齿轮传动受力分析(补)
- 格式:ppt
- 大小:869.00 KB
- 文档页数:11
齿轮受力分析:
圆周力Ft :主动轮圆周力的方向与回转方向相反,从动轮圆周力的方向与回转方向相同。
径向力Fr :指向各自的回转中心。
轴向力Fa :使用左、右定则判断,只针对主动轮有效。
齿轮受力之间的关系:下角标1表示主动轮、下脚标2表示从动轮。
直齿圆柱齿轮:⎩⎨⎧-=-=2
121r r t t F F F F
斜齿圆柱齿轮:⎪⎩⎪⎨⎧-=-=-=21
2121a a r r t t F F F F F F
直齿圆锥齿轮:⎪⎩⎪⎨⎧-=-=-=21
2121r a a r t t F F F F F F
蜗杆传动:⎪⎩⎪⎨⎧-=-=-=212121t a a t r r F F F F F F
斜齿轮、蜗杆旋向判断:轴线竖直放置,斜线左边高为左旋,右边高为右旋。
例题:
如上图所示:判断齿轮1、2
的转动方向和旋向?
如上图所示:判断齿轮1、2的转向和旋向?
提示:①判断时根据轴向力的方向进行判断,同一根轴上的两个齿轮(包括斜齿轮、锥齿轮、蜗杆)所受轴向力大小相等,方向相反。
②注意齿轮之间作用力与反作用力,特别是直齿圆锥齿轮和蜗杆传动中的作用力与反作用力。
齿轮传动1. 直齿圆柱齿轮传动(渐开线)齿轮圆周速度较低,通常为v<20m/s。
传递的功率范围较大,传动效率较高,互换性好,装配和维修方便,可进行变位切削及各种整形、修缘,应用广泛。
(1)外啮合直齿圆柱齿轮传动适用于两轴线平行的齿轮传动。
外啮合时两齿轮转向相反。
(2)内啮合直齿圆柱齿轮传动适用于两轴线平行的齿轮传动。
两齿轮转向相同。
(3)齿轮齿条直齿圆柱齿轮传动将齿轮的回转运动变为齿条的往复移动或将齿条的往复移动变为齿轮的回转运动。
2. 单圆弧齿轮传动单圆弧齿轮传动的小齿轮做成凸圆弧形;大齿轮的轮齿做成凹齿。
3. 斜齿圆柱齿轮传动适用于两轴线平行的齿轮传动。
外啮合时两齿轮转向相反。
内啮合两齿轮转向相同。
齿轮圆周速度比直齿圆柱齿轮高,适宜于高速重载传动。
传递的功率范围较大,功率可达45000kW,传动效率较高,互换性好,装配和维修方便,可进行变位切削及各种整形、修缘,应用广泛。
4. 人字齿圆柱齿轮传动适用于两轴线平行的齿轮传动。
啮合时两齿轮转向相反。
克服了平行轴斜齿圆柱齿轮传动轴向分力的问题。
但对轴系结构有了新的特别的要求。
5.直齿圆锥齿轮传动直齿圆锥齿轮传动多用于相交轴传动,传动效率比较高,一般可达98%,两齿轮轴线组成直角的锥齿轮副应用最为广泛。
直齿圆锥齿轮沿轮齿齿长方向为直线,而且其延长线相交于轴线。
6.斜齿圆锥齿轮传动斜齿圆锥齿轮沿轮齿齿长方向为直线,但且其延长线不与于轴线相交。
7. 曲线齿锥齿轮传动比直齿锥齿轮传动平稳,噪声小、承载能力大。
但螺旋角会产生轴向力。
8. 交错轴齿轮传动由两个螺旋角不等(或螺旋角相等、旋向也相同)的斜齿轮组成的齿轮副。
两齿轮的轴线可成任意轴线。
缺点是齿面为点接触,齿面间的滑动速度大,所以承载能力和传动效率比较低,故只能用于轻载或传递运动的场合9.蜗轮蜗杆传动蜗轮蜗杆传动传递交错轴的运动和动力。
传动比大,工作平稳,噪声较小,结构紧凑,在一定的条件下有自锁性能,但效率低,发热较大。
齿轮传动受力分析(补)齿轮传动受力分析是传动机械设计过程中必不可少且重要的步骤。
齿轮传动特性决定了齿轮各种受力状态。
任何一个受力状态下的齿轮都会受到外界不同形式的受力作用,需要进行受力分析和识别各种受力的作用,从而工程设计者可以依据受力状况来判断齿轮的强度和承载能力是否能满足工程使用的要求。
齿轮传动的受力的来源主要有内外力扭矩、载荷再力和热膨胀压力三种。
