谓词演算的推理理论
- 格式:ppt
- 大小:423.37 KB
- 文档页数:24
谓词演算的推理理论在谓词逻辑中,除了命题逻辑中的推理规则继续有效外,还有以下四条规则。
设前提Г= {A 1,A 2,…,A k }.1. 全称指定规则(全称量词消去规则)US :例1 取个体域为实数域,F(x, y): x>y, P(x)=(∃y) F(x,y), 则(∀x)P(x) ⇒P(z)=(∃y) F(z,y).而不能(∀x) P(x) ⇒P(y)=(∃y) F(y,y).其中x,y 是个体变项符号,c 为任意的个体常量.或 (∀x ) P (x ) ∴ P (y ) (∀x) P (x )∴ P (c )2 . 全称推广规则(全称量词引入规则) UG:P(x)∴ (∀x)P(x)其中x是个体变项符号,且不在前提的任何公式中自由出现.3. 存在指定规则(存在量词消去规则) ES:(∃x)P(x)∴ P(c)1)c是使P(x)为真的特定的个体常量,不是任意的.2)c不在前提中或者先前推导公式中出现或自由出现,换句话说,此c是在该推导之前从未使用过的.4. 存在推广规则(存在量词引入规则) EG:P(c)∴ ( x)P(x)其中x是个体变项符号, c是个体常项符号.谓词逻辑的推理理论由下列要素构成.1. 等价公式2. 蕴含式3. 推理规则:(1) 前提引入规则 (2) 结论引入规则(3) CP推理规则 (4)归谬论(5) US规则 (6) UG规则(7) ES规则 (8) EG规则1)在推导的过程中,可以引用命题演算中的规则P、规则T、规则CP .2)为了在推导过程中消去量词,可以引用规则US和规则ES来消去量词.3)当所要求的结论可能被定量时,此时可引用规则UG和规则EG将其量词加入.4)证明时可采用如命题演算中的直接证明方法和间接证明方法.5)在推导过程中,对消去量词的公式或公式中没含量词的子公式,完全可以引用命题演算中的基本等价公式和基本蕴涵公式.6)在推导过程中,对含有量词的公式可以引用谓词中的基本等价公式和基本蕴涵公式.7)在推导过程中,如既要使用规则US又要使用规则ES消去公式中的量词(只要有可能,我们总是先使用规则ES,再使用规则US)。
2.5 谓词演算的推理理论1.推理定律谓词演算中也存在一些基本的等价与蕴含关系,参见表2-2。
我们以此作为推理的基础,即推理定律。
表2-2序号 等价或蕴含关系 含义E27 E28 ┐∀xA(x)⇔∃x┐A(x)┐∃xA(x)⇔∀x┐A(x) 量词否定等值式E29 E30∀x(A(x)∧B(x))⇔∀xA(x)∧∀xB(x)∃x(A(x)∨B(x))⇔∃xA(x)∨∃xB(x)量词分配等值式(量词分配律)E31 E32 E33 E34 E35 E36 E37 E38 E39 E40 E41 E42 E43∀x(A(x)∨B)⇔∀xA(x)∨B∀x(A(x)∧B)⇔∀xA(x)∧B∃x(A(x)∨B)⇔∃xA(x)∨B∃x(A(x)∧B)⇔∃xA(x)∧B∀x(B∨A(x))⇔ B∨∀xA(x)∀x(B∧A(x))⇔ B∧∀xA(x)∃x(B∨A(x))⇔ B∨∃xA(x)∃x(B∧A(x))⇔ B∧∃xA(x)∃x(A(x)→B(x))⇔∀xA(x)→∃xB(x)∀x(A(x)→B)⇔∃xA(x)→B∃xA(x)→B⇔∀x(A(x)→B)A→∀xB(x)⇔∀x(A→B(x))A→∃xB(x)⇔∃x(A→B(x))量词作用域的扩张与收缩I21 I22∀xA(x)∨∀xB(x)⇒∀x(A(x)∨B(x))∃x(A(x)∧B(x))⇒∃xA(x)∧∃xB(x)I23 ∃xA(x)→∀xB(x)⇒∀x(A(x)→B(x))表2-2中的I、E序号是接着表1-5和1-8排列的,表明它们都是谓词逻辑的推理定律。
E31~E34与E35~E38只是A和B的顺序不同。
2.量词的消除与产生规则谓词推理可以看作是对命题推理的扩充。
除了原来的P规则(前提引入)、T规则(命题等价和蕴含)及反证法、CP规则外,为什么还需引入新的推理规则呢?命题逻辑中只有一种命题,但谓词逻辑中有2种,即量词量化的命题和谓词填式命题。
如果仅由表2-2的推理定律就可推证,并不需要引入新的规则,但这种情况十分罕见,也失去了谓词逻辑本身的意义。