第六章 微分方程 第六节 微分方程的冥级数解法
- 格式:ppt
- 大小:1.02 MB
- 文档页数:1
线性微分方程的幂级数解法常系数齐次线性微分方程可以用代数的方法进行求解,然而,对于变系数线性微分方程来说,由于方程的系数是自变量的函数,就不能用代数的方法求解。
微积分学的知识告诉我们,在满足某一些条件下,可以用幂级数表示一个函数,由此自然想到能否用幂级数表示微分方程的解呢?本章以二阶方程为例,讨论线性微分方程的幂级数解法。
考虑变系数线性微分方程 (5.1)0)()()(22=++y x c dxdy x b dxy d x a 其中)(),(),(x c x b x a 均为x 的解析函数。
如果系数函数)(),(),(x c x b x a 中含有公因子)(0x x -,那么可把其削去,考虑原方程的同解方程即可。
因此,不妨假设系数函数没有公因子)(0x x -。
下面分两种情况考虑方程)1.5(的初值问题解的存在唯一性。
)1( 0)(0≠x a ,则由)(x a 的解析性,在0x x =的某一邻域内0)(≠x a 。
此时,可把方程)1.5(改写成如下形式(5.2)0)()(22=++y x q dxdy x p dxy d 其中)()()( ,)()()(x a x c x q x a x b x p ==在0x x =的某一邻域内是解析函数。
考虑方程)2.5(的初值条件)(是给定的常数)其中3.5 ,()( ,)(2120'10y y y x y y x y ==则初值问题)3.5()2.5(+的解是存在且唯一的。
此时,称0x x =为方程)1.5(的一个常点。
)2( 0)(0=x a ,由于)(),(),(x c x b x a 中不含有公因子)(0x x -,则)(0x b 和)(0x c 中至少有一个不等于零。
因此,在|)(|0x p 和|)(|0x q 中至少有一个为∞+。
此时,无法确定初值问题)3.5()2.5(+的解是存在且唯一的。
在这一种情况下称0x x =为方程)1.5(的一个奇点。
微分方程的数值解法与近似求解技巧微分方程是数学中的重要概念,广泛应用于物理、工程、经济等领域。
在实际问题中,我们常常遇到无法直接求解的微分方程,这时候就需要借助数值解法和近似求解技巧来解决。
本文将介绍微分方程的数值解法和近似求解技巧,帮助读者更好地理解和应用这些方法。
一、数值解法1. 欧拉法欧拉法是最基础的数值解法之一,通过离散化微分方程,将其转化为差分方程,从而得到近似解。
欧拉法的基本思想是将微分方程中的导数用差商代替,然后通过迭代逼近真实解。
以一阶常微分方程为例,欧拉法的迭代公式如下:\[y_{n+1} = y_n + hf(x_n, y_n)\]其中,\(y_n\)表示第n个点的近似解,\(x_n\)表示对应的自变量的取值,h为步长,\(f(x_n, y_n)\)表示微分方程中的导数。
2. 改进的欧拉法改进的欧拉法是对欧拉法的改进,通过使用两个近似解的平均值来计算下一个点的近似解,从而提高了数值解的精度。
改进的欧拉法的迭代公式如下:\[y_{n+1} = y_n + \frac{h}{2}(f(x_n, y_n) + f(x_{n+1}, y_n + hf(x_n, y_n)))\]3. 二阶龙格-库塔法龙格-库塔法是一种常用的数值解法,通过计算多个近似解的加权平均值来提高数值解的精度。
其中,二阶龙格-库塔法是最简单的一种。
二阶龙格-库塔法的迭代公式如下:\[k_1 = hf(x_n, y_n)\]\[k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})\]\[y_{n+1} = y_n + k_2\]二、近似求解技巧1. 线性化方法线性化方法是一种常用的近似求解技巧,通过将非线性微分方程线性化,然后使用线性方程的求解方法来得到近似解。
以二阶线性微分方程为例,线性化方法的基本思想是将非线性项进行线性化处理,然后使用线性微分方程的求解方法来得到近似解。