LS-DYNA材料的二次开发
- 格式:ppt
- 大小:69.00 KB
- 文档页数:22
ansys中LS-DYNA2D金属切削模拟步骤在ANSYS Launcher界面中,选择ANSYS Mechanical/LS-DYNA1、菜单过滤Main Menu→Preprocessor→LD-DYNA Explicit→OK2、设置文件名及分析标题Utility Menu→File→change Jobname→2D cutting→New log and error file :YES→OK Utility Menu→File→change Title→cutting analysis →OK3、选择单元类型Main menu→preprocessor→Element Type→Add/Edit/Delete→Add→2D solid 162→OK→options→选择const.stress ;Lagrangian→OK4、定义材料模型(1)定义刀具材料模型Main menu→preprocessor→Material Props→Material Models→rigid material→输入:DENS:5.2e3 ;EX:4.1e11 ;NUXY:0.3 ;选择“Y and Zdisps” ;“All rotati ons”→OK(2)定义工件Johnson-cook材料模型Main menu→preprocessor→Material Props→Material Models→Gruneisen→Johns on-cook→输入:DENS:7.8e3 ;EX:2.06e11 ;NUXY:0.3A:507;B:320;C:0.28;n;0.064;m=1.06D1:0.15;D2:0.72;D3:1.66;D4:0.005;D5:--0.845、创建几何模型(1)创建工件模型Main menu→preprocessor→Create→Areas→Rectangle→By Dimensions→输入:X1,X2:0,5;Y1,Y2:0,3→OK(2)创建刀片模型Main menu→preprocessor→Create→Keypionts→In Active CS→依次输入:keypoint number:5,X、Y、Z :5.1,2.9,0;keypoint number:6,X、Y、Z :6,3.228,0;keypoint number:7,X、Y、Z :6,4,0;keypoint number:8,X、Y、Z :5.294,4,0→OK6、网格划分(一)(1)对刀片进行网格划分Utility Menu→Select→Entities→Lines :By Num/Pick→Apply→选取刀片边线→O KMain menu→preprocessor→Meshing→Size contrls→Manualsize→Lines→All lin es→NDIV:10→OK (2)对刀尖半圆进行网格划分Utility Menu→Select→Entities→Lines :By Nu m/Pick→Apply→选取刀尖半圆→O KMain menu→preprocessor→Meshing→Size contrls→Manualsize→Lines→All lin es→NDIV:3→OK (3)确定刀片的单元属性Main menu→preprocessor→Meshing→Mesh Attributes→Picked Aeras→选取刀片→Apply→确定材料号和单元类型号为1→OK(4)刀片网格划分Main menu→preprocessor→Meshing→MeshT ool→Mesh:Aeras;shape:Tri;free →Mesh→选取刀片→OK(二)(5)对工件进行网格划分切分工件Utility menu →Workplane→Wp settings→Grid andT riad→Minimum ,maximum:-5, 5 ;Spacing:1.0→OK平移和旋转工作平面并用其切分工件Utility menu →Workplane→Offset wp by incremens→X,Y,Z offsets:0,2.5,0;XY,YZ,ZX angle:0,90,0→OK Mainmenu→preprocessor→Modeling→operate→Booleans→Divide→Areas by wkp lane→选取工件→OK取消工作平面显示Utility menu→workplane→Display workingplane→等分接触区域相关Y向线段Utility Menu→Select→Entities→Lines :By Num/Pick→Apply→选取工件接触区Y向线段(两条)→OK Main menu→preprocessor→Meshing→Size contrls→Manualsize→Lines→All lin es→NDIV:10→OK 等分接触区域相关X向线段Utility Menu→Select→Entities→Lines :By Num/Pick→Apply→选取工件接触区X向线段(两条)→OK Main menu→preprocessor→Meshing→Size contrls→Manualsize→Lines→All lin es→NDIV:40→OK 等分接触区域不相关Y向线段Utility Menu→Select→Entities→Lines :By Num/Pick→Apply→选取工件接触区Y向线段(两条)→OK Main menu→preprocessor→Meshing→Size contrls→Manualsize→Lines→All lin es→NDIV:25→OK 等分接触区域不相关X向线段Utility Menu→Select→Entities→Lines :By Num/Pick→Apply→选取工件接触区X向线段(底边)→OK Main menu→preprocessor→Meshing→Size contrls→Manualsize→Lines→All lin es→NDIV:30→OK确定工件的单元属性Main menu→preprocessor→Meshing→Mesh Attribu tes→Picked Aeras→选取工件→Apply→确定材料号为2和单元类型号为1→OK工件网格划分Main menu→preprocessor→Meshing→MeshT ool→Mesh:Aeras;shape:Quad;mapp ed→Mesh→选取工件→OK7、建立partMain menu→preprocessor→LS-DYNA options→part options→create all part→O K(part1:刀具;part2:工件)Plot→parts(不同颜色显示单元)8、定义接触信息Main menu→preprocessor→LS-DYNA options→contact→Define contact→surface to surf;Eroding;静、动摩擦系数为0.15、0.10→OK→弹出contact options对话框,确定接触件(工件),目标件(刀片)→OK9、施加边界条件Utility menu→select→Entities→Nodes :By Location :X Coordinates→Min,Max: -0.01,0.01;Fro m Full→Apply(选中左侧边所有节点)Main menu→preprocessor→LS-DYNA options→Constraints→Apply→on nodes→pi ck All→All DOF→OKUtility menu→select→Entities→Nodes :By Location :Y Coordinates→Min,Max: -0.01,0.01;From Full→Apply(选中底边所有节点)Main menu→preprocessor→LS-DYNA options→Constraints→Apply→on nodes→pi ck All→All DOF→OK恢复整个模型的选择Utility menu→select→Everything10、对刀片施加初速度Main menu→preprocessor→LS-DYNA o ptions→Initial Velocity→on parts→w/No dal Rotate→选择part1,VX:-100→OK恢复整个模型的选择Utility menu→select→Everything11、设置能量控制选项Main menu→Solution→Analysis options→Energy options→打开所有能量控制选项→OK12、设置人工体积粘性选项Main menu→Solution→Analysis options→Bulks viscosity→Quadratic Viscosit y Coefficient:1.0→OK13、设置时间步长因子Main menu→Solution→Time controls→Time step ctrls→Time step scale facto r:0.6→OK14、设置求解时间Main menu→Solution→Time controls→Solution time→1e-3→OK15、设置结果文件输出步数Main menu→Solution→Output Controls→File output Freq→Number of steps→[EDRST]:50;[EDHTIME]:50→OK16、设置结果文件的输出类型Main menu→Solution→Output Controls→Output File Types→Add:ANSYS and LS -DYNA→OK17、输出K文件Main menu→Solution→Write jobname.K18、求解Main menu→Solution→Solve19、后处理(暂时不管。
RADIOSS用户二次开发-用户材料模型(User Material LAW) –实例实例下面是一个用于实体单元弹性材料模型的二次开发的例子,这个例子来选自RADIOSS二次开发工具书( User’s Code Interface) 的2.3节。
在这个材料模型的二次开发中,首先需要的子程序有:⚫Starter子程序:LECM29⚫Engine子程序:SIGEPS29⚫两个子程序所求的是:单元应力σ我们的目的是通过上面两个子程序能够描述材料的力学性能。
那么对于这个简单的弹性材料的力学性能是描述下面的应力应变关系:σ=Dε这里σ和ε应力应变的张量,D是描述材料的张量。
