齿轮传动受力分析知识交流
- 格式:ppt
- 大小:87.50 KB
- 文档页数:8
船舶齿轮传动轴的受力均衡与分析船舶齿轮传动是现代船舶中常见的动力传动形式之一,通过将驱动轴上的齿轮与被动轴上的齿轮进行啮合,将动力由发动机传递给船舶的推进装置,实现船舶的前进。
在这个传动过程中,船舶齿轮传动轴承受着各种力的作用,因此,确保船舶齿轮传动轴的受力均衡是保证传动系统稳定运行的重要一环。
本文将对船舶齿轮传动轴的受力均衡与分析进行详细介绍。
在船舶齿轮传动系统中,齿轮传递的动力会产生多种受力,包括扭矩、弯矩、径向力等。
为了保证船舶齿轮传动轴在工作中不产生过大的变形和扭曲,需要进行力学计算和分析,以确保传动轴能够承受力的作用。
其受力均衡与分析需要考虑以下几个方面:1. 受力分析:船舶齿轮传动轴的受力主要来自于齿轮传递的扭矩和径向力。
扭矩是由发动机输出的动力通过齿轮传递到船舶推进装置的力,而径向力则是由齿轮与齿轮之间的啮合作用所产生的力。
在进行受力分析时,需要考虑齿轮的尺寸、材质、啮合角等因素,以确定具体的受力情况。
2. 强度计算:在进行船舶齿轮传动轴的受力均衡与分析时,需要进行强度计算,以确定传动轴所能承受的最大载荷。
强度计算主要考虑传动轴的截面形状、材质及工作环境等因素。
通过应用强度学原理和材料力学知识,可以确定传动轴的最大允许扭矩和最大允许的径向力。
3. 材料选择:因为船舶齿轮传动轴需要承受较大的载荷,所以在材料的选择上需要注意材料的强度和耐磨性。
常见的传动轴材料有碳素钢、合金钢和不锈钢等,根据具体的工作环境和要求选择合适的材料。
4. 结构设计:在船舶齿轮传动轴的受力均衡与分析中,结构设计是一个重要的环节。
合理的结构设计可以减少受力集中,提高传动轴的强度和刚度。
例如,可以采用实心轴或者多边形截面轴等结构形式,以增加传动轴的强度和刚度,提高其承载能力。
除了受力均衡与分析,还需要关注传动轴的运行状况和维护保养。
定期进行传动轴的检查,包括检查轴的表面状况、啮合噪声和轴承温度等,及时发现问题并进行维修和更换。
高淳县“人才强教”工程公开课齿轮传动的方向及受力分析教师:孙长云二○○八年十二月十一日高淳县“人才强教”工程公开课教案教学环节与主要说明教学活动复习一、齿轮传动的受力说明:一对相互啮合的齿轮在传动过程中,主动轮给从动轮一个作用力,作用力的方向垂直于从动轮的齿面,即法向力。
复习二、各种齿轮传动的受力分解:1、直齿圆柱齿轮传动:可以分解成径向力和周向力;2、斜齿圆柱齿轮传动:可以分解成径向力、周向力和轴向力;3、对于锥齿轮传动:可以分解成径向力、周向力和轴向力;4、对于蜗杆传动:可以分解成径向力、周向力和轴向力;教师:作图说明学生:分析讨论教师:适当提问学生:回答图11复习三、各种齿轮传动受力分析比较齿轮传动类型分力关系分力判定方法径向力(F r)周向力(F t)轴向力(F a)直齿圆柱齿轮传动F t1=- F t2F r1=- F r2由接触点指向轮心对主动轮来说是阻力,其方向与主动轮的运动方向相反;对从动轮来说是动力,其方向与从动轮运动方向相同无斜齿圆柱齿轮传动F t1=- F t2F r1=- F r2F a1=- F a2主动轮的左(右)手定则直齿圆锥齿轮传动F t1=- F t2F r1=- F a2F a1=- F r2由接触点指向大端或F r1=- F a2F a1=- F r2蜗杆蜗轮传动F t1=- F a2F r1=- F r2F a1=- F t2F t1=- F a2F a1=- F t2复习四、综合举例讲解2008单招机电第57题:题57图所示为一机械传动方案,Ⅰ轴为输入轴,按图中箭头所示方向转动。
已知:Z1=Z2=Z3=30,Z4= Z12=20,Z5= Z8=40,Z6=Z7= Z9= Z11=60,Z10=80,Z1、Z2和Z3为直齿圆锥齿轮,Z4、Z6为斜齿轮,Z12为标准直齿圆柱齿轮。
分析该传动方案,回答下列问题:(第1~6小题每空1分,第7、8小题每空2分)。
