常用材料与热处理
- 格式:pdf
- 大小:2.07 MB
- 文档页数:32
常用金属材料及热处理代号硬度材料牌号 图纸热处理标注HB HRc热处理目的Q235-A ─ 不热处理16Mn─ 不热处理渗碳淬硬S-C59 表面≥59表面耐磨,心部韧性高,去碳处可钻孔20 20Cr 渗碳高频淬硬S-G59表面≥59表面耐磨,心部韧性高,不淬硬处可钻孔正火Z ≤230 组织均匀化,消除应力调质T235 220~250提高性能,改善组织调质T265 250~280提高性能,改善组织淬硬C35 30~40 变形小,硬度略提高淬硬C42 40~45 提高强度和耐磨性,有一定的韧性 淬硬C48 45~50 提高强度和耐磨性,有一定的韧性高频淬硬G48 表面45~50表面耐磨,心部韧性高,变形小4540Cr高频淬硬G52 表面50~55表面耐磨,心部韧性高,变形小调质T265 250~280提高性能,改善组织38CrMoAlA氮化D900 HV≥850 提高表面硬度及耐磨性,耐疲劳,耐腐蚀性能退火Th ≤230 降低硬度 65Mn60Si2MnA50CrVA 淬硬C42 40~45 提高强度和弹性退火Th ≤230 降低硬度 GCr15淬硬C59 ≥59 提高硬度和耐磨性退火Th ≤230 降低硬度 T8A淬硬C58 55~60 提高硬度和耐磨性退火Th ≤230 降低硬度 T10AT12A 淬硬C62 ≥62 提高硬度和耐磨性退火Th ≤255 降低硬度 9SiCrCr12MoVW18Cr4V 淬硬C62 ≥62 提高硬度和耐磨性 HT100HT200HT250热时效去应力QT400-15QT600-3热时效去应力ZG200-400ZG270-500正火ZZCuSn5Pb5Zn5 ─不热处理 ZAlSi7Mg ─不热处理 T2 ─不热处理H62 ─不热处理L2 ─不热处理。
常用材料热处理工艺完整版热处理工艺是指通过加热、保温和冷却等一系列措施,改变材料的组织结构和性能的一种工艺。
常用材料热处理工艺主要包括退火、正火、淬火和回火等。
1.退火退火是指将材料加热到一定温度,保温一段时间,然后缓慢冷却到室温的过程。
退火能够消除材料内部的应力,改善材料的可加工性和机械性能。
常见的退火工艺有全退火、球化退火和时效退火等。
-全退火全退火是将材料加热到高于临界温度的区域,使组织发生再结晶,然后缓慢冷却到室温。
全退火能够使材料获得良好的塑性和韧性。
-球化退火球化退火是将材料加热到高于临界温度的区域,使组织中的晶粒成球状,然后缓慢冷却。
球化退火能够使材料获得细小均匀的晶粒,提高材料的韧性和延展性。
-时效退火时效退火是将材料加热到一定温度,在保温一定时间后快速冷却。
时效退火能够使材料的晶粒尺寸增大,提高材料的硬度和抗腐蚀性能。
2.正火正火是将材料加热到临界温度并保持一段时间,然后缓慢冷却。
正火能够消除材料内部的应力,使组织细化,提高材料的硬度和韧性。
正火适用于一些低碳钢和合金钢的热处理。
3.淬火淬火是指将材料加热到临界温度以上,保温一段时间,然后迅速冷却到室温。
淬火能够使材料快速形成马氏体组织,并获得高硬度。
淬火适用于一些高碳钢和合金钢的热处理。
4.回火回火是指将淬火处理后的材料加热到一定温度,保温一段时间,然后缓慢冷却。
回火能够使材料的硬度降低,提高材料的韧性和抗脆性。
回火适用于一些淬火处理后需要获得一定韧性的材料。
