2019学年广东省广州市海珠区九年级下学期一模数学试卷【含答案及解析】
- 格式:docx
- 大小:351.28 KB
- 文档页数:17
广东广州海珠2019年中考一模数学试题数学试卷本试卷分选择题和非选择题两部分,共三大题25小题,共4页,总分值150分,考试用时120分钟,能够使用计算器、本卷须知1、答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、座位号、考号;再用2B 铅笔把对应号码的标号涂黑、2、选择题每题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上、3、非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图、答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域、不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效、4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回、第一部分选择题〔共30分〕【一】选择题〔本大题共10小题,每题3分,总分值30分、在每题给出的四个选项中,只有一项为哪一项符合题目要求的、〕 1、计算=-3)1(〔〕A.1B.-1C.3D.-32、以下图形中,不是中心对称图形的是〔〕A.B.C.D.3、4的平方根是〔〕A 、2B 、-2C 、±2D 、164、如图,∠1与∠2是同位角,假设∠2=65°,那么∠1的大小是〔〕 A 、25° B 、65°C 、115° D 、不能确定5、以下运算正确的选项是〔〕 A 、236·a a a =B 、34x x x =÷C 、532)(x x =D 、a a a 632=⋅6、图中三视图所对应的直观图是〔〕A 、B 、C 、D 、7、在某市初中学业水平考试体育学科的800米耐力测试中,某考点同时起跑的甲和乙所跑的路程S 〔米〕与所用时间t 〔秒〕之间的函数图象分别为线段OA 和折线OBCD.那么以下说法正确的选项是〔〕A.在起跑后180秒时,甲乙两人相遇B.甲的速度随时间的增加而增大C.起跑后400米内,甲始终在乙的前面D.甲比乙先到终点8、在共有15人参加的“我爱祖国”演讲竞赛中,参赛选手要想明白 自己是否能进入前8名,除了明白自己的成绩以外,还需要明白全 部成绩的〔〕第4题图21A 、平均数B 、众数C 、中位数D 、方差9、假设二次函数的解析式为3422+-=x x y ,那么其函数图象与x 轴交点的情况是〔〕 A 、没有交点 B 、有一个交点 C 、有两个交点 D 、无法确定10、如下图,在三角形纸片ABC 中,∠BCA =90°,∠BAC =30°,AB =6,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上 的点D 重合,那么DE 的长度为〔〕A 、6B 、3C 、32 D第二部分非选择题〔共120分〕【二】填空题〔本大题共6小题,每题3分,总分值18分、〕 11、分解因式=+-2422x x 、 12、函数11-=x y 中x 的取值范围是、13、如图,AB 为⊙O 的直径,点C 在⊙O 上,假设︒=∠20C ,那么=∠BOC °、 14、如图,D 、E 分别是△ABC 的边AB 、AC 的中点,假设DE 的长是3,那么BC〔1〕解方程xx 332=-〔2〕先化简,再求值:xy y y x x -+-22,其中31+=x ,31-=y 、18、〔本小题总分值10分〕如图,在平面直角坐标系xoy 中,直角梯形OABC ,BC AO ∥,,,将直角梯形OABC 绕点O 顺时针旋转90后,点A B C ,,处、请你解答以下问题:〔1〕在图中画出旋转后的梯形OA B C '''; 并写出'A ,'B 的坐标;〔2〕求点A 旋转到A '所通过的弧形路线的长、19、〔本小题总分值10分〕“戒烟一小时,健康亿人行”、今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,要紧有四种态度:A 、顾客出面制止;B 、劝说进吸烟室;C 、餐厅老板出面制止;D 、无所谓、他将调查结果绘制了两幅不完整的统计图、请你依照图中的信息回答以下问题:(1)求这次抽样的公众有多少人? (2)请将统计图①补充完整;第13题图BOCAEDBCA第14题图第18题图 C D第22题图 (3)在统计图②中,求“无所谓”部分 所对应的圆心角是多少度?(4)假设城区人口有20万人,估计赞成 “餐厅老板出面制止”的有多少万人? (5)小华在城区中心地带随机对路人进 行调查,请你依照以上信息,求赞 成“餐厅老板出面制止”的概率是 多少? 20、〔本小题满分10分〕如图,在□ABCD 的对角线AC 上取两点E 和F ,假设AE=CF. 求证:∠AFD=∠CEB. 21、〔本小题总分值10分〕甲、乙两船同时从港口A 动身,甲船以60海里/时的速度沿北偏东方向航行,乙船沿北偏西45°方向航行,1小时后甲船到达B 正好到达甲船正西方向的C 点,问甲、乙船之间的距离是多少海里?〔结果精确到0.1米〕22、〔本小题总分值12分〕:如图,在平面直角坐标系xoy 中,Rt △OCD 的一边OC 在x 轴上,∠C=90°,点D 在第一象限,OC=3,DC =4,反比例函数的图象通过OD 的中点A 、〔1〕求该反比例函数的解析式;〔2〕假设该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,求过A 、B 两点的直线的解析式、23、〔本小题总分值12分〕某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,篮球、羽毛球拍和乒乓球拍的单价比为8︰3︰2,且其单价和为130元、⑴求篮球、羽毛球拍和乒乓球拍的单价分别是多少元?⑵假设要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个〔副〕,羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有哪几种购买方案? 24、〔本小题总分值14分〕 如图1,在ABC ∆中,5==BC AB ,6=AC ,ECD ∆是ABC ∆沿BC 方向平移得到的,连接AE 、AC 、BE ,且AC 和BE 相交于点O 、〔1〕求证:四边形ABCE 是菱形;〔2〕如图2,P 是线段BC 上一动点(不与B 、C 重合),连接PO并延长交线段AE 于点Q ,过Q 作BD QR ⊥交BD 于R 、第24题图1DCOBA E①四边形PQED 的面积是否为定值?假设是,请求出其值; 假设不是,请说明理由;②以点P 、Q 、R 为顶点的三角形与以点B 、C 、O 为顶点 的三角形是否可能相似?假设可能,请求出线段BP 的长; 假设不可能,请说明理由、25、〔本小题总分值14分〕 如图,在直角坐标系xoy 中,点)3,2(P ,过P 作轴y PA ⊥交y 轴于点A ,以点P 为圆心PA 为半径作⊙P ,交x 轴于点C B ,,抛物线c bx ax y ++=2通过A ,B ,C 三点、 〔1〕求点A ,B ,C 的坐标; 〔2〕求出该抛物线的解析式;〔3〕抛物线上是否存在点Q ,使得四边形ABCP 的面积是BPQ ∆面积的2倍?假设存在,请求出所有满足条件的点;假设不存在,请说明理由、第25题图第24题图2PQ R ABOC ED2018年海珠区初中毕业班综合调研测试数学参考答案暨评分参考【一】选择题〔每题3分,共30分〕1-10:BBCDBCDCAC【二】填空题〔每题3分,共18分〕11、2)1(2-x 12、1>x 13、40°14、615、⎩⎨⎧-==13y x 16、43【三】解答题〔其余解法参照提供的答案给分〕17、〔1〕解:)3(32-=x x ……………………………………………………2分9=x ………………………………………………………………2分 经检验,9=x 是原方程的解………………………………………1分〔2〕解:原式y x y y x x ---=22yx y x --=22………………………………………2分yx y x y x --+=))((y x +=………………………………………2分当31+=x ,31-=y 时,原式3131-++=2=…………1分18、〔1〕梯形OA B C '''即为所求〔图略〕………………………………………4分)20(,A ',)1,1(B '………………………………………………………2分〔2〕2236090⨯⨯︒︒=πl π=……………………………………………………4分 19、〔1〕200%1020=÷〔万〕…………………………………………………2分 〔2〕601011020200=---〔人〕,图略…………………………………2分 〔3〕︒=︒⨯1836020010………………………………………………………2分〔4〕62006020=⨯〔万〕……………………………………………………2分 〔5〕%30%10020060=⨯=P …………………………………………………2分20、证明:∵四边形ABCD 是平行四边形∴BC AD =,AD ∥BC ……………………………………………2分∴BCE DAF ∠=∠…………………………………………………2分 ∵CF AE =∴EF CF EF AE +=+即CE AF =…………………………………………………………2分 在DAF ∆和BCE ∆中⎪⎩⎪⎨⎧=∠=∠=CE AF BCE DAF BC AD∴DAF ∆≌BCE ∆……………………………………………………2分 ∴BEC DFA ∠=∠……………………………………………………2分21、解:过A 作BC AD ⊥交BC 于D ,那么︒=∠30BAD ,︒=∠45CAD ………2分∵BC AD ⊥∴︒=∠90ADB ,︒=∠90ADC∵︒=∠30BAD ,︒=∠90ADB ,60160=⨯=AB ∴30602121=⨯==AB BD ……………………………………………2分 DAB AB AD ∠=cos ︒⨯=30cos 60330=………………………2分 ∵︒=∠90ADC ,︒=∠45CAD ,330=AD∴330==AD CD …………………………………………………2分 ∵BD CD BC +=∴8.8130330≈+=BC ……………………………………………1分答:甲乙两船之间的距离大约是81.8海里………………………………1分 22、解:〔1〕过A 作x AE ⊥轴且交x 轴于点E ,那么︒=∠90AEO ……………1分∵︒=∠90DCO ∴AE ∥CD∵点A 是线段OD 的中点 ∴242121=⨯==CD AE ………………………………………1分 5.132121=⨯==OC OE ………………………………………1分 ∴)2,5.1(A设该反比例函数解析式为x k y 1=,那么5.121k =…………………1分∴31=k ……………………………………………………………1分故所求反比例函数解析式为xy 3=……………………………………1分 〔2〕当3=x 时,反比例函数xy 3=的函数值是133==y , 故)1,3(B ……………………………………………………………1分 设所求一次函数的解析式为b x k y +=2,那么⎩⎨⎧+=+=bk b k 22315.12解之得⎪⎩⎪⎨⎧=-=3322b k …………………………………4分 故所求一次函数的解析式为332+-=x y ………………………………1分 23、解:〔1〕设篮球、羽毛球拍和兵乓球拍的单价分别为x x x 2,3,8,………1分那么有130238=++x x x (1)分解之得10=x ……………………………………………………1分 故201022,301033,801088=⨯==⨯==⨯=x x x答:篮球单价为80元/个,羽毛球拍单价为30元/副,乒乓球拍单价为20元/副……………………………………………………………………………1分〔2〕设购买篮球y 个,那么购买羽毛球拍y 4副,乒乓球拍)580(y -副,由题意得…………………………………………………………………………2分⎩⎨⎧≤-+⨯+≤-3000)580(204308015580y y y y …………………………………2分 解之得:1413≤≤y ……………………………………………………2分∴BC AE AB EC ==,………………………………………2分 ∵BC AB =∴AE BC AB EC ===………………………………………1分 ∴四边形ABCE 是菱形………………………………………1分〔2〕①四边形PQED 的面积是定值………………………………………1分过E 作BD EF ⊥交BD 于F ,那么︒=∠90EFB ………………………1分 ∵四边形ABCE 是菱形∴AE ∥BC ,OE OB =,OC OA =,OB OC ⊥ ∵6=AC ∴3=OC ∵5=BC ∴4=OB ,53sin ==∠BC OC OBC ………………………………………1分∴8=BE ∴524538sin =⨯=∠⋅=OBC BE EF …………………………………1分∵AE ∥BC∴CBO AEO ∠=∠,四边形PQED 是梯形 在QOE ∆和POB ∆中 ⎪⎩⎪⎨⎧∠=∠=∠=∠POB QOE OBOE CBO AEO∴QOE ∆≌POB ∆∴BP QE =………………………………………………………………1分 ∴EF PD QE S PQED ⨯+=)(21梯形EFPD BP ⨯+=)(21EF BD ⨯⨯=21EF BC ⨯⨯=221EFBC ⨯=245245=⨯=………………………………………1分 ②PQR ∆与CBO ∆可能相似…………………………………………………1分 ∵︒=∠=∠90COB PRQ ,CBO QPR ∠>∠∴当BCO QPR ∠=∠时PQR ∆∽CBO ∆…………………………………1分 如今有3==OC OP 过O 作BC OG ⊥交BC 于G 那么△OGC ∽△BOC ∴CG :CO =CO :BC即CG :3=3:5,∴CG =95………………………………………………………1分 ∴PB =BC -PC =BC -2CG =5-2×95=75…………………………………1分 25、解:〔1〕过P 作BC PD ⊥交BC 于D ,由题意得:2===PC PB PA ,3==OA PD∴1==CD BD , ∴1=OB∴)3,0(A ,)0,1(B ,)0,3(C ………………………………………3分 〔2〕设该抛物线解析式为:)3)(1(--=x x a y ,那么有)30)(10(3--=a 解之得33=a 故该抛物线的解析式为)3)(1(33--=x x y ..............................3分 〔3〕存在 (1)分∵︒=∠90BDP ,2,1==BP BD ∴21cos ==∠BP BD DBP∴︒=∠60DBP ……………………………………………………1分 ∴︒=∠60BPA∴ABP ∆与BPC ∆基本上等边三角形 ∴BCP ABP ABCPS S S∆∆==22四边形……………………………………1分∵)0,1(B ,)3,2(P∴过P B ,两点的直线解析式为:33-=x y …………………1分 那么可设通过点A 且与BP 平行的直线解析式为:13b x y +=且有1033b +⨯=解之得31=b 即33+=x y解方程组⎪⎩⎪⎨⎧--=+=)3)(1(3333x x y x y 得⎩⎨⎧==⎩⎨⎧==38730y x y x 或也可设通过点C 且与BP 平行的直线解析式为:23b x y +=且有2330b +=解之得332-=b 即333-=x y解方程组⎪⎩⎪⎨⎧--=-=)3)(1(33333x x y x y 得⎩⎨⎧==⎩⎨⎧==3403y x y x 或∴)3,4(),0,3(),38,7(),3,0(Q …………………………………4分。
