小学六年级数学 《图形的旋转(一)》教学设计
- 格式:pptx
- 大小:3.13 MB
- 文档页数:11
《图形的旋转》教学设计(精选7篇)《图形的旋转》教学设计篇一教学目标:1、经历欣赏图案、综合运用图形的变换知识在方格纸上设计图案的过程。
2、能灵活运用图形的平移、对称和旋转等在方格纸上设计图案。
3、认识到许多图案都可以借助图形变换来设计,感受图形变换的美,获得数学活动的积极体验。
教学准备:图案制作过程的课件、方格纸。
教学方案:一、欣赏图案教师谈话,并用课件出示书中的两幅图案,学生观察、交流这些图案有什么特点。
然后进行激励性对话。
通过启发性谈话,引导学生观察、交流图案的特点,激发学生的学习兴趣,为设计图案作铺垫。
师:同学们,我们分别认识了图形的对称、平移、旋转这三种图形变换方式。
其实,在许多图案中,经常同时有2种或3种图形变换方式。
请看两个图案。
课件呈现教材上的两个图案。
师:观察一下这两个图案,你发现它们各有什么特点?学生可能回答。
第一幅都是用梯形组成的。
第一幅图是轴对称图形。
第一幅图也可以通过旋转得到了。
第二幅图是三角形旋转得到的。
……师:同学们观察得真仔细。
你喜欢这样的图案吗?生:喜欢。
师:想不想学会设计这样的图案?生:想学。
二、设计图案1.说明设计图案的奥秘,学生利用课件动态地展示第一个图案的制作过程。
先完成第①、②两步。
2.讨论:下面怎么办?让学生充分发表自己的意见,完成③、④两步。
通过动态展示一个梯形是怎样一步步变换成漂亮的图案的过程,使学生认识到许多图案都可以借助图形变换来设计,感受图形变换的美。
通过讨论,使学生了解设计图案方法的多样化,丰富学生的实践活动经验。
师:同学们观察得真仔细。
你喜欢这样的图案吗?生:喜欢。
师:想不想学会设计这样的图案?生:想学。
师:老师告诉你们,用一个简单的图形,巧妙地利用对称、平移和旋转就可以设计出这些精美的图案。
让我们一起来设计第一个图案。
教师用课件呈现了方格图。
师:在方格纸上先画一个梯形。
课件展示画的过程和结果。
师:然后画出这个梯形的对称图形。
课件展示画的过程和结果。
2024《图形的旋转》说课稿范文今天我说课的内容是《图形的旋转》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《图形的旋转》是人教版小学数学六年级下册第五单元第3课时的内容。
它是在学生已经学习了几何图形的基本概念和性质的基础上进行教学的,是小学数学几何领域中的重要知识点,而且图形的旋转在生活中有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解图形的旋转概念,掌握旋转角度的度量方式。
②能力目标:在图形旋转的计算中,培养学生抽象思维和逻辑推理能力。
③情感目标:在图形的旋转过程中,让学生体会到数学的美妙和应用的实用性。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解图形的旋转概念,能够根据旋转中心和旋转角度进行旋转运算。
难点是:理解旋转角度的度量方式,掌握旋转运算的具体步骤。
二、说教法学法学生在认知过程中,需要通过感知、思考、实践等活动来主动构建新知识。
因此,这节课我采用的教法:概念导入法,启发式教学法;学法是:探究学习法,合作学习法。
三、说教学准备在教学过程中,我采用多媒体辅助教学,以丰富的图像和动画呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效果。
四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”。
本着这个教学理念,我设计了如下教学环节。
环节一、谈话引入,导入新课。
课堂伊始,我会给学生出一个问题:你们知道地球为什么会有昼夜交替吗?通过学生的回答,我引导他们思考地球的自转。
进而引入今天的课题:图形的旋转。
设计意图:通过谈话引入,让学生从生活中的实例了解旋转的概念,引起他们的兴趣,为本节课的学习打下基础。
环节二、探究新知,突破难点。
1、图形的旋转:首先,我会通过以一个正方形为例,来引导学生了解图形的旋转概念。
让学生观察正方形的旋转过程,并发现旋转中心和旋转角度与图形的位置和形状的关系。
《图形的旋转》数学教案标题:《图形的旋转》数学教案一、教学目标1. 知识与技能目标:理解并掌握图形旋转的基本概念,能够准确地描述图形旋转的过程。
2. 过程与方法目标:通过观察、思考、操作等过程,培养学生对图形旋转的理解能力,提高学生的空间观念。
3. 情感态度价值观目标:激发学生对数学学习的兴趣,培养他们的创新意识和合作精神。
二、教学重难点重点:理解和掌握图形旋转的基本概念和方法。
难点:理解旋转中心、旋转角度和旋转方向在图形旋转中的作用。
三、教学准备教具:多媒体设备、各种可旋转的实物模型、几何画板等。
学具:纸、笔、直尺、量角器等。
四、教学过程1. 导入新课通过展示生活中常见的旋转现象,引导学生发现这些现象的共同特点,从而引出“图形的旋转”这一课题。
2. 新课讲授(1)讲解图形旋转的基本概念,包括旋转中心、旋转角度和旋转方向。