总结起来,常用材料的热处理工艺包括退火、正火、淬火和回火。
不同的材料和要求会选择不同的热处理工艺,以达到最佳的组织结构和性能。
常用材料热处理工艺参数
常用材料的热处理工艺参数取决于材料的组织性能要求、工艺性能要
求和使用条件等因素。
下面以几种常见的材料为例,介绍一些主要的热处
理工艺参数。
碳钢是一种普遍使用的金属材料,其热处理工艺参数包括淬火温度、
回火温度、保温时间等。
一般来说,碳钢的淬火温度在800℃至900℃之间,回火温度在150℃至500℃之间。
保温时间通常为1小时到3小时。
不锈钢是一类具有良好耐腐蚀性能的材料,其热处理工艺参数包括退
火温度、固溶温度和时效温度。
退火温度一般在800℃至900℃之间,固
溶温度在1000℃至1200℃之间,时效温度在500℃至700℃之间。
保温时
间通常为1小时到5小时。
铝合金是一种轻质高强度的材料,其热处理工艺参数包括固溶温度、
时效温度和时效时间等。
固溶温度一般在480℃至520℃之间,时效温度
在150℃至250℃之间。
时效时间一般为1小时至10小时。
铜合金是一种导电性能良好的材料,其热处理工艺参数包括固溶温度、时效温度和时效时间等。
固溶温度一般在800℃至950℃之间,时效温度
在300℃至550℃之间。
时效时间一般为1小时至10小时。
上述只是对于不同材料几种常见的热处理工艺参数进行了简单的介绍,实际工艺参数还需要根据具体材料的特性和要求进行调整。
同时,热处理
工艺参数的选择也应考虑到工艺设备和生产成本等因素。
在实际应用中,
可以通过试验和实践来确定最佳的热处理工艺参数。
阀体常用材料和各种材料的热处理阀门是一种常见的管道设备,在各个工业领域都被广泛应用。
阀门的主要作用是流量控制和压力调节,能够调节流体的流动方向、速度和流量。
阀体是阀门的主要组成部分之一,阀体的材料选择和热处理对阀门的性能和寿命都有至关重要的影响。
本文将介绍阀体常用的材料及其热处理过程。
一、阀体常用材料1.灰铸铁(gray cast iron)灰铸铁是一种铁碳合金,碳含量高于钢和铸铁,而硅、锰、磷等元素的含量较低。
灰铸铁的硬度高,耐磨损,但其韧性和强度不如钢。
因此,灰铸铁一般用于低压和低温的应用场景,如给排水、供暖等。
2.球墨铸铁(ductile iron)球墨铸铁是灰铸铁的改进版,通过添加一定数量的镁、铝等元素,使其具有更好的塑性和韧性。
球墨铸铁还具有较高的强度和耐腐蚀性能,因此被广泛应用于高压、高温和强腐蚀性环境下的阀门。
3.碳钢(carbon steel)碳钢是一种含碳量较高的钢铁材料,与灰铸铁和球墨铸铁相比,其主要优点是强度更高,并且具有更好的韧性和可塑性。
碳钢可以满足各种温度和压力条件下的应用需求,一般被用于中高温和中高压的场景。
4.不锈钢(stainless steel)不锈钢是一种合金钢,具有良好的耐腐蚀性和高温性能。
不锈钢的主要成分是铁、铬、镍等元素,其中铬的含量最高。
不锈钢的材质坚固、耐用,也是阀门材料中最贵的一类。
不锈钢一般被应用于化工、石油、天然气等环境中的阀门。
二、热处理过程1.淬火(quenching)淬火是一种快速冷却材料的技术,能够提高材料的硬度和强度。
在淬火的过程中,材料被加热到高温,然后迅速浸入冷却剂中。
淬火后的钢铁材料硬度和强度都会大大增强,但也会导致材料变脆,容易发生撕裂或脆断。
2.回火(tempering)回火是一种将淬火后的材料加热,然后缓慢冷却的技术。