第二学期九年级一模调研测试 数学试题 第一部分(选择题 共30分)一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某种药品说明书上标有保存温度是(20±3)℃,则该药品在( )℃范围内保存最合适。
A . 17~20B .20~23C .17~23D .17~242. 一个几何体的三视图如图所示,则这个几何体可能是( )3.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85.下列表述不正确的是( )A .众数是85B .中位数是85C .平均数是85D .方差是154.下列计算正确的是( )A. a b ab ⋅=B. ()222a b a b +=+C. 111x y x y +=+D. ()3253p q p q -=-5.在△ABC 中,∠C =90°,AC =12,BC =5,以AC 为轴将△ABC 旋转一周得到一个圆锥,则该圆锥的侧面积为( )A. 130πB. 60πC. 25πD. 65π6.已知方程组3132x y m x y m +=+⎧⎨-=⎩的解,x y 满足20x y +≥,则m 的取值范围是( ) A.13m ≥ B.113m ≤≤ C.1m ≤ D.1m ≥- 7.如图,已知在圆O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形AOACB 为菱形,还需要添加一个条件,这个条件可以是( )A.OA =ACB.AD =BDC.∠CAD =∠CBDD.∠OCA =∠OCB第7题 第8题 第10题8.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上剪一个最大圆形,则这个圆形纸片的直径是( )A. 3cmB. 23C.2cmD. 4cm9.平面直角坐标系中,△ABC 的顶点坐标分别是A (1,2),B (3,2),C (2,3).当直线12y x b =+与△ABC 的边有交点时,b 的取值范围是( ) A .22b -≤≤ B .122b ≤≤ C .1322b ≤≤ D .322b ≤≤ 10. 正方形ABCD 中,对角线AC 、BD 相交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE ',点F 是DE 的中点,连接AF 、BF 、E F '.若AE =2。
外壳体铸件成形数值模拟及工艺优化廖兴银(贵州航天新力铸锻有限公司贵州遵义)摘要:利用“CAE软件”计算外壳体铸件充型凝固过程模拟,对定量缩孔模拟计算进行了探讨。
应用此计算方法对外壳体不锈钢铸件进行数值模拟,优化其铸造工艺。
关键词:外壳体铸件;数值模拟;工艺优化目前,在国内的中小型铸造企业中,都面临市场份额不足,铸件质量要求高,原辅材料不断上涨,铸件利润空间变得越来越窄的困境。
这样的前提下,企业急需解决的问题就是提高产品质量来争取更大的市场份额,同时寻求较高的利润空间来壮大企业。
要实现这两点,除了加强生产管理和企业资金运作外,还要去对铸造工艺的优化来保证铸件的质量和降低铸件在实现过程中的成本。
本论文主要研究方向是利用CAE软件来优化大型铸件(对中小企业来说)的铸造工艺,寻找一个最佳的工艺方案,在保证铸件质量的前提下来提高工艺出品率,同时已能解决该类企业由于设备能力的局限带来的钢水量不足的问题。
1、计算机辅助设计的发展史铸造成形优良的随意性、复杂性和经济性在所有的热加工成形技术中占有很大的优势。
而计算机数字模拟技术、计算力学和传热传质学的迅速发展,可以将铸造成形过程又不可视化为可视,使铸造工艺设计由定性转向定量,由经验设计走向科学预测。
由于上述优点,从20世纪60年代到目前,美、日、英、德、法等工业发达国家的冶金铸造技术人员都开展了这方面的研究,掀起了一次次高潮。
在1988年5月第四届铸造和焊接的计算机数值模拟的会议上,模拟比赛的结果表明三维温度场计算已经成熟,充型过程的数值模拟随之兴起。
1983-1993年,美国、西德、丹麦、加拿大、比利时等国的研究人员采用MAC、SMAC、SOLA-VOF方法,在砂铸、压铸、实型铸造中模拟了灰铸铁、铝合金、球墨铸铁的充型过程,进行二维、三维速度场和温度场的计算,获得液态金属流动模式、充型次序、速度分布、各部位充型时间,预测冷隔、气孔、氧化膜卷入等缺陷,并与高速摄影、水力模拟试验对比验证,开辟了模拟新领域。
2019年广东省广州市海珠区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.若a 2=4,b 2=9,且ab <0,则a ﹣b 的值为( )A .﹣2B .±5C .5D .﹣52.下列计算正确的是( )A .x 2•x 3=x 6B .(x 2)3=x 5C .3﹣=2D .x 5﹣x 2=x 3 3.一元一次不等式组的解集在数轴上表示正确的是( ) A .B .C .D .4.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=55°,则∠2的度数是( )A .35°B .25°C .65°D .50°5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .6.某车间20名工人每天加工零件数如表所示:A.5,5B .5,6C .6,6D .6,57.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x +1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D . x (x ﹣1)=2108.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米9.如图,在直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M 与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为()A.(4,5)B.(﹣5,4)C.(﹣4,6)D.(﹣4,5)10.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则sin∠FCD=()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣的绝对值是,倒数是.12.要使代数式有意义,x的取值范围是.13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.14.若a是方程x2﹣3x+1=0的根,计算:a2﹣3a+=.15.已知⊙O的半径为26cm,弦AB∥CD,AB=48cm,CD=20cm,则AB、CD之间的距离为.16.在直角坐标系内,设A(0,0),B(4,0),C(t+4,4),D(t,4)(t为实数),记N 为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N的值可能为.三.解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.19.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.20.(10分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.21.(12分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?22.(12分)如图,AB是⊙O的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD延长线上,且∠BOC+∠ADF=90°.(1)求证:;(2)求证:CD是⊙O的切线.23.(12分)如图,已知点A在反比函数y=(k<0)的图象上,点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=(k<0)的图象上,点Q在直线y=x﹣3的图象上,P、Q两点关于y轴对称,设点P的坐标为(m,n),求+的值.24.(14分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.25.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2019年广东省广州市海珠区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a ﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.2.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式合并同类二次根式得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=x5,错误;B、原式=x6,错误;C、原式=2,正确;D、原式不能合并,错误,故选:C.【点评】此题考查了二次根式的加减法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】根据平行线的性质求出∠3,再求出∠BAC=90°,即可求出答案.【解答】解:∵直线a∥b,∴∠1=∠3=55°,∵AC⊥AB,∴∠BAC=90°,∴∠2=180°﹣∠BAC﹣∠3=35°,故选:A.【点评】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.5.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.8.【分析】过点D作DE⊥AC,可得到△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.可以设EC=x,在直角△BDF中,根据勾股定理,可以用x表示出BF,根据AC=BC就可以得到关于x的方程,就可以求出x,得到BC,求出山高.【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.故选:C.【点评】本题的难度较大,建立数学模型是关键.根据勾股定理,把问题转化为方程问题.9.【分析】过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,因为四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA=4,AB=8,DM=8﹣R,AM=R,又因△ADM是直角三角形,利用勾股定理即可得到关于R的方程,解之即可.【解答】解:过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,∵四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,点A的坐标为(0,8),∴DA=4,AB=8,DM=8﹣R,AM=R,又∵△ADM是直角三角形,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,解得R=5,∴M(﹣4,5).故选:D.【点评】本题需仔细分析题意及图形,利用勾股定理来解决问题.10.【分析】由四边形ABCD为正方形,得到四个内角为直角,四条边相等,可得出AD与BC都与半圆相切,利用切线长定理得到FA=FE,CB=CE,设正方形的边长为4a,FA=FE=x,由FE+FC表示出EC,由AD﹣AF表示出FD,在直角三角形FDC中,利用勾股定理列出关系式,用a表示出x,进而用a表示出FD与FC,利用锐角三角函数定义即可求出sin∠FCD的值.【解答】解:∵四边形ABCD为正方形,∴∠A=∠B=90°,AB=BC=CD=AD,∴AD与BC都与半圆O相切,又CF与半圆相切,∴AF=EF,CB=CE,设AB=BC=CD=AD=4a,AF=EF=x,∴FC=EF+EC=4a+x,FD=AD﹣AF=4a﹣x,在Rt△DFC中,由勾股定理得:FC2=FD2+CD2,∴(4a+x)2=(4a﹣x)2+(4a)2,整理得:x=a,∴FC=4a+x=5a,FD=4a﹣x=3a,∴在Rt△DFC中,sin∠FCD==.故选:B.【点评】此题考查了正方形的性质,切线的判定,切线长定理,勾股定理,以及锐角三角函数定义,利用了转化及等量代换的思想,灵活运用切线长定理是解本题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据负数的绝对值是它的相反数,乘积是1的两数互为倒数可得答案.【解答】解:﹣的绝对值是,倒数是﹣,故答案为:;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握绝对值的性质和倒数定义.12.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】根据旋转的性质,对应边的夹角∠BOD即为旋转角.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.14.【分析】由方程的解的定义得出a2﹣3a+1=0,即a2﹣3a=﹣1、a2+1=3a,整体代入计算可得.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,则a2﹣3a=﹣1,a2+1=3a,所以原式=﹣1+1=0,故答案为:0.【点评】本题主要考查一元二次方程的解,解题的关键是掌握方程的解的定义及整体代入思想的运用.15.