如果σ和ε写出1X6矢量型式,那么上面的关系用矩阵表示为:()()11011221121202122xx xx yy yy zz zz xy xy yz yz zx zx E ννννννσενννσενσεσγνννσγσγν−⎡⎤⎢⎥−⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−⎢⎥⎢⎥⎢⎥−⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥+−⎢⎥⎢⎥⎢⎥−⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥−⎢⎥⎣⎦σεDσ是我们所求的应力,ε是RADIOSS 内部其他程序计算后存储在EPSPXX ,EPSPYY ,EPSPZZ ,EPSPXY ,EPSPYZ ,EPSPZX 中的,在定义engine 子程序时可以在engine 中调用。
D 矩阵中我们可以看出需要杨氏模量E 和泊松比ν,那么这两个参数需要用户定义,所以需要用LECM29的starter 子程序读入,并通过内部参数UPARAM(*)传递给engine 子程序SIGEPS29,以用于计算D 矩阵。
这样就可求出单元应力σ。
最后计算声速c 用于在RADIOSS 其他内部程序中计算时间步长。
所以首先我们来编写starter 的子程序LECMnn (这里是 LECM29)。
在这个starter 子程序中读入材料密度,杨氏模量,泊松比。
2020年12月第44卷第12期Vol.J4No.12Dec.202() MATERIALS FOR MECHANICAL ENGINEERINGDOI:10.11973/jxgccl202012016基于Ls-Dyna软件2种材料模型的碳纤维复合材料层合板面内剪切有限元仿真孟宪明',钟正S程从前2,曹铁山S赵杰2,黄亚烽-吴瑶2(1.中国汽车技术研究中心有限公司,天津300300;2.大连理工大学材料科学与工程学院,大连116024)摘要:通过准静态单轴拉伸试验和面内剪切试验获取力学性能参数,采用Ls-Dyna软件中的纤维增强复合材料渐进损伤模型和复合材料层合板连续损伤模型模拟碳纤维复合材料层合板在面内剪切载荷作用下的力学响应和破坏模式,对比了2种模型的适用性。
结果表明:在面内剪切过程中的初始线弹性阶段,2种模型都能较好地模拟出碳纤维复合材料层合板的力学特性。
随着载荷的持续增大,渐进损伤模型的载荷-位移仿真曲线依旧呈线性上升,到达载荷峰值后迅速下降,与试验曲线存在很大偏差;连续损伤模型由于引入了损伤参数,当材料出现损伤后.其载荷-位移仿真曲线呈非线性,与试验曲线吻合良好。
关键词:碳纤维复合材料;连续损伤模型;渐进损伤模型;损伤参数中图分类号:TB332文献标志码:A文章编号:1000-3738(2020)12-0085-06Finite Element Simulation of In-plane Shear of Carbon Fiber ReinforcedPlastic Laminates with Two Material Models of LS-DYNA SoftwareMENG Xianming1.ZHONG Zheng2.CHENG Congqian2,CAO Tieshan2.ZHAO Jie2,HUANG Yafeng*,WU Yao2(1.China Automotive Technology&Research Center Co.,Ltd.,Tianjin300300,China;2.School of Materials Science and Engineering,Dalian University of Technology»Dalian116024,China)Abstract:The progressive failure model of fiber reinforced plastics and the continuous damage model of composite laminate of the Ls-Dyna software were applied to simulate the mechanical response and damage modes of carbon fiber reinforced plastic laminates under in-plane shear loads,with the mechanical parameters obtained by quasi-static uniaxial tensile and in-plane shear tests.The applicability of the two models was compared.The results show that in the initial linear elastic stage during in-plane shearing,the two models could simulate the mechanical characteristics of the carbon fiber r&nforced plastic laminates.As the load continued to increase,the loaddisplacement simulation curve obtained by the progressive failure model still rose linearly,and dropped rapidly after reaching the load peak;the simulation curve had