回火的过程中,淬火后的材料会变得更有韧性,而硬度和强度则会降低。
回火通常会在淬火之后进行,以减轻淬火带来的脆性和应力。
常用模具材料及热处理常用的模具材料有许多种,每一种材料都具有独特的特点和适用范围。
而热处理则是在模具制造过程中必不可少的一步,可以提高材料的硬度、强度和耐磨性,从而提高模具的使用寿命。
以下是几种常用的模具材料和热处理方法。
一、常用的模具材料:1.铝合金:铝合金具有良好的导热性能和成型性能,重量轻,价格便宜。
适用于制造小型模具或高精度的塑料模具。
2.铝青铜:铝青铜具有良好的导热性能、耐磨性能和耐腐蚀性能,适用于制造高速冲压模和注塑模。
3.铜合金:铜合金具有良好的导热性能和热膨胀系数,适用于制造大型的冲压模和注塑模。
4.微晶玻璃钢:微晶玻璃钢具有高强度、耐磨性和抗腐蚀性能,适用于制造大型的冲压模和注塑模。
5.构造钢:构造钢具有高强度和耐磨性能,适用于制造大型的冲压模。
6.热作模具钢:热作模具钢具有优良的耐热性和抗热疲劳性能,适用于制造高温下工作的模具。
7.不锈钢:不锈钢具有良好的耐腐蚀性能和高温强度,适用于制造化学模具和食品模具。
二、热处理方法:1.淬火:淬火是常用的热处理方法之一,通过迅速冷却材料,使其获得高硬度和高强度。
淬火温度和冷却介质根据材料的不同而不同。
2.回火:回火是淬火后的一个步骤,通过加热材料到一定温度并保持一段时间,降低材料的硬度和脆性,提高其抗冲击性和韧性。
3.淬火回火:将材料先进行淬火然后回火的组合处理,既能获得高硬度也能提高韧性。
4.预淬火:预淬火是在热处理之前先进行一次淬火,然后再进行其他热处理工艺,可以提高热处理的效果。
5.淬火再回火:在完全淬火和回火的基础上,再进行一次淬火和回火,以进一步提高材料的性能。
6.等温淬火:将材料加热到一个特定温度并保持一段时间,然后进行快速冷却,可以使材料获得均匀细小的组织和高硬度。
7.渗碳:通过在材料表面渗入一定的碳元素,提高材料的表面硬度和耐磨性。
总结:常用的模具材料有铝合金、铝青铜、铜合金、微晶玻璃钢、构造钢、热作模具钢和不锈钢等。
热处理方法包括淬火、回火、预淬火、淬火回火、等温淬火、淬火再回火和渗碳等。
常用材料及零件热处理
3.表面热处理方法特点和应用
表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和朔性(即表面火),或同时表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表层硬度更高的处理方法。
6.钢的淬透性
不同的钢种,接受淬火的能力不同,淬透层深度愈大,表明该钢种的淬透性愈好。
淬透性大的钢,其力学性能沿截面分布均匀;而淬透性小的钢心部力学性能低。
但全部淬透的工件,通常表面残留拉应力,对工件承受疲劳不利,工件热处理中也易变形开裂。
未淬透工件表面可残留压应力,反而有一定好处。
淬透层深度是指由淬火表面马氏体---50%马氏体+50%珠光体层的深度。
碳钢的淬透性低。
在设计大尺寸零件时,用碳钢正火比用碳钢调质更经济,而效果相似。
直径较大并具有几个台阶的台阶轴,需经调质处理时,考虑到淬透性影响,应先粗车成形,然后调质。
如果以棒料先调质,再车外圆,由于直径大,表面淬透层浅,阶梯轴尺寸较小的部分调质后的组织在粗车时可能被车去,起不到调质作用。
7.几种典型零件热处理示例