【分析】首先作AB、CD的垂线EF,然后根据垂径定理求得CE=DE=10cm,AF=BF=24cm;再在直角三角形OED和直角三角形OBF中,利用勾股定理求得OE、OF的长度;最后根据图示的两种情况计算EF的长度即可.【解答】解:有两种情况.如图.过O作AB、CD的垂线EF,交AB于点F,交CD于点E.∴EF就是AB、CD间的距离.∵AB=48cm,CD=20cm,根据垂径定理,得CE=DE=10cm,AF=BF=24cm,∵OD=OB=26cm,∴在直角三角形OED和直角三角形OBF中,∴OE=24cm,OF=10cm(勾股定理),∴①EF=24+10=34cm②EF=24﹣10=14cm.故答案为:34或14cm.【点评】本题考查了勾股定理、垂径定理的综合运用.解答此题时,要分类讨论,以防漏解.16.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有:(1,1);(1,2);(1,3);(2,1);(2,2);(2,3)(3,1);(3,2);(3,3)共9个点,所以N(0)=9,此时平行四边形ABCD是矩形,当平行四边形ABCD是一般平行四边形时,将边AD,BC变动起来,结合图象得到N(t)的所有可能取值为11,12.综上所述:N的值可能为:9或11或12.故答案为:9或11或12.【点评】本题考查了平行四边形的性质以及一次函数图形,此题画可行域、利用数形结合的数学思想方法得出是解题关键.三.解答题(共9小题,满分102分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x =50,解得:x =5,把x =5代入②得:y =3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】求出∠AED =∠EDC ,∠DFE =∠C ,证△DFE ≌△DCE ,即可得出答案.【解答】证明:∵DF ⊥AE 于F ,∴∠DFE =90°在矩形ABCD 中,∠C =90°,∴∠DFE =∠C ,在矩形ABCD 中,AD ∥BC∴∠ADE =∠DEC ,∵AE =AD ,∴∠ADE =∠AED ,∴∠AED =∠DEC ,∠DFE =∠C =90°,又∵DE 是公共边,∴△DFE ≌△DCE (AAS ),∴DF =DC .【点评】本题考查了矩形性质和全等三角形的性质和判定的应用,主要考查了学生的推理能力.19.【分析】(1)根据网格结构找出点A 、B 关于点C 成中心对称的点A 1、B 1的位置,再与点A顺次连接即可;根据网格结构找出点A 、B 、C 平移后的对应点A 2、B 2、C 2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】解:(1)△A 1B 1C 如图所示,△A 2B 2C 2如图所示;(2)如图,对称中心为(2,﹣1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.21.【分析】(1)设B种零件的单价为x元,则A零件的单价为(x+30)元,根据用900元购买A种零件的数量和用600元购买B种零件的数量相等,列方程求解;(2)设购进A种零件m件,则购进B种零件(200﹣m)件,根据工厂购买两种零件的总费用不超过14700元,列不等式求出m的取值范围,然后求出工厂最多购买A种零件多少件.【解答】解:(1)设B种零件的单价为x元,则A零件的单价为(x+30)元.=,解得x=60,经检验:x=60 是原分式方程的解,x+30=90.答:A种零件的单价为90元,B种零件的单价为60元.(2)设购进A种零件m件,则购进B种零件(200﹣m)件.90m+60(200﹣m)≤14700,解得:m≤90,m在取值范围内,取最大正整数,m=90.答:最多购进A种零件90件.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.【分析】(1)证明弧相等可转化为证明弧所对的圆心角相等即证明∠BOC=∠COD即可;(2)由(1)可得∠BOC=∠OAD,∠OAD=∠ODA,再由已知条件证明∠ODF=90°即可.【解答】证明:(1)连接OD.∵AD∥OC,∴∠BOC=∠OAD,∠COD=∠ODA,∵OA=OD,∴∠OAD=∠ODA.∴∠BOC=∠COD,∴=;(2)由(1)∠BOC=∠OAD,∠OAD=∠ODA.∴∠BOC=∠ODA.∵∠BOC+∠ADF=90°.∴∠ODA+∠ADF=90°,即∠ODF=90°.∵OD是⊙O的半径,∴CD是⊙O的切线.【点评】本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.【分析】(1)想办法求出点A坐标即可解决问题;(2)设P(m,﹣),则Q(﹣m,﹣),想办法构建方程即可解决问题;【解答】解:(1)由题意B(2,﹣1),∵×2×AB=4,∴AB=4,∵AB∥y轴,∴A(2,﹣5),∵A(2,﹣5)在y=的图象上,∴k=﹣10.(2)设P(m,﹣),则Q(﹣m,﹣),∵点Q在y=x﹣3上,∴﹣=﹣m﹣3,整理得:m2+3m﹣10=0,解得m=﹣5或2,当m=﹣5,n=2时, +=﹣,当m=2,n=﹣5时, +=﹣,故+=﹣.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上的点的坐标等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.24.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM =AM =3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.25.【分析】(1)把M 点坐标代入抛物线解析式可得到b 与a 的关系,可用a 表示出抛物线解析式,化为顶点式可求得其顶点D 的坐标;(2)把点M (1,0)代入直线解析式可先求得m 的值,联立直线与抛物线解析式,消去y ,可得到关于x 的一元二次方程,可求得另一交点N 的坐标,根据a <b ,判断a <0,确定D 、M 、N 的位置,画图1,根据面积和可得△DMN 的面积即可;(3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个不同的公共点时t 的取值范围.【解答】解:(1)∵抛物线y =ax 2+ax +b 有一个公共点M (1,0),∴a +a +b =0,即b =﹣2a ,∴y =ax 2+ax +b =ax 2+ax ﹣2a =a (x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣);(2)∵直线y =2x +m 经过点M (1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a =﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2019学年广东省中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 如下图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()2. 下列运算正确的是()A.2x+6x=8x2 B.a6÷a2=a3 C.(-4x3)2=16x6 D.(x+3)2=x2+93. 下列说法正确的是()A.为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B.甲组数据的方差S甲2=0.03,乙组数据的方差是S乙2=0.2,则乙组数据比甲组数据稳定C.广州市明天一定会下雨D.某班学生数学成绩统计如下,则该班学生数学成绩的众数和中位数分别是80分,80分4. 成绩(分)60708090100人数4812115td5. 若不等式组有解,则实数a的取值范围是()A.a<-30 B.a≤-30 C.a>-30 D.a≥-306. 如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n) B.(m,n) C.(m,) D.(,)7. 将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C. D.8. 如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A. B. C. D.9. 二次函数y=mx2+x-2m(m是非0常数)的图象与x轴的交点个数为()A.0个 B.1个 C.2个 D.1个或2个10. 已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.-5≤s≤- B.-6<s≤- C.-6≤s≤- D.-7<s≤-11. 如图,一个半径为r的圆形纸片在边长为a的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题12. 环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.13. 分解因式:a4-4a2+4= .14. 一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)15. 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:16. x…-10123…y…105212…td17. )在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(-,0),则直线a的函数关系式为.18. 如图,反比例函数y=(x<0)的图象经过点A(-1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是.三、计算题19. 解方程(组)(1).(2).四、解答题20. 先化简,再求值:,其中x满足x2-x-1=0.21. 已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).22. 学校举办一项小制作评比活动.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的件数是12.请你回答:(1)本次活动共有件作品参赛;各组作品件数的众数是件;(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(3)小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.23. 某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24. 如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°.(1)尺规作图:作点C到直线AB的垂线段CE(不写作法,保留作图痕迹);(2)求海底C点处距离海面DF的深度.(结果精确到1米)25. 如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1)求证:PC是⊙O的切线;(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;(3)在满足(2)的条件下,AB=10,ED=4,求BG的长.26. 如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.27. 如图1,抛物线y=-x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的坐标为(2,0),tan∠BAO=2,以线段BC为直径作⊙M交AB于点D,过点B作直线l∥AC,与抛物线和⊙M的另一个交点分别是E,F.(1)求该抛物线的函数表达式;(2)求点C的坐标和线段EF的长;(3)如图2,连接CD并延长,交直线l于点N,点P,Q为射线NB上的两个动点(点P 在点Q的右侧,且不与N重合),线段PQ与EF的长度相等,连接DP,CQ,四边形CDPQ 的周长是否有最小值?若有,请求出此时点P的坐标并直接写出四边形CDPQ周长的最小值;若没有,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
的解集在数轴上表示正确的是(答案第2页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.下列计算正确的是()A.x 2•x 3=x 6B.(x 2)3=x 5C.D.x 5﹣x 2=x 36.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=55°,则∠2的度数是()A.35°B.25°C.65°D.50°7.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是()A.x (x+1)=210B.x (x ﹣1)=210C.2x (x ﹣1)=210D.x (x ﹣1)=2108.某测量队在山脚A 处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D 处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米9.如图,在直角坐标系中,四边形OABC 为正方形,顶点A ,C 在坐标轴上,以边AB 为弦的⊙M 与x 轴相切,若点A 的坐标为(0,8),则圆心M 的坐标为()有意义,的解,计算:答案第4页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分二、计算题(共1题)7.解方程组:.评卷人得分三、解答题(共1题)8.如图,在矩形ABCD 中,点E 在BC 上,AE =AD ,DF ⊥AE 于F ,连接DE.证明:DF =DC.评卷人得分四、综合题(共7题)9.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (﹣4,2)、B (0,4)、C (0,2),答案第6页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………11.车辆经过润扬大桥收费站时,4个收费通道A .B 、C 、D 中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A 通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.12.