统计学第四章
- 格式:ppt
- 大小:1.15 MB
- 文档页数:33
第四章 差异量教学目的:1.理解全距、四分位距、百分位距、平均差、方差、标准差和差异系数等概念;2.掌握各种差异量指标的计算方法。
数据的分布特征不仅有集中趋势,还有离中趋势。
以动态的眼光,从不同的角度看,数据是向中间变动的,也是向两端变动的。
两组数据可能平均水平相同,但两组数据的分布特征并不完全相同。
【如】:比较下列两组数据 A 组:88、82、73、76、81 B 组:92、86、70、72、80两组平均数,80==B A X X 但R A =88-73=15,R B=92-70=22。
即A 组较集中,B 组较分散。
因此,我们描述一组数据的分布特征,既要描述其集中趋势,也要描述其离中趋势。
差异量:表示一组数据的离中趋势或变异程度的量称为差异量。
常用的差异量指标有全距、四分位距、百分位距、平均差、方差、标准差和差异系数。
第一节全距、四分位距、百分位距一、全距全距:是一组数距中最大值与最小值之差。
优点:意义明确,计算方便。
缺点:反应不灵敏,易受极端值影响。
二、四分位距(一)四分位距的的概念四分位距:是指一组按大小顺序排列的数据中间部位50%个频数距离的一半。
)(1.4213Q Q QD -=QD :表示四分位距; Q 3:表示第三四分位数;Q 1:表示第一四分位数。
所以:四分位距的公式又为:22575P P QD -=(二)四分位数的计算方法 1、原始数据计算法(1)将数据由小到大进行排列; (2)分别求出三位四分位数(点); (3)代入公式计算。
【例如】:有以下16个数据25、22、29、12、40、15、14、39、37、31、33、19、17、20、35、30,其中四分位距的计算方法如下:(1)先将原始数据从小到大排列好;12、14、15、17、*19、20、22、25、*29、30、31、33、*35、37、39、40Q 1=18 Md =27 Q 3=34(2)求出Q 1、Md 、Q 3;(3)将Q 1、Md 、Q 3的得数代入公式(4.1)。
统计学第四章课后题及答案解析第四章⼀、单项选择题1.由反映总体单位某⼀数量特征的标志值汇总得到的指标是()A.总体单位总量B.质量指标C.总体标志总量D.相对指标2.各部分所占⽐重之和等于1或100%的相对数()A.⽐例相对数B.⽐较相对数C.结构相对数D.动态相对数3.某企业⼯⼈劳动⽣产率计划提⾼5%,实际提⾼了10%,则提⾼劳动⽣产率的计划完成程度为()A.104.76%B.95.45%C.200%D.4.76%4.某企业计划规定产品成本⽐上年度降低10%实际产品成本⽐上年降低了14.5%,则产品成本计划完成程度()A.14.5%B.95%C.5%D.114.5%5.在⼀个特定总体内,下列说法正确的是( )A.只存在⼀个单位总量,但可以同时存在多个标志总量B.可以存在多个单位总量,但必须只有⼀个标志总量C.只能存在⼀个单位总量和⼀个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.⼤量的B.同质的C.有差异的D.不同总体的7.⼏何平均数的计算适⽤于求()A.平均速度和平均⽐率B.平均增长⽔平C.平均发展⽔平D.序时平均数8.⼀组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3B.13C.7.1D.79.某班学⽣的统计学平均成绩是70分,最⾼分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.⽅差B.极差C.标准差D.变异系数10.⽤标准差⽐较分析两个同类总体平均指标的代表性⼤⼩时,其基本的前提条件是( )A.两个总体的标准差应相等B.两个总体的平均数应相等C.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个⽔果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采⽤()A.简单算术平均数B.加权算术平均数C.加权调和平均数D.⼏何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。
第四章 推断统计概述第一部分 概率论基本知识← 一、概率的定义;二、概率的性质;三、概率的加法定理和乘法定理← 四、概率分布类型四、概率分布类型← 概率分布(probability distribution )是指对随机变量取不同值时的概率的描述,一般用概率分布函数进行描述。
← 依不同的标准,对概率分布可作不同的分类。
1、离散型分布与连续型分布← 依随机变量的类型,可将概率分布分为离散型概率分布与连续型概率分布。
← 教育统计学中最常用的离散型分布是二项分布,最常用的连续型分布是正态分布。
2、经验分布与理论分布← 依分布函数的来源,可将概率分布分为经验分布与理论分布。
← 经验分布(empirical distribution )是指根据观察或实验所获得的数据而编制的次数分布或相对频率分布。
← 理论分布(theoretical distribution )是按某种数学模型计算出的概率分布。
3、基本随机变量分布与抽样分布← 依所描述的数据的样本特性,可将概率分布分为基本随机变量分布与抽样分布(sampling distribution )。
← 基本随机变量分布是随机变量各种不同取值情况的概率分布,← 抽样分布是从同一总体内抽取的不同样本的统计量的概率分布。
第二部分 几种常见的概率分布← 一、二项分布← 二项分布(binomial distribution )是一种具有广泛用途的离散型随机变量的概率分布,它是由贝努里创始的,因此又称为贝努里分布。
← 2.二项分布函数← 二项分布是一种离散型随机变量的概率分布。
← 用 n 次方的二项展开式来表达在 n 次二项试验中成功事件出现的不同次数(X =0,1…,n )的概率分布,叫做二项分布函数。
← 二项展开式的通式(即二项分布函数):← ←← ← ←← 成功概率 p ;样本容量 n← 在成功概率为p 的总体中随机抽样,抽取样本容量为n 的样本中,有X 次为成()011111100q p C q p C q p C q p C q p n n n n n n n n n n n ++++=+---Λ()Xn X X n X q p C P -⋅⋅=()X n X q p X n X n -⋅-=!!!功的概率: ←(X =0,1…,n ) ←称X 服从参数为n ,p 的二项分布,记为: ←X ~B(n ,p ) 其中,0<p<1 ←二项分布的性质 ←二项分布有如下性质: ←①当p=q 时,图形是对称的。