机床齿轮等零件常用材料及热处理。
常用金属材料热处理规范热处理是指通过加热、保温和冷却等工艺方法,使金属材料在固态下发生化学、物理或机械性能变化的过程。
热处理可以提高金属材料的硬度、强度、韧性、耐磨性等性能,从而满足具体的应用要求。
下面将介绍几种常用金属材料的热处理规范。
1.碳钢的退火处理碳钢是最常见的金属材料之一,经过退火处理后可以提高其塑性和韧性。
通常将碳钢加热至800-900°C,保温时间由材料厚度决定,通常是每25mm厚度增加1小时。
然后将材料冷却到室温,这样可以得到具有良好塑性和韧性的碳钢。
2.不锈钢的固溶处理不锈钢具有优良的耐腐蚀性能,但在焊接后会出现晶间腐蚀的问题。
固溶处理是为了解决晶间腐蚀问题而进行的热处理过程。
通常将不锈钢加热至1050-1150°C,保温时间取决于材料的厚度。
然后将材料迅速冷却到室温,这样可消除晶界处的过饱和元素,减少晶界的碳化物析出,从而提高不锈钢的耐腐蚀性能。
3.铸铁的正火处理铸铁是一种含碳量较高的金属材料,通过正火处理可以提高其硬度和强度。
通常将铸铁加热至850-950°C,保温时间由材料的厚度决定,通常是每25mm厚度增加1小时。
然后将材料冷却到室温。
正火处理可以改善铸铁的组织和性能,提高其机械性能。
4.铝合金的时效处理铝合金具有良好的强度和韧性,但在加工过程中可能会出现软化现象。
时效处理是为了提高铝合金的强度和稳定性的热处理过程。
通常将铝合金加热至150-200°C,保温时间由材料的合金组成决定,通常是几小时至几十小时。
然后将材料迅速冷却到室温。
以上是几种常用金属材料的热处理规范,不同的金属材料可能需要不同的热处理工艺。
在进行热处理时,需要严格控制加热温度、保温时间和冷却速度等参数,以保证热处理的效果。
同时,需要根据具体应用要求选择适当的热处理工艺,以获得期望的材料性能。
常用材料及热处理名词解释常用铸铁牌号常用钢材牌号热处理名词解释钢的临界点(1)Ac1 钢加热时,开始形成奥氏体的温度。
(2)Ac3 亚共析钢加热时,所有铁素体都转变为奥氏体的温度。
(3)Ac4 低碳亚共析钢加热时,奥氏体开始转变为δ相的温度。
(4)Accm 过共析钢加热时,所有渗碳体和碳化物完全溶入奥氏体的温度。
(5)Arl 钢高温奥氏体化后冷却时,奥氏体分解为铁素体和珠光体的温度。
(6)Ar3 亚共析钢高温奥氏体化后冷却时,铁素体开始析出的温度。
(7)Ar4 钢在高温形成的δ相在冷却时,开始转变为奥氏体的温度。
(8)Arcm 过共析钢高温完全奥氏体化后冷却时,渗碳体或碳化物开始析出的温度。
(9)A1 也写做Ae1,是在平衡状态下,奥氏体、铁素体、渗碳体或碳化物共存的温度,也就是一般所说的下临界点。
(10)A3 也写做Ae3,是亚共析钢在平衡状态下,奥氏体和铁素体共存的最高温度,也就是说亚共析钢的上临界点。
(11)A4 也写做Ae4,是在平衡状态下,δ相和奥氏体共存的最低温度。
(12)Acm 也写做Aecm,是过共析钢在平衡状态下,奥氏体和渗碳体或碳化物共存的最高温度,也就是过共析钢的上临界点。
(13)Mb 马氏体爆发形成温度,以Mb表示(Mb≤MS)。
当奥氏体过冷至MS点以下时,瞬间爆发式形成大量马氏体,并伴有响声,同时释放相变潜热,使温度回升。
(14)Md 马氏体机械强化稳定化临界温度。
(15)MF 马氏体相变强化临界温度。