已知,AB 是⊙O 的直径,点C 在⊙O 上,点P 是AB 延长线上一点,连接CP .(1)如图1,若∠PCB =∠A .①求证:直线PC 是⊙O 的切线;②若CP =CA ,OA =2,求CP 的长;(2)如图2,若点M 是弧AB 的中点,CM 交AB 于点N ,MN•MC =9,求BM 的值.13.某工厂准备购买A 、B 两种零件,已知A 种零件的单价比B 种零件的单价多30元,而用900元购买A 种零件的数量和用600元购买B 种零件的数量相等.(1)求A 、B 两种零件的单价;(2)根据需要,工厂准备购买A 、B 两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A 种零件多少件?14.如图,AB 是⊙O 的直径,点D 在⊙O 上,OC ∥AD 交⊙O 于E,点F 在CD 延长线上,且∠BOC+∠ADF=90°.第7页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证:;(2)求证:CD 是⊙O 的切线.15.如图,已知点A 在反比函数y =(k <0)的图象上,点B 在直线y =x ﹣3的图象上,点B 的纵坐标为﹣1,AB ⊥x 轴,且S △OAB =4.(1)求点A 的坐标和k 的值;(2)若点P 在反比例函数y =(k <0)的图象上,点Q 在直线y =x ﹣3的图象上,P 、Q 两点关于y轴对称,设点P 的坐标为(m ,n ),求+的值.参数答案1.【答案】:【解释】:答案第8页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2.【答案】:【解释】:3.【答案】:【解释】:4.【答案】:【解释】:第9页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.【答案】:【解释】:6.【答案】:【解释】:答案第10页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………7.【答案】:【解释】:8.【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………9.【答案】:【解释】:10.【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………【答案】:【解释】:【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………【答案】:【解释】:【答案】:【解释】:【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………【答案】:【解释】:【答案】:○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………【解释】:(1)【答案】:(2)【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:(2)【答案】:○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………(3)【答案】:○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………【解释】:○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:第21页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:答案第22页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………【解释】:(1)【答案】:第23页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:【解释】:(1)【答案】:答案第24页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:【解释】:(1)【答案】:第25页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:【解释】:。
2019届广东省广州市海珠区九年级下学期第一次模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 如果向东走50m记为50m,那么向西走30m记为()A. -30mB. mC. -(-30)mD. m2. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.3. 如图,点A、B、C在⊙D上,∠ABC=70°,则∠ADC的度数为()A. 110°B. 140°C. 35°D. 130°4. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是A. B. C. D.5. 下列计算正确的是()A. B.C. D.6. 下列命题中,假命题是()A. 对角线互相平分的四边形是平行四边形B. 两组对角分别相等的四边形是平行四边形C. 一组对边平行,另一组对边相等的四边形是平行四边形D. 对角线相等的平行四边形是矩形7. 下列函数中,y随x的增大而增大的是()A. B. C. D.8. 如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A. 2B. 2C. 4D. 49. 已知抛物线的图象如图所示,顶点为(4,6),则下列说法错误的是()A. B.C. 若点(2,m)(5,n)在抛物线上,则m>nD.10. 如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A. B. C. 2 D.二、填空题11. 在不透明口袋内有形状.大小.质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是________.12. 分解因式:=_________.13. 某饮料店为了解本店一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售情况,结果如下(单位:罐):33,28,32,25,24,30,这6天销售量的中位数是________.14. 某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数x的函数关系式为___________.15. 如图,AB是⊙O的直径,AC.BC是⊙O的弦,直径DE⊥BC于点M.若点E在优弧上,AC=8,BC=6,则EM=_______.16. 16.若一元二次方程有两个相同的实数根,则的最小值为___.三、解答题17. 解不等式组(2)解方程18. 如图,AC是菱形ABCD的对角线,点E.F分别在AB、AD上,且AE=AF.求证:△ACE≌△ACF.19. 已知A=(1)化简A;(2)若满足,求A的值.20. 中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:(1)本次抽样调查的样本容量是__________,表示“D级(不喜欢)”的扇形的圆心角为__________°;(2)若该校九年级有200名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;(3)若从本次调查中的 A 级(非常喜欢)的5名学生中,选出2名去参加广州市中学生诗词大会比赛,已知A级学生中男生有 3名,请用“列表”或“画树状图”的方法求出所选出的2名学生中至少有1名女生的概率.21. 某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买3个温馨提示牌和4个垃圾箱共需 580元,且每个温馨提示牌比垃圾箱便宜40元.(1)问购买1个温馨提示牌和 1 个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8000元,问最多购买垃圾箱多少个?22. 如图,在△ABC 中,∠C=90°(1)利用尺规作∠B 的角平分线交 AC于D,以BD为直径作O交AB于E(保留作图痕迹,不写作法);(2)综合应用:在(1)的条件下,连接DE①求证:CD=DE;②若sinA=,AC=6,求AD.23. 如图,在平面直角坐标系中,一次函数(≠ 0)的图象与轴相交于点A,与反比例函数(≠0)的图象相交于点B(3,2)、C(-1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出>时的取值范围;(3)在轴上是否存在点P,使△PAB为直角三角形,如果存在,请求点P的坐标,若不存在,请说明理由.24. 抛物线与x轴交于A、B两点(A在B的左边),与y轴交于点C,抛物线上有一动点P.(1)若A(-2,0),C(0,-4),①求抛物线的解析式;②在①的情况下,若点P在第四象限运动,点D(0,-2),以BD、BP为邻边作平行四边形BDQP,求平行四边形BDQP面积的取值范围;(2)若点P在第一象限运动,且,连接AP、BP分别交y轴于点E、F,则问是否与有关?若有关,用表示该比值;若无关,求出该比值.25. 如图1:AD与⊙O相切于点D,AF经过圆心与圆交于点E、F,连接DE、DF,且EF=6,AD=4.(1)证明:;(2)延长AD到点B,使DB=AD,如图2,直径EF上有一动点C,连接CB交DF于点G,连接EG,设,.①当时,探索EG与BD的大小关系?并说明理由;②当时,求与的关系式,并用的代数式表示.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
广东省广州市海珠区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.若a 2=4,b 2=9,且ab <0,则a ﹣b 的值为( )A .﹣2B .±5C .5D .﹣52.下列计算正确的是( )A .x 2•x 3=x 6B .(x 2)3=x 5C .3﹣=2D .x 5﹣x 2=x 3 3.一元一次不等式组的解集在数轴上表示正确的是( ) A .B .C .D .4.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=55°,则∠2的度数是( )A .35°B .25°C .65°D .50°5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .6.某车间20名工人每天加工零件数如表所示:每天加工零件数4 5 6 7 8人数 3 6 5 4 2 这些工人每天加工零件数的众数、中位数分别是( )A .5,5B .5,6C .6,6D .6,57.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x +1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D . x (x ﹣1)=2108.某测量队在山脚A 处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D 处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为( )(精确到1米,=1.732).A.585米B.1014米C.805米D.820米9.如图,在直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为()A.(4,5)B.(﹣5,4)C.(﹣4,6)D.(﹣4,5)10.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则sin∠FCD=()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣的绝对值是,倒数是.12.要使代数式有意义,x的取值范围是.13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.14.若a是方程x2﹣3x+1=0的根,计算:a2﹣3a+=.15.已知⊙O的半径为26cm,弦AB∥CD,AB=48cm,CD=20cm,则AB、CD之间的距离为.16.在直角坐标系内,设A(0,0),B(4,0),C(t+4,4),D(t,4)(t为实数),记N为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N的值可能为.三.解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.19.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.20.(10分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.21.(12分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?22.(12分)如图,AB是⊙O的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD延长线上,且∠BOC+∠ADF=90°.(1)求证:;(2)求证:CD是⊙O的切线.23.(12分)如图,已知点A在反比函数y=(k<0)的图象上,点B在直线y=x﹣3的图象上,点B=4.的纵坐标为﹣1,AB⊥x轴,且S△OAB(1)求点A的坐标和k的值;(2)若点P在反比例函数y=(k<0)的图象上,点Q在直线y=x﹣3的图象上,P、Q两点关于y轴对称,设点P的坐标为(m,n),求+的值.24.(14分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.25.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y 轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.广东省广州市海珠区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.2.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式合并同类二次根式得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=x5,错误;B、原式=x6,错误;C、原式=2,正确;D、原式不能合并,错误,故选:C.