a large deviation from the test curve.When the material was damaged,because of the introduction of damage parameters,the load-displacement simulation curve obtained by the continuous damage model was nonlinear,which was in good agreement with the test curve.Key words:carbon fiber reinforced plastic;continuous damage model;progressive failure model;damage parameter收稿日期:2020-08-05;修订日期:2020-11-27基金项目:国家重点研发计划“新能源汽车”重点专项项目(2O16YFBO1O16O2)作者简介:孟宪明(1980—),男,山东济南人,高级工程师•博士通信作者:赵杰教授0引言碳纤维复合材料(CFRP)作为一种比强度高、比刚度高、耐腐蚀性能较强的轻量化材料,广泛应用于汽车、航空航天、军工武器、高速动车等方面口切。
ANSYS/LS-DYNA二次开发及其在侵彻模拟中的应用[范斌1,2马壮1,2范群波1,2,*金福生1祝威1][1.北京理工大学,100081 2.冲击环境材料技术国家级重点实验室,100081]*通讯作者Email:fanqunbo@[ 摘要] 针对利用商用软件ANSYS/LS-DYNA建立弹靶有限元模型及K文件修改的复杂性,运用编程语言C#进行了ANSYS/LS-DYNA的二次开发,建立了装甲防护领域的专业软件——装甲防护效能仿真评估平台。
该软件通过定制专用前后处理界面,实现了参数化的前处理过程,K文件自动提交计算过程,以及高效的后处理过程。
该软件针对无较多有限元分析经验的普通研究人员使用,可高效完成弹靶侵彻过程的模拟及装甲的抗弹性能的定量评估,避免了大量的重复性工作,提高了分析效率。
[ 关键词]二次开发;数值模拟;抗弹性能;侵彻Secondary Development of ANSYS/LS-DYNAand Application in Numerical Simulation of Penetration [FAN Bin1,2, MA Zhuang1,2, FAN Qun-bo1,2,*, JIN Fu-sheng1, ZHU Wei1 ][1.Beijing Institute of Technology, 100081 2.National Key Laboratory of Science andTechnology on Materials under Shock and Impact,100081][ Abstract ] Armor ballistic performance simulation evaluating platform, a professional software in armor ballistic performancing area, has been developed to deal with the complexity in building the finite element model and modifying the keyword file when using the commercial software ANSYS/LS-DYNA. Parametric pre-processing, keyword file automatically submitting, as well as efficient post-processing are achieved by designing special pre-processing and post-processing user interface. To those ordinary researchers lacking FE analysis experience, this software can efficiently simulate the penetrating process and quantificationally evaluate the ballistic performance,thus avoiding the vast repeatability and improving the analyzing efficiency.[ Keyword ] secondary development; numerical simulation; ballistic performance; penetration1 前言侵彻是指高速运动的弹体侵入甚至穿透目标靶板的过程,它是一种普遍存在的物理力学现象,研究弹体与靶板的相互作用过程,具有重要的民用价值和军事应用背景。