(1)图中Z1、Z2和Z3构成机构。
专题三齿轮传动受力分析摘要:通过对常见齿轮传动的受力分析,解决定轴齿轮传动及齿轮轴受力方向的判别问题,概括并总结常见齿轮传动受力方向、齿轮旋转方向判断的规律。
关键词:齿轮传动啮合点圆周(径向、轴向)力1引言齿轮传动是现代机械中应用最为广泛的一种机械传动形式,是利用齿轮副来传递运动和力的一种机械传动。
在工程机械、矿山机械、冶金机械、各种机床及仪器、仪表工业中被广泛地用来传递运动和动力。
齿轮传动除传递回转运动外,也可以用来把回转转变为直线往复运动。
因此,正确判断齿轮传动受力方向、齿轮旋转方向以及齿轮轴受力方向很重要。
2 常见齿轮传动的类型直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动、蜗轮蜗杆传动等。
3 齿轮传动的径向力、圆周力和轴向力齿轮转动时根据齿轮传动的类型,会产生径向力、圆周力或轴向力。
径向力由啮合点指向齿轮回转中心的力,也就是沿直径方向的力。
常用Fr表示。
圆周力是啮合点处沿圆周方向的力,也就是啮合点处沿切线方向的力。
也称为切向力。
一对啮合传动的齿轮副中,主动齿轮圆周力的方向与该点的线速度方向相反,从动齿轮圆周力的方向与该点的线速度方向相同。
用Ft表示。
轴向力就是沿着齿轮轴向方向的力。
其方向由齿轮的旋向及回转方向共同决定。
用Fa表示。
4 常见齿轮传动的受力分析4.1直齿圆柱齿轮传动受力分析如图1所示,一对直齿圆柱齿轮传动,如果齿轮Z1是主动轮,其旋转方向是逆时针,其受力分析如图1。
(1)分力方向径向力Fr:由啮合点指向各自齿轮的回转中心(齿轮轴线)。
Fr1与Fr2方向相反。
圆周力Ft:主动轮所受圆周力与啮合点处切向速度方向相反(阻力);从动轮所受圆周力与啮合点切向速度方向相同(动力)。
直齿圆柱齿轮传动轴向力Fa:无。
(2)分力大小根据共点力系平衡原理,有:Fr1=-Fr2,Ft1=-Ft2,无轴向力。
4.2 斜齿圆柱齿轮传动受力分析(1)齿轮轮齿旋向判别正确判别斜齿圆柱齿轮轮齿旋向是进行齿轮受力分析以及判别齿轮旋转方向的基础。
齿轮受力综合分析齿轮是一种常用的机械传动元件,主要用于将一个轴上的动力或运动传递给另一个轴。
齿轮的工作原理是利用两个齿轮之间的啮合来传递动力和转矩,因此齿轮的强度和刚度是十分重要的。
齿轮传动在使用的过程中,由于外界的作用,会受到不同方向的力和力矩的作用,因此齿轮在设计时需要考虑各种力和力矩的综合作用。
齿轮的受力综合分析就是针对齿轮在使用过程中受到的各种力和力矩进行分析和计算,以确保齿轮能够安全、稳定地工作。
下面将介绍齿轮受力综合分析中需要考虑的各种因素。
1. 齿轮轴向力对于两个相啮合的齿轮,轴向力是沿着齿轮轴线方向上的力。
轴向力的大小和方向取决于齿轮在传递动力时所受的载荷和加速度,以及齿轮位置和啮合角度等因素。
一般情况下,齿轮所受的轴向力都会导致轴承的不必要负荷,因此在设计和制造齿轮时需要考虑这一因素。
齿轮切向力是指沿齿轮齿向方向的力,它与齿轮的强度和刚度密切相关。
齿轮工作时,由于啮合处的弯曲应力和拉伸应力的作用,会产生齿面接触处的切向力,这对齿轮的耐磨性和稳定性都有很大的影响。
因此,在设计齿轮时需要根据切向力的大小和方向制定相应的强度和刚度要求。
3. 齿轮弯曲应力齿轮在工作时会产生弯曲应力,主要集中在齿根和齿尖处。
由于齿轮的齿根处和齿谷处是应力集中部位,因此设计时需要特别注意这些位置的强度和刚度。
4. 齿轮振动齿轮振动是指齿轮在工作时由于啮合错位或不平衡造成的振动。
振动会导致齿面磨损加剧,甚至引起齿面的破坏。
因此在设计齿轮时需要考虑振动的影响,采取相应的措施进行消除或控制。
综合以上因素,在设计齿轮时需要根据所要传递的动力和转矩大小、啮合角度、齿数等因素,结合材料强度和制造工艺等因素进行综合分析和计算,以确保齿轮能够在安全、稳定的工作状态下工作。
齿轮传动受力分析(补)齿轮传动受力分析是传动机械设计过程中必不可少且重要的步骤。