【点评】此题考查了二次根式的加减法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】根据平行线的性质求出∠3,再求出∠BAC=90°,即可求出答案.【解答】解:∵直线a∥b,∴∠1=∠3=55°,∵AC⊥AB,∴∠BAC=90°,∴∠2=180°﹣∠BAC﹣∠3=35°,故选:A.【点评】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.5.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.8.【分析】过点D作DE⊥AC,可得到△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.可以设EC=x,在直角△BDF中,根据勾股定理,可以用x表示出BF,根据AC=BC就可以得到关于x的方程,就可以求出x,得到BC,求出山高.【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.故选:C.【点评】本题的难度较大,建立数学模型是关键.根据勾股定理,把问题转化为方程问题.9.【分析】过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,因为四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA=4,AB=8,DM=8﹣R,AM=R,又因△ADM是直角三角形,利用勾股定理即可得到关于R的方程,解之即可.【解答】解:过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,∵四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,点A的坐标为(0,8),∴DA=4,AB=8,DM=8﹣R,AM=R,又∵△ADM是直角三角形,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,解得R=5,∴M(﹣4,5).故选:D.【点评】本题需仔细分析题意及图形,利用勾股定理来解决问题.10.【分析】由四边形ABCD为正方形,得到四个内角为直角,四条边相等,可得出AD与BC都与半圆相切,利用切线长定理得到FA=FE,CB=CE,设正方形的边长为4a,FA=FE=x,由FE+FC表示出EC,由AD ﹣AF表示出FD,在直角三角形FDC中,利用勾股定理列出关系式,用a表示出x,进而用a表示出FD 与FC,利用锐角三角函数定义即可求出sin∠FCD的值.【解答】解:∵四边形ABCD为正方形,∴∠A=∠B=90°,AB=BC=CD=AD,∴AD与BC都与半圆O相切,又CF与半圆相切,∴AF=EF,CB=CE,设AB=BC=CD=AD=4a,AF=EF=x,∴FC=EF+EC=4a+x,FD=AD﹣AF=4a﹣x,在Rt△DFC中,由勾股定理得:FC2=FD2+CD2,∴(4a+x)2=(4a﹣x)2+(4a)2,整理得:x=a,∴FC=4a+x=5a,FD=4a﹣x=3a,∴在Rt△DFC中,sin∠FCD==.故选:B.【点评】此题考查了正方形的性质,切线的判定,切线长定理,勾股定理,以及锐角三角函数定义,利用了转化及等量代换的思想,灵活运用切线长定理是解本题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据负数的绝对值是它的相反数,乘积是1的两数互为倒数可得答案.【解答】解:﹣的绝对值是,倒数是﹣,故答案为:;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握绝对值的性质和倒数定义.12.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】根据旋转的性质,对应边的夹角∠BOD即为旋转角.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.14.【分析】由方程的解的定义得出a2﹣3a+1=0,即a2﹣3a=﹣1、a2+1=3a,整体代入计算可得.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,则a2﹣3a=﹣1,a2+1=3a,所以原式=﹣1+1=0,故答案为:0.【点评】本题主要考查一元二次方程的解,解题的关键是掌握方程的解的定义及整体代入思想的运用.15.【分析】首先作AB、CD的垂线EF,然后根据垂径定理求得CE=DE=10cm,AF=BF=24cm;再在直角三角形OED和直角三角形OBF中,利用勾股定理求得OE、OF的长度;最后根据图示的两种情况计算EF 的长度即可.【解答】解:有两种情况.如图.过O作AB、CD的垂线EF,交AB于点F,交CD于点E.∴EF就是AB、CD间的距离.∵AB=48cm,CD=20cm,根据垂径定理,得CE=DE=10cm,AF=BF=24cm,∵OD=OB=26cm,∴在直角三角形OED和直角三角形OBF中,∴OE=24cm,OF=10cm(勾股定理),∴①EF=24+10=34cm②EF=24﹣10=14cm.故答案为:34或14cm.【点评】本题考查了勾股定理、垂径定理的综合运用.解答此题时,要分类讨论,以防漏解.16.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有:(1,1);(1,2);(1,3);(2,1);(2,2);(2,3)(3,1);(3,2);(3,3)共9个点,所以N(0)=9,此时平行四边形ABCD是矩形,当平行四边形ABCD是一般平行四边形时,将边AD,BC变动起来,结合图象得到N(t)的所有可能取值为11,12.综上所述:N的值可能为:9或11或12.故答案为:9或11或12.【点评】本题考查了平行四边形的性质以及一次函数图形,此题画可行域、利用数形结合的数学思想方法得出是解题关键.三.解答题(共9小题,满分102分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】求出∠AED=∠EDC,∠DFE=∠C,证△DFE≌△DCE,即可得出答案.【解答】证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC∴∠ADE=∠DEC,∵AE=AD,∴∠ADE=∠AED,∴∠AED=∠DEC,∠DFE=∠C=90°,又∵DE是公共边,∴△DFE≌△DCE(AAS),∴DF=DC.【点评】本题考查了矩形性质和全等三角形的性质和判定的应用,主要考查了学生的推理能力.19.【分析】(1)根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.21.【分析】(1)设B种零件的单价为x元,则A零件的单价为(x+30)元,根据用900元购买A种零件的数量和用600元购买B种零件的数量相等,列方程求解;(2)设购进A种零件m件,则购进B种零件(200﹣m)件,根据工厂购买两种零件的总费用不超过14700元,列不等式求出m的取值范围,然后求出工厂最多购买A种零件多少件.【解答】解:(1)设B种零件的单价为x元,则A零件的单价为(x+30)元.=,解得x=60,经检验:x=60 是原分式方程的解,x+30=90.答:A种零件的单价为90元,B种零件的单价为60元.(2)设购进A种零件m件,则购进B种零件(200﹣m)件.90m+60(200﹣m)≤14700,解得:m≤90,m在取值范围内,取最大正整数,m=90.答:最多购进A种零件90件.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.【分析】(1)证明弧相等可转化为证明弧所对的圆心角相等即证明∠BOC=∠COD即可;(2)由(1)可得∠BOC=∠OAD,∠OAD=∠ODA,再由已知条件证明∠ODF=90°即可.【解答】证明:(1)连接OD.∵AD∥OC,∴∠BOC=∠OAD,∠COD=∠ODA,∵OA=OD,∴∠OAD=∠ODA.∴∠BOC=∠COD,∴=;(2)由(1)∠BOC=∠OAD,∠OAD=∠ODA.∴∠BOC=∠ODA.∵∠BOC+∠ADF=90°.∴∠ODA+∠ADF=90°,即∠ODF=90°.∵OD是⊙O的半径,∴CD是⊙O的切线.【点评】本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.【分析】(1)想办法求出点A坐标即可解决问题;(2)设P(m,﹣),则Q(﹣m,﹣),想办法构建方程即可解决问题;【解答】解:(1)由题意B(2,﹣1),∵×2×AB=4,∴AB=4,∵AB∥y轴,∴A(2,﹣5),∵A(2,﹣5)在y=的图象上,∴k=﹣10.(2)设P(m,﹣),则Q(﹣m,﹣),∵点Q在y=x﹣3上,∴﹣=﹣m﹣3,整理得:m2+3m﹣10=0,解得m=﹣5或2,当m=﹣5,n=2时, +=﹣,当m=2,n=﹣5时, +=﹣,故+=﹣.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上的点的坐标等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.24.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.25.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t =0,△=1﹣4(t ﹣2)=0,t =,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y =﹣2x +t ,t =2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
第1页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省广州市海珠区2018-2019学年九年级下学期一模数学试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. -3的相反数为 ( ) A . -3 B . 3 C . D .2. 下列图形中是中心对称图形的是( )A .B .C .D .3. 把不等式组的解集表示在数轴上正确的是( )A .B .C .D .4. 在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE=6,则BC=( )A . 3B . 6C . 9D . 125. 在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为: 1.8、2、2.2、1.7、2、1.9,那么答案第2页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………关于这组数据的说法正确的是( )A . 平均数是2B . 中位数是2C . 众数是2D . 方差是26. 若一个正多边形的一个外角是30°,则这个正多边形的边数是( ) A . 12 B . 11 C . 10 D . 97. 如图,AB△DE ,△E=62°,则△B+△C 等于( )A . 138°B . 118°C . 38°D . 62°8. 对于二次函数 ,下列说法正确的是A . 当,y 随x 的增大而增大 B . 当 x=-1 时,y 有最大值3C . 图象的顶点坐标为D . 图象与 x 轴有一个交点9. 已知圆锥的母线长是4cm ,侧面积是12πcm 2 , 则这个圆锥底面圆的半径是( ) A . 3cm B . 4cm C . 5cm D . 6cm10. 将抛物线 向左平移至顶点落在y 轴上,如图所示,则两条抛物线、直线y=-3和x 轴围成的图形的面积S (图中阴影部分)是( )A . 5B . 6C . 7D . 8第Ⅱ卷 主观题第Ⅱ卷的注释第3页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分一、填空题(共6题)1. 分解因式: .2. 计算:.3. 已知命题:“如果两个角是直角,那么它们相等”,该命题的逆命题是 命题(填“真”或“假”).4. 已知一次函数图象经过第一、二、四象限,请写出一个符合条件的一次函数解析式 .5. 如图,PA 、PB 是△O 的两条切线,A 、B 是切点,PA=OA ,阴影部分的面积为6π,则△O 的半径长为 .6. 如图把矩形ABCD 翻折,使得点A 与BC 边上的点G 重合,折痕为DE ,连结AG 交DE 于点F ,若EF=1,DG=,则BE= .评卷人 得分二、计算题(共2题)7. 解分式方程: .8. 先化简,再求值: ,其中.评卷人 得分三、解答题(共1题)9. 如图,在△ABCD 中,BE 、DF 分别是△ABC 和△CDA 的平分线.求证:四边形BEDF 是平行四边形.答案第4页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分四、综合题(共6题)10. 某校响应国家号召,鼓励学生积极参与体育锻炼.为了解学生一星期参与体育锻炼的时间情况,从全校2000名学生中,随机抽取50名学生进行调查,按参与体育锻炼的时间t (单位:小时),将学生分成五类:A 类,B 类,C 类,D 类,E 类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)样本中E 类学生有 △ 人,补全条形统计图;(2)估计全校的D 类学生有 人;(3)从该样本参与体育锻炼时间在 的学生中任选2人,求这2人参与体育锻炼时间都在中的概率.11. 如图,楼房BD 的前方竖立着旗杆AC .小亮在B 处观察旗杆顶端C 的仰角为45°,在D 处观察旗杆顶端C 的俯角为30°,楼高BD 为20米.第5页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求△BCD 的度数;(2)求旗杆AC 的高度.12. 如图,已知以Rt△ABC 的边AB 为直径作△ABC 的外接圆△O ,△B 的平分线BE 交AC 于D ,交△O 于E ,过E 作EF△AC 交BA 的延长线于F .(1)求证:EF 是△O 切线;(2)若AB=15,EF=10,求AE 的长. 13. 如图,双曲线与直线相交于A,B,点P 是x 轴上一动点.答案第6页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)当 时,直接写出 的取值范围;(2)求双曲线 与直线 的解析式;(3)当△PAB 是等腰三角形时,求点P 的坐标.14. 