其中,内外力扭矩和载荷再力是决定齿轮受力状况的两个因素。
内力扭矩是齿轮传动系统中必经因素,是齿轮受力的主要来源。
外力扭矩是指齿轮系统外部的动力源,例如异步电动机的初始动力,将直接作用于齿轮上,驱动旋转,使齿轮系统具有传动功能,而载荷再力是通过齿轮传动上的运动物体产生的受力,例如,当齿轮的轴线上的传动装置传动一个重物时,重物给予齿轮系统以反作用力,使其受到这个重物所施加的载荷再力。
此外,热膨胀压力也是齿轮受力来源之一,热膨胀压力是当齿轮传动系统受到持续长时间驱动和加热影响时,齿轮系统因热变形而产生的受力。
由于热膨胀受力和内外力扭矩和载荷再力之间关系复杂,齿轮传动受力分析时,必须考虑热膨胀受力的影响。
齿轮传动的受力分析主要由齿轮系统运动力学理论、齿轮系统在减速机体系中的动力学性能和齿轮系统动力传动时的受力情况组成。
其中,齿轮系统的运动力学理论多以实体力学分析为基础,包括齿轮系统运动原理、摩擦噪声分析、齿轮传动效率分析、参考齿轮受力学分析等方面,来对齿轮受力情况进行研究和分析,以便更好地掌握齿轮传动系统的受力情况,设计更高效的齿轮传动系统。
此外,现代数字技术的发展带给了齿轮传动系统更多的受力分析工具,比如数字动力学分析可以准确地模拟和研究齿轮传动系统受力情况,使齿轮系统的模型设计和优化更加容易。
另外,还可以做台架试验以评估齿轮传动实际状况,从而更好地控制齿轮传动系统受力情况并保证高效率传动性能。
总之,齿轮传动受力分析是传动机械设计过程中必不可少的一环,根据齿轮的受力状况,及时采取有效措施可以较好地分析研究和控制齿轮传动系统,以提高齿轮传动性能和实现高效率传动,从而保证工程使用的需求。
齿轮传动的受力分析齿轮传动是一种常见的机械传动方式,其主要特点在于能够有效地将输入轴的旋转速度转换为输出轴的旋转速度,并将旋转力矩进行传递。
齿轮传动具有传递功率大、传动效率高、运转平稳、使用寿命长等优点,广泛应用于机械制造领域。
齿轮传动的受力分析是研究齿轮传动力学特性的重要内容,这主要涉及到力矩传递、载荷分配、齿面接触等方面的问题。
以下将简要介绍齿轮传动的受力分析过程。
一、齿轮传动的力矩传递在齿轮传动中,力矩是通过齿轮齿面间的接触传递的。
因此,在进行齿轮传动的受力分析时,需要先求出齿轮的齿面接触力,从而确定齿轮传递的力矩。
齿轮齿面间的接触力主要由两部分组成:正向接触力和切向接触力。
正向接触力是指沿着齿轮轴向方向的力,主要用于传递齿轮的轴向载荷;切向接触力是指垂直于齿轮轴向方向的力,主要用于传递齿轮的扭矩。
在齿轮传动的受力分析中,通常采用Hertz接触理论来求解齿轮齿面间的接触力。
Hertz接触理论认为,在齿轮齿面间的接触区域内,应力分布呈现出一个类似于椭圆形的曲面。
根据该曲面的形状和大小,可以计算出齿轮齿面间的接触应力和接触面积。
一般来说,齿轮齿面间的接触应力越大,接触面积越小,齿轮的寿命就越短。
二、齿轮传动的载荷分配在齿轮传动中,不同的齿轮会承受不同的载荷,其原因主要是由于齿轮的尺寸、材料、齿形等不同。
因此,在进行齿轮传动的受力分析时,需要对齿轮的载荷分配进行研究。
齿轮载荷分配的主要方法有两种:按齿数配载法和按力配载法。
按齿数配载法是指根据齿轮的齿数比例来确定齿轮的载荷分配,这种方法简单、实用,但往往不能考虑到齿轮的实际情况。
按力配载法是指根据齿轮的载荷情况来计算其分配比例,这种方法更为精确,但需要进行较复杂的数学计算。
三、齿轮传动的齿面接触齿面接触是齿轮传动中的一个重要问题,直接影响到齿轮的使用寿命和传动效率。
在齿轮传动的受力分析中,需要关注齿面接触区域的形状、大小、位置等因素,并采取相应的措施来避免齿面接触问题的发生。