(2)通过实物模型或几何画板,演示图形旋转的过程,并让学生尝试描述这个过程。
(3)给出一些具体的例子,让学生自己动手操作,感受图形旋转的过程。
3. 练习巩固设计一系列练习题,让学生通过做题来巩固所学知识。
题目可以分为基础题和提高题,以满足不同层次学生的学习需求。
4. 小结反思让学生回顾本节课的主要内容,总结他们在学习过程中遇到的问题和解决的方法,以及他们对图形旋转有了哪些新的认识。
5. 布置作业设计一些课后作业,让学生在课后进一步巩固和应用所学知识。
五、教学评价通过课堂观察、作业检查、测验等方式,了解学生对图形旋转的理解程度和应用能力,以此评估教学效果。
六、教学反思对本次教学进行反思,分析教学过程中的优点和不足,以便于改进以后的教学。
《图形的旋转一》教学设计《图形的旋转一》教学设计(精选5篇)作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么问题来了,教学设计应该怎么写?以下是店铺整理的《图形的旋转一》教学设计(精选5篇),希望对大家有所帮助。
《图形的旋转一》教学设计1教学目标:1、通过动手操作、实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。
2、通过操作、观察,进一步培养学生的空间思维观念。
教学重点:了解一个简单的图形经过旋转制作复杂图形的过程教学难点:让学生清楚的表述图形的旋转过程。
教学准备:学生准备基本图形卡片、带有小方格的纸教师准备多媒体演示文稿、纸做小风车。
教学时间:20分钟教学过程:一、在游戏中导入新知1、教师手拿风车走向讲台。
问:同学们,认识它吗?玩过吗?在今天这个舞台上你敢玩吗?找一名学生上台展示玩法。
问:在你玩的过程中,这个风车的风叶是怎样运动的?它又是怎样旋转的呢?2、看了刚才这位同学的精彩表演,大家是不是也想玩一玩呀?那么就请同学们想办法让手中的东西、桌子上的东西、包中的东西旋转起来,我们来比一比,看谁最会玩?学生活动,教师巡视。
1、刚才,老师看了一下这位同学的玩法,这位同学的玩法很独特,我们就请到前面来展示一下他的玩法。
你能用语言具体描述一下它的旋转过程吗?(说清绕哪一点、按什么方向旋转,旋转的角度)1、刚才大家都让自己手中的东西旋转了起来,玩的开心吗?下面我们换一个玩法。
大家猜想一下,如果我们让一个基本图形旋转起来,会形成什么样的图案呢?2、大屏幕呈现一些美丽的图案。
这些图案美不美?这里的每一个图案都是经过一个图形的旋转而得到的,今天我们就走进图形旋转的天地。
板书课题:图形的旋转二、在实践中探索图形的旋转过程1、请大家继续欣赏这些美丽的图案,他们分别是由哪些基本图形经过旋转得到的呢?下面我们就这两幅图为例来探讨一下。
图形的旋转课件(通用7篇)图形的旋转课件1一、教学目标1、知道图形旋转的概念,能找出旋转图形中的旋转中心、旋转角度和对应关系。
2、通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、观察能力,以及与人合作交流的能力。
3、经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感。
二、教学重点掌握旋转的有关概念,探索和发现旋转后图形的形状和大小都没有发生变化;会准确找出对应点、对应线段、对应角,旋转中心、旋转角。
三、教学难点对图形旋转过程中旋转角相等的理解,会准确找出旋转角。
旋转中心不在三角形顶点时旋转角的确定。
四、课时安排:一课时五、教学过程一、出示学习目标1、板书课题同学们,本节课我们一同来学习“图形的旋转”。
本节课的学习目标是(投影)2、出示学习目标(1)通过实例观察,认识并描述图形的旋转。
(2)了解一个简单的图形经过旋转制作复杂图形的过程,知道图形旋转的三要素(点、方向、度数)。
(3)欣赏图形的旋转变换所创造出的美,感受旋转在生活中的应用,体会数学的价值。
二、出示生活图片(一)图形的旋转,旋转中心,旋转角,方向1、[演示]:演示生活中常见的转动,观察转动时各点的运动情况得到图形在转动时,位置始终不变的那一点叫做旋转中心。
图形转动的角度叫做旋转角。
区分顺时针旋转和逆时针旋转,以及旋转的三要素。
2、由钟表的旋转,得到线段转动的旋转角,学生描述钟表的旋转,加深旋转三要素的记忆,同时培养学生的语言表达能力。
再由线段的旋转引申到几何图形的旋转,进一步得到:旋转前后的两个图形形状和大小不变,只是位置发生变化。
(二)感受生活中的旋转在日常生活中,我们可以看到,一些图形绕着某一个点旋转一定角度时,能与自身重合。
你能举出这样的例子吗?(三)全课,巩固方法今天我们学习了图形的一种运动————旋转。
通过学习你有什么收获?(四)布置作业:1、课本习题2、32、动手操作:请设计一个绕一点旋转一定角度后能与自身重合的图形。
北师大版六年数学下册《第三单元图形的旋转(一)》说课稿一. 教材分析《第三单元图形的旋转(一)》是人教版小学六年级数学下册的一章内容。
这一章节主要让学生掌握图形旋转的基本概念,理解旋转的性质,并能够运用旋转知识解决实际问题。
内容主要包括图形的旋转,旋转的性质,旋转变换在实际中的应用等。
本章内容是学生进一步学习几何知识的基础,也是培养学生空间想象能力和思维能力的重要环节。