基于LS-DYNA的滑橇起落架落震分析及二次开发陶周亮;方建义;张梅【摘要】滑橇起落架在着陆过程中通过结构变形来吸收着陆功量而不产生结构破坏,因此迫切需要开发一套高效可靠的直升机滑橇起落架落震分析方法.基于显式动力学和接触算法,在考虑旋翼升力的影响和机身与弓形梁连接点处的弯矩传递问题的基础上,建立滑橇起落架落震分析模型.为提高仿真分析效率,搭建由二次开发软件、ANSYS和LS-DYNA组成的落震分析系统.在两种工况下对滑橇起落架进行了落震仿真分析,仿真结果与试验结果吻合较好,表明了滑橇起落架落震仿真分析方法的有效性.【期刊名称】《直升机技术》【年(卷),期】2015(000)003【总页数】5页(P25-28,33)【关键词】直升机;滑橇起落架;落震;显式动力学;二次开发【作者】陶周亮;方建义;张梅【作者单位】中国直升机设计研究所,江西景德镇333001;中国直升机设计研究所,江西景德镇333001;中国直升机设计研究所,江西景德镇333001【正文语种】中文【中图分类】V214.1+3;V226滑橇起落架结构简单,易于加工和维护。
现代轻型直升机多采用滑橇式起落架[1],在直升机着陆过程中通过前、后弓形梁的变形来吸收着陆能量,前后弓形梁会产生很大的塑性变形而要求结构不产生破坏。
在滑橇起落架着陆冲击的过程中,滑橇受到地面的垂直冲击载荷和地面的摩擦力载荷。
弓形梁产生垂直地面的垂向位移和沿地面方向的侧向位移,随着载荷增大,弓形梁的各个截面依次由弹性状态进入塑性状态。
滑橇起落架的着陆性能计算是一个求解滑橇在动载荷作用下的几何非线性、材料非线性和状态非线性的问题,难度较大且不可能用解析方法进行求解[2]。
目前国内外主要采用数值分析方法。
贝尔直升机公司的Cheng-Ho Tho等[3]对带圆角的矩形截面弓形梁进行简化,完成了滑橇起落架的落震分析。
黄生月、张绍仪等[4]采用“位移-增量迭代法”来处理滑橇起落架在坠毁过程中吸收着陆功量这一弹塑性、大变形问题。
Get新技能(1)LS-DYNA导入CAD文件——By 202 Corner T 各位已经十分熟知相关方法的师兄师姐和同窗请无视这篇分享。
总体来说,两大步骤,一在CAD中输出.sat文件,二在LS-DYNA中Import(导入).sat 文件。
详细步骤及注意事项举例说明:1 输出.sat文件1.1打开已有或新建CAD平面模型如图1(例子为一个装配图)图1 CAD模型图2 模型处理结果该模型为回转体,故考虑到DYNA中的Rotate功能,剔除一半的模型,为创建面域删除剖面线,处理结果如图2所示。
1.2在命令窗口输入“boundary”回车确定,弹出相应对话框,对话框里“对象类型”选择“面域”后点击拾取点,在CAD主窗口依次选择目标封闭面域,右键/回车确定。
(解除面域命令为“explode”)图3 生成面域1.3选中生成的全部目标面域,点击主窗口左上“A”标,依次点击“输出<其他格式”,弹出相应对话框,文件类型选择“.sat”保存即可。
图4 输出.sat文件2 导入.sat文件2.1 打开LS-DYNA,环境选择“ANSYS”,证书“ANSYS LS-DYNA”,创建指定路径,“Run”。
图5 打开DYNA2.2主窗口依次点击“File<Import<SAT…”,弹出相应对话框,在指定路径下找到第1大步保存的sat文件(前提是需要把目标sat文件保存或复制到指定路径下),点击“OK”,结果如图7所示,导入完成。
图6 导入sat 文件图7 导入结果注意事项1. CAD“boundary ”命令是在原线条上以封闭面域的形式重建了一个框,相邻框的重合边导入DYNA 后共用,但原有线条仍在,故导入成功后需要“Glue ”All Area 操作,将原有的线条与面域框线处理成同一条线,具体操作为:“Main Menu <Modeling 改为 “All Entities ”<Operate <Booleans <Glue <Area”,在弹出的对话框里点击“Pick All”即可。
一、关于dyna中材料失效准则的定义有些材料类型中有关于失效准则的定义,但是也有些材料类型没有失效准则的材料类型,这时需要额外的失效准则定义,与材料参数一块定义材料特性。
需要用到*mat_add_erosion关键字,对于这个关键字有几个需要注意的地方。
1、材料的通用性破坏准则:`材料通常为拉破坏或者剪切破坏,静水压是以压为正,拉为负,所以静水压破坏就是给出最小的承受压力,当然需要小于0(即拉力),如果静水压小于该值,则材料破坏。
相反,应力则是以压为负,拉为正,故最大主应力或最大等效应力或最大剪应力破坏等等都是给出最大的应力极限,当然大于0,如果拉应力大于该值,则材料破坏,无论是*MAT_ADD_EROSION,还是材料内部自带的破坏准则还是其他软件,都遵循以上准则。
注意:屈服不是失效。
2、单元失效模拟的功能与目的单元删除功能是为了克服有限元本身的缺陷而提出的一项方法,由于有限元本身是基于连续介质力学的,而在连续介质力学中,所研究的物体需要是连续的,既物质域在空间中连续。
在这样的理论假设框架下,单元本身是不会消失的。
然而在实际情况下,由于损伤断裂的存在,势必会使得一些单元消失或者完全的失效,所以为了能够模拟这种情况,DYNA 提供了单元失效功能。
破坏、失效、断裂,都是工程性的概念,它表示在达到某一准则后,结构、构件、或者构件中的某一部分,从结构中退出工作,不再影响整体结构的受力。
而从有限元概念上说,对上述机制的模拟,基本手段都是一样的,就是当满足某一指标(比如某个应变大小)后,将一个单元或者一个积分点的质量、刚度和应力、应变都设为零(或者非常接近与零),这样它在整体结构计算中就不再发挥作用,进而实现了退出工作机制的模拟。
所以,无论是把纤维模型中的某个纤维、或者分层壳模型中的某一层、或者实体模型中的某个积分点,或者结构中的某个单元,让其不再参与整体结构计算,都可以达到模拟破坏退出工作的目的。
而所谓单元生死技术,是上述基本概念在有限元程序中的一个“打包”应用。