(16)Mf 有的文献以Mf表示奥氏体转变为马氏体的终了温度。
(17)MG 奥氏体发生热稳定化的一个临界温度。
(18)MS 钢奥氏体化后冷却时,其中奥氏体开始转变为马氏体的温度,符号中的“S”是“始”字汉语拼音第一个字母,也就是俄文书籍中的MH和英文书籍中的MS。
(19)MZ 奥氏体转变为马氏体的终了温度,符号中的“Z”是“终”字的汉语拼音第一个字母,也就是俄文书籍中的MK和英文书籍中的Mf。
常用材料热处理表面处理1. 引言1.1 热处理的概念热处理是指通过对金属材料进行加热和冷却过程,以改变其结构和性能的方法。
热处理是金属材料加工中非常重要的一环,可以显著提高材料的硬度、强度、韧性和耐磨性等性能,同时也可以改善材料的加工性能和使用寿命。
热处理的原理是通过控制材料的组织结构来控制材料的性能,通过调整材料的晶粒大小、分布和相变来实现这一目的。
在实际生产中,热处理通常包括退火、正火、淬火和回火等工艺,每种工艺都有不同的加热温度、保温时间和冷却速度要求,以实现不同的材料性能要求。
热处理过程中需要严格控制各个参数,以确保获得理想的材料性能。
热处理不仅可以提高材料的整体性能,还可以为表面处理提供基础。
表面处理是指通过改变材料表面的化学、物理性质来增强其表面硬度、耐磨性、耐腐蚀性等性能的方法。
热处理和表面处理往往结合应用,共同提升材料的整体性能。
在工程领域中,热处理和表面处理被广泛应用于各种金属制品的生产和加工过程中。
1.2 表面处理的重要性表面处理作为热处理的重要环节之一,在材料加工领域扮演着至关重要的角色。
通过表面处理,可以改善材料的表面性能,增强其耐磨、耐腐蚀、耐疲劳等性能,延长材料的使用寿命。
表面处理还可以提高材料的工艺加工性能,使其更易加工、更具韧性。
表面处理还可以美化材料的外观,提升产品的市场竞争力。
在今天日益激烈的市场竞争中,产品质量和性能要求越来越高,而表面处理正是满足这些要求的关键技术之一。
通过合理选择表面处理方法,可以使产品具有更好的耐用性和功能性,从而提高产品的附加值和市场竞争力。
表面处理不仅是材料加工领域中的一个重要环节,更是现代制造业中不可或缺的一部分。
通过对表面处理的深入研究和应用,可以进一步推动材料加工技术的发展,推动产品质量的提升,推动整个行业的进步和发展。
2. 正文2.1 热处理常用材料热处理常用材料包括钢、铝、铜、镍等金属材料以及塑料、陶瓷等非金属材料。
钢是最常见的热处理材料之一,通过控制加热和冷却过程可以改变钢的组织和性能,使其具有不同的硬度、强度和耐腐蚀性。
常用金属材料及热处理金属材料是一类常用的工程材料,具有良好的导电性、导热性、机械性能和可塑性。
常见的金属材料包括铁、铝、铜、钢、锌等。
铁是一种常用的金属材料,常见的有铸铁和钢。
铸铁具有较高的硬度和脆性,适合用于制造机械零件和汽车零件。
而钢具有较好的韧性和可塑性,广泛应用于建筑、制造业等领域。
铝是一种轻质金属,具有良好的导电性和导热性,常用于航空航天、汽车制造和电子设备等行业。
铝也可以通过热处理来提高其强度和硬度。
铜具有良好的导电性和导热性,广泛用于电子电气、建筑和水管等领域。
铜也可以通过热处理来强化其力学性能。
钢是一种含有铁和碳的合金,具有高强度和韧性。
钢的热处理方法包括退火、淬火和回火,可以使钢具有不同的硬度和韧性,适用于不同的应用领域。
锌是一种蓝白色的金属,具有较好的防腐性和延展性。
常用于镀锌钢管、锌板等工业制品中。
