第十一章 马尔科夫链
- 格式:pdf
- 大小:91.83 KB
- 文档页数:3
马尔科夫预测法一个是职业病尘肺病人预测、一个是安全培训效果预测、一个是安全出口人流分布预测,那今天就专门讲马尔科夫预测模型的计算方法。
(一级考试这个知识点考的㳀)•马尔科夫(A.A Markov)预测法是应用概率论中马尔科夫链的理论和方法来研究随机事件变化并借此分析预测未来变化趋势的一种方法。
一般用于市场占有率预测和人力资源结构预测方法,最近几年在一级安全评价师考试中出现的次数比较多,虽然难度很低,但是教材上并没有这个内容,所以在这里简单给大家讲一下这个方法的应用与解题技艺。
先简单介绍一下这个方法马尔柯夫(A.A Markov 俄国数学家)。
20世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状况有关,而与事物的过去状态无关。
例:设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济行为都可用这一类过程来描述或近似。
所谓马尔柯夫链,就是一种随机时间序列,它在将来取什么值只与它现在的取值有关,而与它过去取什么值无关,即无后效性。
具备这个性质的离散型随机过程,称为马尔柯夫链。
状态与状态变量•状态:客观事物可能出现或存在的状况。
如:商品可能畅销也可能滞销;机器运转可能正常也可能故障等。
(同一事物不同状态之间必须相互独立:不能同时存在两种状态。
)•用状态变量来表示状态它表示随机运动系统,在时刻t(t=1,2,3...)所处的状态i(i=1,2,3...)•状态转移:客观事物由一种状态到另一种状态的变化。
如:由于产品质量或替代产品的变化,市场上产品可能由畅销变为滞销。
由于状态转移是随机的,因此,必须用概率来描述状态转移可能性的大小,将这种转移的可能性用概率描述,就是状态转移概率。
概率论中的条件概率:P(A/B)就表达了由状态 B 向状态 A 转移的概率,简称为状态转移概率。
对于由状态 E i 转移到状态E j 的概率,称它为从i到j的转移概率。
记为:它表示由状态E i 经过一步转移到状态E j 的概率。
第四章4.1 马尔可夫链的的概念与转移概率一、知识回顾二、马尔可夫链的的定义三、转移概率四、马尔可夫链的一些简单例子五、总结一、知识回顾1. 条件概率定义:设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB) P(A)为事件A发生条件下B事件发生的条件概率。
将条件概率公式移项即得到所谓的乘法公式:P(AB)=P(A)P(B|A)2.全概率公式设试验E的样本空间为S,A为E的事件,若B1,B2,⋯,B n为S的一个完备事件组,既满足条件:1).B1,B2,⋯,B n两两互不相容,即B i B j=∅,i≠j,i,j=1,2,⋯,n2). B1∪B2∪⋯∪B n=S,且有P(B i)>0,i=1,2,⋯,n,则P(A)=∑P(B i)P(A|B i)ni=1此式称为全概率公式。
3.矩阵乘法矩阵乘法的定义A=(a11a12a13a21a22a23),B=(b11b12b21b22b31b32)C=(c11c12c21c22)如果c11=a11×b11+a12×b21+a13×b31c12=a11×b12+a12×b22+a13×b32c21=a21×b11+a22×b21+a23×b31c22=a21×b12+a22×b22+a23×b32那么矩阵C叫做矩阵A和B的乘积,记作C=AB4.马尔可夫过程的分类马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类:(1)时间、状态都是离散的马尔科夫过程,称为马尔可夫链;(2)时间连续、状态离散的马尔科夫过程称为连续时间的马尔可夫链的;(3)时间、状态都连续的马尔科夫过程。
二、马尔科夫链的定义定义 4.1设有随机过程{X n,n∈T},若对于任意的整数n∈T和任意的i0,i1,…,i n+1∈I,条件概率都满足P{X n+1=i n+1|X0=i0,X1=i1,…,X n=i n}=P{X n+1=i n+1|X n=i n}(4.1.1)则称{X n,n∈T}为马尔科夫链,简称马氏链。