如图,二次函数 的图象经过点 和点 ,点(1)求二次函数 的解析式;(2)在图①中仅用尺规作图(保留作图痕迹,不要求写作法)在 轴上确定点 ,使△ =△ ,直接写出点 的坐标;(3)在(2)的条件下,如图②,过点P 的直线交二次函数的图象于D ,E ,且 ,过点D 、E 作 轴的垂线段,垂足分别是F 、G ,连接PF 、PG ,①求证:无论 为何值,总有△FPO=△PGO ; ②当PF+PG 取最小值时,求点O 到直线 的距离.15. 已知点A 、B 在△O 上,△AOB=90°,OA=,第7页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)点P 是优弧 上的一个动点,求△APB 的度数;(2)如图①,当 时,求证: ;(3)如图②,当点P 运动到优弧 的中点时,点Q 在上移动(点Q 不与点P 、B 重合),若△QPA的面积为 ,△QPB 的面积为,求的取值范围.参数答案1.【答案】:【解释】:2.【答案】:【解释】:答案第8页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………3.【答案】:【解释】:4.【答案】:【解释】:5.【答案】:【解释】:第9页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】: 7.【答案】: 【解释】: 8.【答案】:答案第10页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:9.【答案】:【解释】:10.【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】: 【解释】:【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】: 【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:第21页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………【解释】:(1)【答案】:(2)【答案】:答案第22页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………(3)【答案】:第23页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………【解释】:答案第24页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:(2)【答案】:第25页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………(3)【答案】:答案第26页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………【解释】:第27页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………。
初中数学试题2019年广东省广州市海珠区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.3﹣=2D.x5﹣x2=x33.一元一次不等式组的解集在数轴上表示正确的是()A .B .C .D .4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A.35°B.25°C.65°D.50°5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A .B .C .D .6.某车间20名工人每天加工零件数如表所示:45678每天加工零件数人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,57.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程2是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D .x(x﹣1)=2108.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米9.如图,在直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M 与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为()A.(4,5)B.(﹣5,4)C.(﹣4,6)D.(﹣4,5)10.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则sin∠FCD=()A .B .C .D .二.填空题(共6小题,满分18分,每小题3分)11.﹣的绝对值是,倒数是.312.要使代数式有意义,x的取值范围是.13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.14.若a是方程x2﹣3x+1=0的根,计算:a2﹣3a+=.15.已知⊙O的半径为26cm,弦AB∥CD,AB=48cm,CD=20cm,则AB、CD之间的距离为.16.在直角坐标系内,设A(0,0),B(4,0),C(t+4,4),D(t,4)(t为实数),记N为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N的值可能为.三.解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.19.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.420.(10分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.21.(12分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.(1)求A、B 两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?22.(12分)如图,AB 是⊙O 的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD延长线上,且∠BOC+∠ADF=90°.(1)求证:;(2)求证:CD是⊙O的切线.23.(12分)如图,已知点A在反比函数y=(k<0)的图象上,点B在直线y=x﹣3的图象上,=4.点B的纵坐标为﹣1,AB⊥x轴,且S△OAB(1)求点A的坐标和k的值;(2)若点P在反比例函数y=(k<0)的图象上,点Q在直线y=x﹣3的图象上,P、Q两点关于y轴对称,设点P的坐标为(m,n),求+的值.524.(14分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.25.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.672019年广东省广州市海珠区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b 的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.2.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式合并同类二次根式得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=x5,错误;B、原式=x6,错误;C、原式=2,正确;D、原式不能合并,错误,故选:C.【点评】此题考查了二次根式的加减法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;8第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】根据平行线的性质求出∠3,再求出∠BAC=90°,即可求出答案.【解答】解:∵直线a∥b,∴∠1=∠3=55°,∵AC⊥AB,∴∠BAC=90°,∴∠2=180°﹣∠BAC﹣∠3=35°,故选:A.【点评】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.5.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,9故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.8.【分析】过点D作DE⊥AC,可得到△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.可以设EC=x,在直角△BDF中,根据勾股定理,可以用x表示出BF,根据AC=BC 就可以得到关于x的方程,就可以求出x,得到BC,求出山高.【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF =AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE =DE =x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.故选:C.10【点评】本题的难度较大,建立数学模型是关键.根据勾股定理,把问题转化为方程问题.9.【分析】过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,因为四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA =4,AB=8,DM=8﹣R,AM=R,又因△ADM是直角三角形,利用勾股定理即可得到关于R 的方程,解之即可.【解答】解:过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,∵四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,点A的坐标为(0,8),∴DA=4,AB=8,DM=8﹣R,AM=R,又∵△ADM是直角三角形,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,解得R=5,∴M(﹣4,5).故选:D.【点评】本题需仔细分析题意及图形,利用勾股定理来解决问题.10.【分析】由四边形ABCD为正方形,得到四个内角为直角,四条边相等,可得出AD与BC都与半圆相切,利用切线长定理得到FA=FE,CB=CE,设正方形的边长为4a,FA=FE=x,由FE+FC表示出EC,由AD﹣AF表示出FD,在直角三角形FDC中,利用勾股定理列出关系式,用a表示出x,进而用a表示出FD与FC,利用锐角三角函数定义即可求出sin∠FCD的值.【解答】解:∵四边形ABCD为正方形,∴∠A=∠B=90°,AB=BC=CD=AD,∴AD与BC都与半圆O相切,又CF与半圆相切,∴AF=EF,CB=CE,设AB=BC=CD=AD=4a,AF=EF=x,∴FC=EF+EC=4a+x,FD=AD﹣AF=4a﹣x,在Rt△DFC中,由勾股定理得:FC2=FD2+CD2,∴(4a+x)2=(4a﹣x)2+(4a)2,整理得:x=a,∴FC=4a+x=5a,FD=4a﹣x=3a,∴在Rt△DFC中,sin∠FCD==.故选:B.【点评】此题考查了正方形的性质,切线的判定,切线长定理,勾股定理,以及锐角三角函数定义,利用了转化及等量代换的思想,灵活运用切线长定理是解本题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据负数的绝对值是它的相反数,乘积是1的两数互为倒数可得答案.【解答】解:﹣的绝对值是,倒数是﹣,故答案为:;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握绝对值的性质和倒数定义.12.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】根据旋转的性质,对应边的夹角∠BOD即为旋转角.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.14.【分析】由方程的解的定义得出a2﹣3a+1=0,即a2﹣3a=﹣1、a2+1=3a,整体代入计算可得.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,则a2﹣3a=﹣1,a2+1=3a,所以原式=﹣1+1=0,故答案为:0.【点评】本题主要考查一元二次方程的解,解题的关键是掌握方程的解的定义及整体代入思想的运用.15.【分析】首先作AB、CD的垂线EF,然后根据垂径定理求得CE=DE=10cm,AF=BF=24cm;再在直角三角形OED和直角三角形OBF中,利用勾股定理求得OE、OF的长度;最后根据图示的两种情况计算EF的长度即可.【解答】解:有两种情况.如图.过O作AB、CD的垂线EF,交AB于点F,交CD于点E.∴EF就是AB、CD间的距离.∵AB=48cm,CD=20cm,根据垂径定理,得CE=DE=10cm,AF=BF=24cm,∵OD=OB=26cm,∴在直角三角形OED和直角三角形OBF中,∴OE=24cm,OF=10cm(勾股定理),∴①EF=24+10=34cm②EF=24﹣10=14cm.故答案为:34或14cm.【点评】本题考查了勾股定理、垂径定理的综合运用.解答此题时,要分类讨论,以防漏解.16.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有:(1,1);(1,2);(1,3);(2,1);(2,2);(2,3)(3,1);(3,2);(3,3)所以N(0)=9,此时平行四边形ABCD是矩形,当平行四边形ABCD是一般平行四边形时,将边AD,BC变动起来,结合图象得到N(t)的所有可能取值为11,12.综上所述:N的值可能为:9或11或12.故答案为:9或11或12.【点评】本题考查了平行四边形的性质以及一次函数图形,此题画可行域、利用数形结合的数学思想方法得出是解题关键.三.解答题(共9小题,满分102分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】求出∠AED=∠EDC,∠DFE=∠C,证△DFE≌△DCE,即可得出答案.