齿轮传动特性决定了齿轮各种受力状态。
任何一个受力状态下的齿轮都会受到外界不同形式的受力作用,需要进行受力分析和识别各种受力的作用,从而工程设计者可以依据受力状况来判断齿轮的强度和承载能力是否能满足工程使用的要求。
齿轮传动的受力的来源主要有内外力扭矩、载荷再力和热膨胀压力三种。
其中,内外力扭矩和载荷再力是决定齿轮受力状况的两个因素。
内力扭矩是齿轮传动系统中必经因素,是齿轮受力的主要来源。
外力扭矩是指齿轮系统外部的动力源,例如异步电动机的初始动力,将直接作用于齿轮上,驱动旋转,使齿轮系统具有传动功能,而载荷再力是通过齿轮传动上的运动物体产生的受力,例如,当齿轮的轴线上的传动装置传动一个重物时,重物给予齿轮系统以反作用力,使其受到这个重物所施加的载荷再力。
此外,热膨胀压力也是齿轮受力来源之一,热膨胀压力是当齿轮传动系统受到持续长时间驱动和加热影响时,齿轮系统因热变形而产生的受力。
由于热膨胀受力和内外力扭矩和载荷再力之间关系复杂,齿轮传动受力分析时,必须考虑热膨胀受力的影响。
齿轮传动的受力分析主要由齿轮系统运动力学理论、齿轮系统在减速机体系中的动力学性能和齿轮系统动力传动时的受力情况组成。
其中,齿轮系统的运动力学理论多以实体力学分析为基础,包括齿轮系统运动原理、摩擦噪声分析、齿轮传动效率分析、参考齿轮受力学分析等方面,来对齿轮受力情况进行研究和分析,以便更好地掌握齿轮传动系统的受力情况,设计更高效的齿轮传动系统。
此外,现代数字技术的发展带给了齿轮传动系统更多的受力分析工具,比如数字动力学分析可以准确地模拟和研究齿轮传动系统受力情况,使齿轮系统的模型设计和优化更加容易。
另外,还可以做台架试验以评估齿轮传动实际状况,从而更好地控制齿轮传动系统受力情况并保证高效率传动性能。
总之,齿轮传动受力分析是传动机械设计过程中必不可少的一环,根据齿轮的受力状况,及时采取有效措施可以较好地分析研究和控制齿轮传动系统,以提高齿轮传动性能和实现高效率传动,从而保证工程使用的需求。
齿轮传动的受力分析齿轮传动是一种常见的机械传动方式,其主要特点在于能够有效地将输入轴的旋转速度转换为输出轴的旋转速度,并将旋转力矩进行传递。
齿轮传动具有传递功率大、传动效率高、运转平稳、使用寿命长等优点,广泛应用于机械制造领域。
齿轮传动的受力分析是研究齿轮传动力学特性的重要内容,这主要涉及到力矩传递、载荷分配、齿面接触等方面的问题。
以下将简要介绍齿轮传动的受力分析过程。
一、齿轮传动的力矩传递在齿轮传动中,力矩是通过齿轮齿面间的接触传递的。
因此,在进行齿轮传动的受力分析时,需要先求出齿轮的齿面接触力,从而确定齿轮传递的力矩。
齿轮齿面间的接触力主要由两部分组成:正向接触力和切向接触力。
正向接触力是指沿着齿轮轴向方向的力,主要用于传递齿轮的轴向载荷;切向接触力是指垂直于齿轮轴向方向的力,主要用于传递齿轮的扭矩。
在齿轮传动的受力分析中,通常采用Hertz接触理论来求解齿轮齿面间的接触力。
Hertz接触理论认为,在齿轮齿面间的接触区域内,应力分布呈现出一个类似于椭圆形的曲面。
根据该曲面的形状和大小,可以计算出齿轮齿面间的接触应力和接触面积。
一般来说,齿轮齿面间的接触应力越大,接触面积越小,齿轮的寿命就越短。
二、齿轮传动的载荷分配在齿轮传动中,不同的齿轮会承受不同的载荷,其原因主要是由于齿轮的尺寸、材料、齿形等不同。
因此,在进行齿轮传动的受力分析时,需要对齿轮的载荷分配进行研究。
齿轮载荷分配的主要方法有两种:按齿数配载法和按力配载法。
按齿数配载法是指根据齿轮的齿数比例来确定齿轮的载荷分配,这种方法简单、实用,但往往不能考虑到齿轮的实际情况。
按力配载法是指根据齿轮的载荷情况来计算其分配比例,这种方法更为精确,但需要进行较复杂的数学计算。
三、齿轮传动的齿面接触齿面接触是齿轮传动中的一个重要问题,直接影响到齿轮的使用寿命和传动效率。
在齿轮传动的受力分析中,需要关注齿面接触区域的形状、大小、位置等因素,并采取相应的措施来避免齿面接触问题的发生。