用中,我们需要进一步深入理解能量法的基本原理和计算方法,推动其在材料力学领域的发展和应用。