【解答】证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC∴∠ADE=∠DEC,∴∠ADE=∠AED,∴∠AED=∠DEC,∠DFE=∠C=90°,又∵DE是公共边,∴△DFE≌△DCE(AAS),∴DF=DC.【点评】本题考查了矩形性质和全等三角形的性质和判定的应用,主要考查了学生的推理能力.19.【分析】(1)根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A 顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.21.【分析】(1)设B种零件的单价为x元,则A零件的单价为(x+30)元,根据用900元购买A 种零件的数量和用600元购买B种零件的数量相等,列方程求解;(2)设购进A种零件m件,则购进B种零件(200﹣m)件,根据工厂购买两种零件的总费用不超过14700元,列不等式求出m的取值范围,然后求出工厂最多购买A种零件多少件.【解答】解:(1)设B种零件的单价为x元,则A零件的单价为(x+30)元.=,解得x=60,经检验:x=60 是原分式方程的解,x+30=90.答:A种零件的单价为90元,B种零件的单价为60元.(2)设购进A种零件m件,则购进B种零件(200﹣m)件.90m+60(200﹣m)≤14700,解得:m≤90,m在取值范围内,取最大正整数,m=90.答:最多购进A种零件90件.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.【分析】(1)证明弧相等可转化为证明弧所对的圆心角相等即证明∠BOC=∠COD即可;(2)由(1)可得∠BOC=∠OAD,∠OAD=∠ODA,再由已知条件证明∠ODF=90°即可.【解答】证明:(1)连接OD.∵AD∥OC,∴∠BOC=∠OAD,∠COD=∠ODA,∵OA=OD,∴∠OAD=∠ODA.∴∠BOC=∠COD,∴=;(2)由(1)∠BOC=∠OAD,∠OAD=∠ODA.∴∠BOC=∠ODA.∵∠BOC+∠ADF=90°.∴∠ODA+∠ADF=90°,即∠ODF=90°.∵OD是⊙O的半径,∴CD是⊙O的切线.【点评】本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.【分析】(1)想办法求出点A坐标即可解决问题;(2)设P(m,﹣),则Q(﹣m,﹣),想办法构建方程即可解决问题;【解答】解:(1)由题意B(2,﹣1),∵×2×AB=4,∴AB=4,∵AB∥y轴,∴A(2,﹣5),∵A(2,﹣5)在y=的图象上,∴k=﹣10.(2)设P(m,﹣),则Q(﹣m,﹣),∵点Q在y=x﹣3上,∴﹣=﹣m﹣3,整理得:m2+3m﹣10=0,解得m=﹣5或2,当m=﹣5,n=2时,+=﹣,当m=2,n=﹣5时,+=﹣,故+=﹣.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上的点的坐标等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.24.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.25.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t =0,△=1﹣4(t ﹣2)=0,t =,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y =﹣2x +t ,t =2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.研读课标著名特级教师于永正先生有一个习惯,总是把课程标准中各学段的教学目标复印下来,贴在备课本的首页上,作为“教学指南”。
2019年广东省广州市海珠区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.3﹣=2D.x5﹣x2=x33.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A.35°B.25°C.65°D.50°5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.6.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,57.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2108.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米9.如图,在直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为()A.(4,5)B.(﹣5,4)C.(﹣4,6)D.(﹣4,5)10.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则sin∠FCD =()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣的绝对值是,倒数是.12.要使代数式有意义,x的取值范围是.13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.14.若a是方程x2﹣3x+1=0的根,计算:a2﹣3a+=.15.已知⊙O的半径为26cm,弦AB∥CD,AB=48cm,CD=20cm,则AB、CD之间的距离为.16.在直角坐标系内,设A(0,0),B(4,0),C(t+4,4),D(t,4)(t为实数),记N为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N的值可能为.三.解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.19.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.20.(10分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.21.(12分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?22.(12分)如图,AB是⊙O的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD延长线上,且∠BOC+∠ADF=90°.(1)求证:;(2)求证:CD是⊙O的切线.23.(12分)如图,已知点A在反比函数y=(k<0)的图象上,点B在直线y=x﹣3的图象上,点B的纵坐=4.标为﹣1,AB⊥x轴,且S△OAB(1)求点A的坐标和k的值;(2)若点P在反比例函数y=(k<0)的图象上,点Q在直线y=x﹣3的图象上,P、Q两点关于y轴对称,设点P的坐标为(m,n),求+的值.24.(14分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.25.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2019年广东省广州市海珠区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.2.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式合并同类二次根式得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=x5,错误;B、原式=x6,错误;C、原式=2,正确;D、原式不能合并,错误,故选:C.【点评】此题考查了二次根式的加减法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】根据平行线的性质求出∠3,再求出∠BAC=90°,即可求出答案.【解答】解:∵直线a∥b,∴∠1=∠3=55°,∵AC⊥AB,∴∠BAC=90°,∴∠2=180°﹣∠BAC﹣∠3=35°,故选:A.【点评】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.5.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.8.【分析】过点D作DE⊥AC,可得到△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.可以设EC=x,在直角△BDF中,根据勾股定理,可以用x表示出BF,根据AC=BC就可以得到关于x的方程,就可以求出x,得到BC,求出山高.【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.故选:C.【点评】本题的难度较大,建立数学模型是关键.根据勾股定理,把问题转化为方程问题.9.【分析】过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,因为四边形OABC为正方形,顶点A,C 在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA=4,AB=8,DM=8﹣R,AM=R,又因△ADM是直角三角形,利用勾股定理即可得到关于R的方程,解之即可.【解答】解:过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,∵四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,点A的坐标为(0,8),∴DA=4,AB=8,DM=8﹣R,AM=R,又∵△ADM是直角三角形,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,解得R=5,∴M(﹣4,5).故选:D.【点评】本题需仔细分析题意及图形,利用勾股定理来解决问题.10.【分析】由四边形ABCD为正方形,得到四个内角为直角,四条边相等,可得出AD与BC都与半圆相切,利用切线长定理得到FA=FE,CB=CE,设正方形的边长为4a,FA=FE=x,由FE+FC表示出EC,由AD ﹣AF表示出FD,在直角三角形FDC中,利用勾股定理列出关系式,用a表示出x,进而用a表示出FD与FC,利用锐角三角函数定义即可求出sin∠FCD的值.【解答】解:∵四边形ABCD为正方形,∴∠A=∠B=90°,AB=BC=CD=AD,∴AD与BC都与半圆O相切,又CF与半圆相切,∴AF=EF,CB=CE,设AB=BC=CD=AD=4a,AF=EF=x,∴FC=EF+EC=4a+x,FD=AD﹣AF=4a﹣x,在Rt△DFC中,由勾股定理得:FC2=FD2+CD2,∴(4a+x)2=(4a﹣x)2+(4a)2,整理得:x=a,∴FC=4a+x=5a,FD=4a﹣x=3a,∴在Rt△DFC中,sin∠FCD==.故选:B.【点评】此题考查了正方形的性质,切线的判定,切线长定理,勾股定理,以及锐角三角函数定义,利用了转化及等量代换的思想,灵活运用切线长定理是解本题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据负数的绝对值是它的相反数,乘积是1的两数互为倒数可得答案.【解答】解:﹣的绝对值是,倒数是﹣,故答案为:;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握绝对值的性质和倒数定义.12.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】根据旋转的性质,对应边的夹角∠BOD即为旋转角.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.14.【分析】由方程的解的定义得出a2﹣3a+1=0,即a2﹣3a=﹣1、a2+1=3a,整体代入计算可得.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,则a2﹣3a=﹣1,a2+1=3a,所以原式=﹣1+1=0,故答案为:0.【点评】本题主要考查一元二次方程的解,解题的关键是掌握方程的解的定义及整体代入思想的运用.15.【分析】首先作AB、CD的垂线EF,然后根据垂径定理求得CE=DE=10cm,AF=BF=24cm;再在直角三角形OED和直角三角形OBF中,利用勾股定理求得OE、OF的长度;最后根据图示的两种情况计算EF 的长度即可.【解答】解:有两种情况.如图.过O作AB、CD的垂线EF,交AB于点F,交CD于点E.∴EF就是AB、CD间的距离.∵AB=48cm,CD=20cm,根据垂径定理,得CE=DE=10cm,AF=BF=24cm,∵OD=OB=26cm,∴在直角三角形OED和直角三角形OBF中,∴OE=24cm,OF=10cm(勾股定理),∴①EF=24+10=34cm②EF=24﹣10=14cm.故答案为:34或14cm.【点评】本题考查了勾股定理、垂径定理的综合运用.解答此题时,要分类讨论,以防漏解.16.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有:(1,1);(1,2);(1,3);(2,1);(2,2);(2,3)(3,1);(3,2);(3,3)共9个点,所以N(0)=9,此时平行四边形ABCD是矩形,当平行四边形ABCD是一般平行四边形时,将边AD,BC变动起来,结合图象得到N(t)的所有可能取值为11,12.综上所述:N的值可能为:9或11或12.故答案为:9或11或12.【点评】本题考查了平行四边形的性质以及一次函数图形,此题画可行域、利用数形结合的数学思想方法得出是解题关键.三.解答题(共9小题,满分102分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】求出∠AED=∠EDC,∠DFE=∠C,证△DFE≌△DCE,即可得出答案.【解答】证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC∴∠ADE=∠DEC,∵AE=AD,∴∠ADE=∠AED,∴∠AED=∠DEC,∠DFE=∠C=90°,又∵DE是公共边,∴△DFE≌△DCE(AAS),∴DF=DC.【点评】本题考查了矩形性质和全等三角形的性质和判定的应用,主要考查了学生的推理能力.19.【分析】(1)根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.21.