锌也可以进行热处理来提高其力学性能和耐蚀性。
热处理是金属材料加工中的一项重要工艺,通过控制材料的加热和冷却过程,可以改变其组织结构和性能。
常见的热处理方法包括退火、淬火、回火、正火等。
这些热处理方法可以改变金属的硬度、韧性、强度、耐腐蚀性等性能,使金属材料更加符合特定的工程需求。
不同金属材料适用的热处理方法有所不同,需要根据具体材料的组织结构和性能来选择合适的热处理工艺。
总而言之,常见的金属材料如铁、铝、铜、钢、锌等具有广泛的应用领域,热处理可以改变金属材料的性能,使其更符合工程需求。
金属材料在工程领域中广泛应用,其性能常常可以通过热处理来改善。
热处理是一种通过控制材料的加热和冷却过程,使其发生组织和性能上的变化的工艺。
热处理通常分为退火、淬火、回火、正火等几种方式,每种方式都有不同的应用场景和效果。
退火是最基础的热处理方式之一,通过在适当温度下加热材料一段时间后缓慢冷却,以消除材料内部的应力和提高其延展性。
退火使金属材料结构上发生改变,晶粒变大并更加均匀,强度相对降低,但具有较好的塑性和韧性。
常用金属材料及热处理金属是人类社会重要的材料之一,广泛应用于各行各业。
常见的金属材料包括铁、铝、铜、钢等。
在使用金属材料的过程中,为了改善其性能,常常需要对其进行热处理。
下面将介绍一些常用的金属材料和其热处理方法。
1.铁:铁是一种性能优良的金属材料,常用于制作建筑结构、机械零件等。
铁的热处理方法有退火、正火、淬火和回火等。
退火可以降低材料的硬度,提高其塑性和延展性;正火可以提高材料的韧性和强度;淬火可以使材料获得高硬度和耐磨性;回火可以降低材料的脆性,并改善其强度和韧性。
2.铝:铝是一种轻质金属,常用于制造飞机、汽车等产品。
铝的热处理方法有固溶处理、时效硬化等。
固溶处理可以改善铝的强度和塑性;时效硬化可以在固溶处理基础上,进一步提高铝的强度和硬度。
3.铜:铜是一种导电性能优良的金属材料,常用于制造导线、电路板等。
铜的热处理方法有退火、退火软化等。
退火可以消除铜材料中的应力,改善其韧性和延展性;退火软化可以使铜材料变得更加易加工。
4.钢:钢是一种优质的金属材料,常用于制造建筑结构、机械零件等。
钢的热处理方法有退火、正火、淬火和回火等。
不同的钢材在热处理时的温度和时间以及冷却速度等参数都有所差异,可以根据具体需要来选择合适的热处理方法,以获得理想的性能。
此外,还有许多其他金属材料也需要经过热处理来改善其性能,比如镍、锌、锡等。
热处理方法的选择应根据具体的金属材料以及使用要求来确定。
综上所述,金属材料在使用过程中,经常需要进行热处理来改善其性能。
不同的金属材料有不同的热处理方法,通常包括退火、正火、淬火和回火等。
通过热处理可以改变金属材料的组织结构和性能,使其达到更加理想的状态。
热处理技术在金属材料的应用中起着重要的作用,对于提高产品质量和使用寿命具有重要意义。
常见材料热处理方式及目的常见材料热处理1、45(S45C)常见热处理45号钢为优质碳素结构钢,也称为油钢,硬度不高,易于切削加工。
调质处理是其常见热处理方法,包括淬火和高温回火。
淬火温度为840±10℃,水冷后硬度可达55~58HRC,极限可达62HRC;回火温度为600±10℃,出炉后空冷,硬度为20~30HRC。
调质处理后的零件具有良好的综合机械性能,广泛应用于各种重要的结构零件,特别是在交变负荷下工作的连杆、螺栓、齿轮和轴类等。