二. 学情分析六年级的学生已经掌握了基本的平面几何知识,具备了一定的空间想象能力。
但是,对于图形的旋转,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于旋转的性质和旋转变换在实际中的应用还不够理解,需要通过具体的例题和练习来进行引导和培养。
三. 说教学目标1.知识与技能:通过学习,使学生掌握图形旋转的基本概念,理解旋转的性质,能够运用旋转知识解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和思维能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的观察能力、操作能力和创新能力,使学生体验到数学的乐趣。
四. 说教学重难点1.教学重点:使学生掌握图形旋转的基本概念,理解旋转的性质,能够运用旋转知识解决实际问题。
2.教学难点:学生对于旋转的性质和旋转变换在实际中的应用的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、合作学习法等,引导学生观察、思考、操作、交流,培养学生的空间想象能力和思维能力。
2.教学手段:利用多媒体课件、实物模型、练习题等,辅助教学,提高教学效果。
六. 说教学过程1.导入:通过展示一些实际生活中的旋转现象,如旋转门、旋转木马等,引发学生的兴趣,引入课题。
2.新课导入:介绍图形旋转的基本概念,引导学生理解旋转的性质。
3.实例讲解:通过具体的实例,讲解旋转变换在实际中的应用,让学生体会旋转知识的重要性。
4.课堂练习:设计一些练习题,让学生运用所学的旋转知识进行解答,巩固所学内容。
23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转,点O 叫做旋转中心,转动的角叫做旋转角.如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做这个旋转的对应点. 下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A 、B 分别移动到什么位置?解:(1)旋转中心是O ,∠AOE 、∠BOF 等都是旋转角.(2)经过旋转,点A 和点B 分别移动到点E 和点F 的位置.例2.(学生活动)如图,四边形ABCD 、四边形EFGH 都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A 、B 、C 、D 分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD 的基本图案通过旋转而得到的.(2)•画图略.(3)点A 、点B 、点C 、点D 移到的位置是点E 、点F 、点G 、点H . 最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.四、应用拓展例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,•另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S △OEE`=S △ODD`,那么只要说明△OEF ′≌△ODD ′.解:面积不变.理由:设任转一角度,如图所示.在Rt △ODD ′和Rt △OEE ′中∠ODD ′=∠OEE ′=90°∠DOD ′=∠EOE ′=90°-∠BOEOD=OD∴△ODD ′≌△OEE ′∴S △ODD`=S △OEE`∴S 四边形OE`BD`=S 正方形OEBD =14五、归纳小结(学生总结,老师点评)本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.六、布置作业1.教材P66 复习巩固1、2、3.2.《同步练习》一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有( ).A .6个B .7个C .8个D .9个2.从5点15分到5点20分,分针旋转的度数为( ).A .20°B .26°C .30°D .36°3.如图1,在Rt △ABC 中,∠ACB=90°,∠A=40°,以直角顶点C 为旋转中心,•将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,则旋转角等于( ).A .70°B .80°C .60°D .50°(1) (2) (3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,•点E•在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC 为等边三角形,D 为△ABC•内一点,•△ABD•经过旋转后到达△ACP 的位置,则,(1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP•是________三角形.三、综合提高题.1.