初二数学分式的加减法
- 格式:docx
- 大小:1.72 MB
- 文档页数:6
初二数学分式的加减运算分式是初中数学中重要的概念之一,也是数学中常见的计算方式。
在初二阶段,学生需要掌握分式的加减运算方法。
本文将介绍初二数学分式的加减运算,并通过实例进行讲解。
一、分式的基本概念回顾在进行分式的加减运算之前,我们需要回顾分式的基本概念。
一个分数由分子和分母组成,分子表示分数的实际数量,分母表示把整体分成的份数。
分式可以用下面的形式表示:a/b其中,a为分子,b为分母。
分式可以表示有理数,可以是整数,也可以是小数。
在分式的加减运算中,我们需要找到公共分母,然后进行运算。
二、分式的加法运算分式的加法运算是将两个分式相加,首先需要找到它们的公共分母,然后将其转化为相同的分数进行运算。
具体步骤如下:1. 找到两个分式的公共分母。
2. 将分式转化为相同的分母。
3. 将分子相加,分母保持不变。
4. 如果结果可以简化,进行简化。
5. 如果需要,将结果写成最简形式。
下面通过一个实例来说明分式的加法运算:例1:计算 1/3 + 1/4解:首先找到两个分式的公共分母,这里可以取12作为公共分母。
然后将分式转化为相同的分母,得到:4/12 + 3/12接下来,将分子相加,分母保持不变,得到:7/12最后,结果已经是最简形式,因此答案为 7/12。
三、分式的减法运算分式的减法运算与加法运算类似,也需要找到公共分母,然后将其转化为相同的分数进行运算。
具体步骤如下:1. 找到两个分式的公共分母。
2. 将分式转化为相同的分母。
3. 将分子相减,分母保持不变。
4. 如果结果可以简化,进行简化。
5. 如果需要,将结果写成最简形式。
下面通过一个实例来说明分式的减法运算:例2:计算 2/5 - 1/10解:首先找到两个分式的公共分母,这里可以取10作为公共分母。
然后将分式转化为相同的分母,得到:4/10 - 1/10接下来,将分子相减,分母保持不变,得到:3/10最后,结果已经是最简形式,因此答案为 3/10。
四、分式的加减混合运算在分式的加减运算中,也可能出现多个分式混合的情况,我们可以先进行分式的加法运算,然后再进行减法运算。
八年级下册数学分式的加减法摘要:一、分式的基本概念1.分式的定义2.分式的组成部分3.分式的基本性质二、分式的加减法1.分式加法的规则2.分式减法的规则3.分式加减混合运算的顺序三、分式的加减法实际应用1.实际问题中的分式加减法2.利用分式的加减法解决实际问题正文:一、分式的基本概念分式是数学中一种常见的表达形式,它由分子和分母组成,用斜杠“/”表示。
分式的定义是:如果A 和B 是两个整式,并且B 不等于零,那么我们用A 除以B 所得到的商A/B 就叫做分式。
分式的组成部分包括分子、分母和分数线,其中分子和分母都是整式,分数线表示分式的开始和结束。
分式的基本性质有:分子和分母同时乘以或除以一个非零数,分式的值不变;分子和分母同时加上或减去一个相同的数,分式的值不变。
二、分式的加减法分式的加减法是数学中常见的运算,其规则如下:1.分式加法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的和就是(A+C)/B;如果分母不同,需要将它们通分,然后将分子相加,分母保持不变。
2.分式减法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的差就是(A-C)/B;如果分母不同,需要将它们通分,然后将分子相减,分母保持不变。
3.分式加减混合运算的顺序:在没有括号的情况下,先进行乘除运算,再进行加减运算。
如果有括号,先进行括号内的运算。
三、分式的加减法实际应用分式的加减法在实际问题中有很多应用,例如在物理、化学、地理等学科中,常常需要用分式的加减法来解决问题。
例如,在化学中,可能会遇到需要将两种物质的摩尔质量相加或相减的问题,这时候就需要用到分式的加减法。
在解决实际问题时,我们需要先将问题抽象成数学模型,然后根据问题中给出的条件,选择合适的数学方法,包括分式的加减法,来解决问题。
以上就是八年级下册数学分式的加减法的内容。
分式的加减法是数学中重要的基本概念和基本运算,它在解决实际问题中有着广泛的应用。