但表面硬度较低,不耐磨。
可用调质+表面淬火提高零件表面硬度。
实际应用的最高硬度为HRC55(高频淬火HRC58)。
2、40Cr(SCr440)常见热处理40Cr为优质碳素合金钢,属于低淬透性调质钢,具有很高的强度、良好的塑性和韧性,即具有良好的综合机械性能。
Cr能增加钢的淬透性,提高钢的强度和回火稳定性。
调质处理是其常见热处理方法,淬火温度为850℃±10℃,油冷后硬度可达45~52HRC;回火温度为520℃±10℃,水、油冷后硬度为32~36HRC。
40Cr钢常用于制造汽车的连杆、螺栓、传动轴及机床的主轴等零件。
不同回火温度可得到不同硬度。
3、T10(SK4)常见热处理T10碳素工具钢强度及耐磨性均较T8和T9高,但热硬性低,淬透性不高且淬火变形大,晶粒细,在淬火加热时不易过热,仍能保持细晶粒组织。
淬火后钢中有未溶的过剩碳化物,所以耐磨性高,用于制造具有锋利刀口和有少许韧性的工具。
淬火+低温回火是其常见热处理方法,淬火温度为780±10℃,保温50min左右或淬透。
先淬如20~40℃的水或5%盐水,冷至250~300℃,转入20~40℃油中冷却至温热,可得到硬度62~65HRC;回火温度为160~180℃,保温1.5~2h,回火后硬度为60~62HRC。
以下是各种钢材的硬度和化学成分:12CrNi3:回火后硬度30-35HRC,主要成分为碳、硅、锰、铬、镍。
常用金属材料及热处理知识金属材料是工业生产中最常用的材料,包括钢铁、不锈钢、铝合金、铜合金等。
这些金属材料都具有良好的机械性能、电导性能、导热性能和成形性能,因此在各个行业中得到广泛应用。
下面主要介绍常用金属材料及其热处理知识。
1.钢铁钢铁是最常用的金属材料,包括碳钢和合金钢两种。
碳钢中碳含量较低,一般在0.1%-0.3%之间,适用于一般工程材料的制造;合金钢中包含一定数量的合金元素,如铬、镍、钒等,通过合金元素的添加可以提高钢的硬度、强度和耐磨性能。
热处理:钢的热处理包括退火、正火、淬火、回火等工艺。
退火可以消除应力和改善材料的韧性;正火可以提高材料的硬度和强度;淬火可以使钢材具有高硬度和耐磨性;回火可以降低淬火后的脆性,提高韧性。
2.不锈钢不锈钢是一种具有耐腐蚀性能的铁基合金材料,主要成分为铁、铬、镍等元素。
不锈钢具有良好的耐腐蚀性、耐高温性和良好的机械性能,广泛应用于制造化工设备、食品加工设备、医疗器械等高要求的领域。
热处理:不锈钢的热处理主要包括退火和固溶处理。
退火可以去除不锈钢中的应力,改善材料的硬度和韧性;固溶处理可以提高不锈钢的硬度和强度。
3.铝合金铝合金是一种轻量化的金属材料,具有良好的导热性能、导电性能和可加工性能。
铝合金可以通过添加合金元素如铜、锌、锰等来改变材料的性能,广泛应用于航空航天、汽车制造等领域。
热处理:铝合金的热处理主要包括固溶处理和时效处理。
固溶处理可以提高铝合金的硬度和强度;时效处理可以提高材料的抗拉强度和硬度。
4.铜合金铜合金具有良好的导电性能、导热性能和耐腐蚀性能,广泛应用于电子、电器、交通等领域。
铜合金通过添加合金元素如锡、锌、铝等来改变材料的性能。
热处理:铜合金的热处理主要包括退火和固溶处理。
退火可以消除应力、改变晶粒结构;固溶处理可以提高材料的强度和硬度。
综上所述,金属材料是工业生产中最常用的材料之一,包括钢铁、不锈钢、铝合金、铜合金等。