阅读下面材料:如图4,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置.如图5,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置.(4) (5) (6) (7)如图6,以A 点为中心,把△ABC 旋转90°,可以变到△AED 的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上一点,AF=12AB . (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE 移到△ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系.2.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转旋转中心旋转角 2.A 45° 3.点A 60°等边三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.(2)BE=•DF,BE⊥DF2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.。
水龙头的转动;钟摆的运动;荡秋千运动。
a.2b.3c.4d.5②教科书第56页练习1,2,3。
义; (3) 能够准确指出旋转中心、旋转角、旋转的对应点。
让学生从数学的角度认识现实生活,从而内化旋转的定义,为活动2的顺利进行打好基础。
活动2 请大家在硬纸板上,挖一个三角形洞,再挖一个小洞o 作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形洞(△abc),然后围绕o 转动硬纸板,再描出这个挖掉的三角形洞(△a′b′c′),移开硬纸板。
问题:线段oa 与线段oa′间有什么关系? ∠aoa′与∠bob′间有什么关系? δabc 与δa′b′c′形状和大小有什么关系?学生动手实践,教师利用几何画板操画图形的旋转变换后,指出进一步探究的方向.组织学生交流,得出正确结论。
学生独立进行数学实验,按照教师提出的探究方向度量、分析、归纳、抽象概括出图形旋转的特征:1.对应点到旋转中心的距离相等;2.对应点与旋转中心连线的夹角(旋转角)彼此相等;3.旋转变换前后的图形全等。
在活动2中教师应关注学生通过动手实验后发现的“新大陆”,即图中所存在的线段、角的相等关系,并对其中正确的发现予以肯定,鼓励学生课后进行论证.同时还应明确指出问题中涉及的是旋转变换的本质特征,应重点掌握。
通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力。
活动32.如教科书图23.1-4,e 是正方形abcd 中cd 边上任意一点,以点a为中心,把δade 顺时针旋转90°,画出旋转后的图形.2.巩固练习:①随堂练习1,2,3.②教科书第58页1,2,3.③动手操作:请设计一个绕一点旋转60°后能与自身重合的图形.在学生归纳出图形旋转的特征后,教师提出相关的数学问题. 学生独立思考、分析、解答问题. 在本次活动中,教师应重点关注: (1) 学生画出图形后,能否准确地运用旋转的基本特征表达出画图的理论依据; (2) 学生画图的不同方法。
2023年《图形的旋转》教学设计(精选11篇)《图形的旋转》教学设计篇1教学目标1、使学生通过观察、操作等活动,认识图形的旋转,能在方格纸上将简单的图形旋转90°。
2、使学生经历从旋转的角度欣赏和设计图案的过程,体验旋转的应用价值,发展初步的推理能力和空间观念。
3、使学生在认识旋转的过程中,感受与他人合作的乐趣,获得学习成功的愉悦体验,增强对图形变换的兴趣。
课时安排1课时教学重点使学生通过观察、操作等活动,认识图形的旋转,能在方格纸上将简单的图形旋转90°。
教学难点使学生通过观察、操作等活动,认识图形的旋转,能在方格纸上将简单的图形旋转90°。
教学过程1、导入新课出示例2:下面中的转杆的打开和关闭分别是怎样运动的?它们的运动有什么相同点和不同点?你从中能读出哪些数学信息?讲授新课师生交流数学信息:①转杆的打开和关闭都是绕着一个点旋转。
②转杆的打开和关闭旋转的方向正好相反。
教师强调:与时针旋转方向相同的是顺时针旋转,相反的逆时针旋转。
提问:转杆的打开和关闭,分别是绕哪个点按什么方向旋转的?旋转了多少度?生观察图并交流观察结果。
师生交流后小结:①转杆的打开是绕o顺时针旋转90°。
②转杆的打开是绕o逆时针旋转90°2、重难点精讲出示例3:你会把方格纸上的三角形绕点A逆时针旋转90°吗?你能在方格图上画出旋转后的图形吗?先画一画,再与同学交流。
生尝试观察后师生交流:旋转直角三角形时,先把直角的两条边分别逆时针旋转90°再连接两条边的顶点,得到旋转后的三角形。
旋转前后的三角形,只是位置发生了变化,性质和大小都没有改变。
归纳小结通过刚才的探究,你能说说如何旋转直角三角形,和旋转图形时要注意的问题?师生交流后小结:旋转直角三角形时,①先把直角的两条边分别逆时针旋转90°再连接两条边的顶点,得到旋转后的三角形。
②旋转前后的三角形,只是位置发生了变化,性质和大小都没有改变。