分式加减法运算法则分式加减法运算法则:1. 分式加法:分式加法是把分子相加或者相减,而分母保持不变,用一个新分式来表示和或差。
一般格式是:(分子1/分母)➕(分子2/分母)=(分子1+分子2/分母)。
2. 分式减法:分式减法也是把分子相减或者相加,而分母保持不变,用一个新分式来表示差。
一般格式是:(分子1/分母)➖(分子2/分母)=(分子1-分子2/分母)。
3. 分式整体乘法:分式整体乘法是将两个分式的分子相乘,而分母相乘。
一般格式是:(分子1/分母1)×(分子2/分母2)=(分子1×分子2/分母1×分母2)。
4. 分式整体除法:分式整体除法是将分式的分母相乘,而分子相乘。
一般格式是:(分子1/分母1)÷(分子2/分母2)=(分子1×分母2/分母1×分子2)。
5. 一般的分式的运算:在分式加减法和分式乘除法之后,还可以进行一般的计算,比如:(分子/分母)+(x/分母)+3=(分子+x+3×分母/分母)。
其中的 +x 和+3 就是一般的计算。
因此,在做分式加减法和乘除法的时候,我们首先要确定每个分式中分子和分母,然后根据其法则做整体或一般计算,得出正确结果。
此外,分母一般不能为0,否则会出现无穷大或者不可定义解答;分子和分母要使用相同的符号,否则会导致结果的正负不正确;如果分子和分母出现了负数,要根据实际情况将负号带到分子或者分母,以便能够得到正确的答案。
此外,分式的运算还有一个重要的技巧,即分数化简,就是用数学技巧找出分数的最简形式。
常用的分数化简诀窍就是先分子分母分别除以最大公约数,然后将分子和分母比较,可以将分母统一为最小值,再算出最终结果。
例如,有分式等式:(4/8)=(2/4),明显可以看出它们的最简形式应该为:(1/2)=(1/2),所以,我们只要在做分数运算的时候注意分数化简,就可以得出正确的答案。
总之,分式加减法和乘除法运算都要掌握其基本原理和规律,熟悉一般计算技巧,注意分数化简,以及分母不能为0,就可以得出正确的结果了。
初二数学分式的加减法
分式的加减法
学习目标
1.能利用分式的基本性质通分.
2.会进行同分母分式的加减法.
3.会进行异分母分式的加减法.
要点梳理
要点一、同分母分式的加减
同分母分式相加减,分母不变,把分子相加减;
上述法则可用式子表为:
.
要点诠释:
(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.
(2)分式的加减法运算的结果必须化成最简分式或整式.
要点二、分式的通分
与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.
要点诠释:
(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.
(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.
(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.
要点三、异分母分式的加减
异分母分式相加减,先通分,变为同分母的分式,再加减.
上述法则可用式子表为:
.
要点诠释:
(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.
类型四、分式的混合运算
4、计算:(1);
(2)
巩固练习
一.选择题
1.已知()
A. B. C. D.
2.等于()
A. B. C. D.3.的计算结果是()
A. B.
C.D.
4. 化简,其结果是()
A. B. C. D.
5.等于( )
A. B. C. D.
6.等于()
A. B. C. D.1
二.填空题
7. 分式的最简公分母是______.
8.分式的最简公分母是______.
9.计算的结果是____________.
10. ____________.
11. _________.
12.若=2,=3,则=______.
三.解答题
13. 计算下列各题:
(1)(2)
(3)(4)
14.已知,用“+”或“-”连结M、N,有三种不同的形
式:M+N、M-N、N-M,请你任选其中一种进行计算,并化简求值,其中∶=5∶2.15.已知,求代数式的值.。