这些金属材料具有良好的机械性能、导电性能、导热性能和成形性能,可以通过热处理来改变材料的性能。
常用材料的热处理一、碳素结构钢牌号: Q235A化学成分质量分数%|C: 0.14~0.22化学成分质量分数%|Mn: 0.30~0.65优质碳素结构钢牌号: 20化学成分质量分数%|C: 0.17~0.23牌号: 35化学成分质量分数%|C: 0.32~0.39牌号: 45化学成分质量分数%|C: 0.42~0.50二、低合金高强度结构钢新牌号: Q345A旧牌号:18Nb、09MnCuPTi、10MnSiCu、12MnV、14MnNb、16Mn、16MnRE化学成分(质量分数%)|C≤: 0.20化学成分(质量分数%)|Mn: 1.00~1.60三、合金结构钢牌号: 20Cr化学成分(质量分数%)|C: 0.18~0.24化学成分(质量分数%)|Si: 0.17~0.37化学成分(质量分数%)|Mn: 0.50~0.80化学成分(质量分数%)|Cr: 0.70~1.00牌号: 40Cr化学成分(质量分数%)|C: 0.37~0.44化学成分(质量分数%)|Si: 0.17~0.37化学成分(质量分数%)|Mn: 0.50~0.80化学成分(质量分数%)|Cr: 0.80~1.10牌号: 20 Cr 20CrMnTi化学成分(质量分数%)|C: 0.17~0.23化学成分(质量分数%)|Si: 0.17~0.37化学成分(质量分数%)|Mn: 0.80~1.10化学成分(质量分数%)|Cr: 1.00~1.30四、结构钢的热处理:时效处理:重要的中小型低碳结构钢结构件焊接后采用人工时效处理,重要的大型低碳结构钢结构件焊接后采用振动时效处理调质处理(淬火+高温回火):中碳结构钢和中碳合金结构钢零件(45或40 Cr)不要求太高硬度时采用调质处理(220~250HB); 调质处理也可作为淬火的预处理。
淬火处理:中碳钢(45或40 Cr)或低合金结构钢经渗碳处理后提高零件硬度采取淬火处理(40~45HRC);表面淬火处理:中碳钢(45或40 Cr)零件要求芯部韧性好,表面硬度高时采用表面淬火处理(40~45HRC);渗碳+淬火、回火处理要求芯部韧性好表面硬度高的低碳或低合金结构钢(20 20 Cr 20CrMnTi)零件采用渗碳+淬火、回火处理(58~62HRC,DC=0.8~1.2㎜40~45HRC);五、弹簧钢牌号: 65Mn化学成分质量分数(%)|C: 0.62~0.70化学成分质量分数(%)|Si: 0.17~0.37化学成分质量分数(%)|Mn: 0.90~1.20化学成分质量分数(%)|Cr: ≤0.25弹簧钢的热处理:一般为淬火+中温回火淬火+中温回火:一般为淬火+中温回火(40~45HRC)六、灰铸铁新牌号: HT150旧牌号: HT15-33抗拉强度σb/MPa|最小值: 150新牌号: HT200旧牌号: HT20-40抗拉强度σb/MPa|最小值: 200七、球墨铸铁新牌号: QT400-18旧牌号: QT40-17抗拉强度σb/MPa|最小值: 400铸铁的热处理:1完全退火:一般中小型铸件采用完全退火,细化组织,消除铸造应力,提高铸件的冲击韧性、塑性和强度;2高温退火:用于灰铸铁和球墨铸铁加工过程中出现白口时采用高温退火;3去应力退火:用于精度高、形状复杂的铸件为了稳定尺寸,消除加工变形的工序间热处理采用去应力退火4时效处理:分为自然时效和人工时效。