【分析】(1)设B种零件的单价为x元,则A零件的单价为(x+30)元,根据用900元购买A种零件的数量和用600元购买B种零件的数量相等,列方程求解;(2)设购进A种零件m件,则购进B种零件(200﹣m)件,根据工厂购买两种零件的总费用不超过14700元,列不等式求出m的取值范围,然后求出工厂最多购买A种零件多少件.【解答】解:(1)设B种零件的单价为x元,则A零件的单价为(x+30)元.=,解得x=60,经检验:x=60 是原分式方程的解,x+30=90.答:A种零件的单价为90元,B种零件的单价为60元.(2)设购进A种零件m件,则购进B种零件(200﹣m)件.90m+60(200﹣m)≤14700,解得:m≤90,m在取值范围内,取最大正整数,m=90.答:最多购进A种零件90件.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.【分析】(1)证明弧相等可转化为证明弧所对的圆心角相等即证明∠BOC=∠COD即可;(2)由(1)可得∠BOC=∠OAD,∠OAD=∠ODA,再由已知条件证明∠ODF=90°即可.【解答】证明:(1)连接OD.∵AD∥OC,∴∠BOC=∠OAD,∠COD=∠ODA,∵OA=OD,∴∠OAD=∠ODA.∴∠BOC=∠COD,∴=;(2)由(1)∠BOC=∠OAD,∠OAD=∠ODA.∴∠BOC=∠ODA.∵∠BOC+∠ADF=90°.∴∠ODA+∠ADF=90°,即∠ODF=90°.∵OD是⊙O的半径,∴CD是⊙O的切线.【点评】本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.【分析】(1)想办法求出点A坐标即可解决问题;(2)设P(m,﹣),则Q(﹣m,﹣),想办法构建方程即可解决问题;【解答】解:(1)由题意B(2,﹣1),∵×2×AB=4,∴AB=4,∵AB∥y轴,∴A(2,﹣5),∵A(2,﹣5)在y=的图象上,∴k=﹣10.(2)设P(m,﹣),则Q(﹣m,﹣),∵点Q在y=x﹣3上,∴﹣=﹣m﹣3,整理得:m2+3m﹣10=0,解得m=﹣5或2,当m=﹣5,n=2时,+=﹣,当m=2,n=﹣5时,+=﹣,故+=﹣.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上的点的坐标等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.24.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.25.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个不同的公共点时t 的取值范围.【解答】解:(1)∵抛物线y =ax 2+ax +b 有一个公共点M (1,0),∴a +a +b =0,即b =﹣2a ,∴y =ax 2+ax +b =ax 2+ax ﹣2a =a (x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣); (2)∵直线y =2x +m 经过点M (1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x 的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
广东广州海珠区 2019 年初三下学期综合练习(一模)数学试题数学试卷本试卷分选择题和非选择题两部分,共三大题 25 小题,共 4 页,总分值 150 分,时间 120分钟,可以使用计算器、 本卷须知1、答卷前,考生务必在答题卡第 1 面、第 3 面、第 5 面上用黑色笔迹的钢笔或署名笔填写 自己的学校、班级、姓名、座位号、考号;再用2B 铅笔把对应号码的标号涂黑、2、选择题每题选出答案后,用 2B 铅笔把答题卡上对应题号的答案标号涂黑;如需变动,用橡皮擦洁净后,再选涂其余答案标号;不可以答在试卷上、3、非选择题一定用黑色笔迹的钢笔或署名笔作答,波及作图的题目, 用 2B 铅笔绘图、答案一定写在答题卡各题指定地区内的相应地点上; 如需变动, 先划掉本来的答案, 而后再写上新的 答案;变动的答案也不可以高出指定的地区、 禁止使用铅笔、 圆珠笔和涂改液, 不按以上要求作答 的答案无效、4、考生一定保持答题卡的整齐、考试结束后,将本练习卷和答题卡一并交回、第一部分选择题〔共 30 分〕【一】选择题 〔本题共 10 小题,每题 3 分,总分值 30 分、下边每题给出的四个选项中,只有一 个是正确的、 〕1、实数 -2 的绝对值是〔※〕A 、 2B 、 -2C 、 1D 、1 222、以下交通标记中,是轴对称图形的是〔※〕A 、B 、C 、D 、3、以下列图几何体的正视图是〔※〕A 、B 、C 、D 、主视方向4、以下计算中,正确的选项是〔※〕A 、C 、2( a b) 2a b B 、 2(a b) 2a b 2( a b)2a 2b D 、 2(a b)2a 2b5、两个相像三角形的相像比是 1: 2,此中较小三角形的周长为6 cm ,那么较大的三角形的周长为〔※〕A 、 3 cmB 、 6cmC 、 9 cmD 、 12 cm6、分式方程12的解是〔※〕x 2 xA 、 -2B 、 2C 、 -4D 、 47、函数 x 2 中自变量x 的取值范围是〔※〕 y1xA 、 x 2B 、 x 2且x1C 、 x 1D 、 x 2或x 18、一次数学测试,甲、乙两班的数学成绩统计数据以下表:班级 人数 均匀分 中位数 方差 甲 55 118 119 197 乙55118121180小明经过上表剖析后得出以下结论:〔 1〕从均匀分来看,甲、乙两班学生的数学成绩均匀水平同样;〔 2〕若是不低于 120 分为优异,那么甲班获取优异的人数比乙班多; 〔 3〕甲班同学的成绩颠簸相对照较大、上述结论正确的选项是〔※〕A 、〔 1〕〔 2〕B 、〔 1〕〔 3〕C 、〔 2〕〔 3〕D 、〔1〕〔 2〕〔 3〕9、一次函数y kx k 和反比率函数 yk(k 0) 在同向来角坐标系中的图象大概是〔※〕xA 、B 、C 、D 、10、如图,在ABC 中, ABAC 5, CB 8 ,分别以 AB 、 AC为直径作半圆,那么图中暗影部分面积是〔※〕A 、2524 B 、 2524 C 、 25 12 D 、 251244第 10题图第二部分非选择题〔共120 分〕【二】填空题 〔本题共 6 小题,每题 3 分,共 18 分、〕 11、分解因式: a 2 1 ※、12、请写出抛物线yx 2 1 上随意一个点的坐标※、13、假定对于x 的方程 x 2 x m0 有实数根,那么 m 的取值范围是※、14、菱形的边长为 3,一个内角为60 °,那么菱形较长的对角线长是※、15、如图,边长为 1 的正方形网格中,点 A 、 B 、 C 在格点上,那么 sin CAB※、A16、如图,在 ABC 中, AD 、CE 分别是 BC 、 AB 边上的高, DE 3,BE4,BC 6,那么 AC※、【三】解答题 〔本题共 9 小题,共 102 分、解答要求写出文字说明,证明过程或计算步骤、〕17、〔本题总分值 9 分〕解不等式组:2x 3 x 1 B DC3(x1) x7第 16题图18、〔本题总分值 9 分〕先化简,再求值:(11 x)1 ,而后选择一个你喜欢且切合题意的 x 值代入求值、xx 2 x 2 119、〔本题总分值 10 分〕袋中装有除数字不一样其余都同样的六个小球,球上分别标有数字1, 2, 3, 4, 5, 6、〔 1〕从袋中随机摸出一个小球,求小球上数字等于4 的概率;〔 2〕将标有 1, 2, 3 数字的小球拿出放入此外一个袋中,分别从两袋中各摸出一个小球,求数字的积为偶数的概率、〔用列表法或画树状图求解〕20、〔本题总分值10 分〕“地震无情人有情” ,雅安地震牵动了全国人民的心、某地震营救队探测出某建筑物废墟下方点 C 处有生命迹象,废墟一侧地面上探测点A、 B相距2 m ,探测线与地面的夹角分别是30o和 60o,试确立生命所在点 C 的深度、〔结果保存到0.1 m〕21、〔本题总分值12 分〕如图,正方形ABCD 的边长为4,点E是CD边上一点, CE 1 ,点 F 是BC的中点,求证:AF EF 、22、〔本题总分值12 分〕如图:假定⊙O 的半径 OA 垂直于弦 BC ,垂足为P, APA 3, BC 6 3 、 B C〔 1〕求⊙O的半径;P O〔 2〕求图中暗影部分的面积、23、〔本题总分值12 分〕跟着经济进展,污染问题日趋严重、某环保厂家看到那个商机,以200万元购置了某项空气净化产品的生产技术后,再投入280 万元购置生产设施进行该产品的生题图第 22 产、生产这类产品的成本价为每件30 元,经过市场调研发明,该产品的销售单价定在40 到50 元之间较为合理,同时该产品的年销售量y 〔万件〕与销售单价x 〔元〕之间的关系以下图、〔 1〕请依据图像斩钉截铁写出销售单价是45 元时的年销售量;〔 2〕求出年销售量y〔万件〕与销售单价x 〔元〕之间的函数关系式;〔 3〕求该企业第一年的年赢利W 〔万元〕与销售单价x 〔元〕之间的函数关系式;并说明投资的第一年,销售单价定为多少时该厂家能获取最大盈余?最大收益是多少?24、〔本题总分值14 分〕如图,在直角梯形ABCD 中, A B 90°,AD 5,AB 10 ,BC 6 ,点E是线段AB上的动点,连结 CE , EF CE交AD于F,连结 CF ,设BE x 、〔 1〕当BCE 30°时,求BCE 的周长;〔 2〕当x 5 时,求证: CF AF BC ;〔 3〕能否存在x ,使得CF 2(AF BC ) ?若是存在,求出x 的值;若是不存在,请说明原因、25、〔本题总分值14 分〕如图,直线y kx k 2 与抛物线 y 1 x2 1 x 5 交于A、B4 2 4两点,抛物线的对称轴与x 轴交于点Q、〔 1〕证明直线y kx k 2 过定点 P ,并求出 P 的坐标;〔 2〕当k 0 时,证明AQB 是等腰直角三角形;〔 3〕对于随意的实数k ,能否都存在一条固定的直线与以AB为直径的圆相切?假定存在,恳求出此直线的分析式;假定不存在,请说明原因、海珠区 2018 学年第二学期九年级综合练习数学参照答案【一】选择题1-5.ADACD6-10.CBBCD【二】填空题 11. (a1)( a 1) 12. 略 13. m ≤1414. 33 15. 21316.4.513【三】解答题〔由各学校自行决定评分标准〕 17、〔本题总分值 9 分〕 解:解不等式①得:x >4 解不等式②得:x <5所以原不等式组的解集是4< x <518、〔本题总分值9 分〕解:原式= ( 1xx 21 )( x 2x1)= x2x1( x1)(x x( x 1)1)= x 2 1 x 1x x= x (x 1)x= x 1当 x 2 时,原式 =1〔 x 可以取除 -1 、 0、 1 之外的随意实数〕 19、〔本题总分值 10 分〕 解:〔 1〕P 〔小球上数字等于4〕 =16〔 2〕P 〔数字的积为偶数〕=7920、〔本题总分值 10 分〕 解:如图:过点C 作 CD ⊥ AB ,垂足为 D ,依题意:∵∠ 1=60°,∠ 2=30°, AB=2m ∴∠ DBC=∠ 1=60°,∠ BAC=∠ 2=30° ∴∠ BCA=∠ DBC-∠ BAC=30° =∠ BAC∴ BC=AB=2m ∴ CD=BC= 3 ≈ 1.7m第 20sin 60 0题图即:生命所在点 C 的深度约为 1.7m 21、〔本题总分值 12 分〕 证明:∵正方形ABCD 的边长为 4, CE=1,点 F 是 BC 的中点,∴ A B=BC=4, BF=FC=1BC=22∠ B =∠ C=90°∴在 Rt △ ABF 和 Rt △FCE 中:∴△∴∠ AFB=∠ FEC ∵∠ EFC+∠ FEC=90°∴∠ EFC+∠ AFB=90°,∠ AFE-180° - 〔∠ EFC+∠ AFB 〕 =90°,即: AF ⊥EF 22、〔本题总分值 12 分〕 解:〔 1〕如图:连结 OC ,6 3,设圆 O 的半径为rA∵OA ⊥ BC , PA=3, BC=1BC∴在 Rt △ OPC 中, PC=3 3r 3rP2 BC=,OP=, OC=O依据勾股定理:222OP+PC=OC(r 3) 2(3 3) 2r 2第 22题图r 6即:圆 O 的半径是 6.〔 2〕如图:连结 OB ,∵ OA ⊥BC , PA=3, PC=1BC=3 3 ,设圆 O 的半径 r =62∴ O P=3, sin ∠ POC=PC= 3OC 2∴∠ POC=60°,∠ BOC=120°∴S 暗影部分S 扇形 O -BAC - S △OBC=120 62-1 6 3 3 3602=12-9 323、〔本题总分值12 分〕解:〔 1〕如图:销售单价是45 元时的年销售量是30 万件、〔2〕如图:当,分别代入〔 40,40 〕和〔45,30 〕,那么:解得:,分别代入 〔 45,30 〕和〔 50,25 〕,那么: 解得:所以年销售量y 〔万件〕与销售单价 x 〔元〕之间的函数关系式为:40≤ x ≤ 45y2x 120 x 7545< x ≤ 50〔 3〕该企业第一年的年赢利W 〔万元〕与销售单价 x 〔元〕之间的函数关系式为:W ( x 30) y 200 2802x 2 180x 4080 40≤ x ≤ 45x 2105x273045< x ≤ 50当 40≤ x ≤ 45 时, W2x 2 180x 40802( x 45)230x 45 时, W max30所以现在厂家不论怎样定销售单价,都不行能盈余、当 45< x ≤ 50 时, Wx 2 105x 2730( x 52.5)2 26.25x 50 时, W max 20综上所述:销售单价定为 50 元时,厂家能获取最大盈余,最大收益是 20万元.24、〔本题总分值 14 分〕90°, BC6,BEx , BCE解:〔 1〕如图:∵AB30 °∴ Rt △ EBC 中, BE=BCtan30° =23 ,EC= BC= 4 3cos300BCE 的周长 =BC+EB+EC=6+6 3〔 2〕如图:取 FC 的中点 P ,连结 E 、 P ,∵ AB 90°, AD5 , AB 10 ,BC 6, BEx 5, EF CE ,∴ EP 是直角梯形ABCF 的中位线, EP=AFBCEP 也是 Rt △ EFC 斜边上的中线, EP=CF2∴ EP=AF BC =CF,即 CF2AF BC22〔 3〕如图:取 AB 的中点 Q ,连结 Q 、 P ,∵ AB90°, AD 5, AB10, BC 6 ,BE x , EF CE ,∴ AE=10- x ,QE= 5 x ,∠ AFE+∠ AEF=90°,∠ BEC+∠ AEF=90°QP 是直角梯形ABCF 的中位线, QP= AF BC,∠ PQE=90°2EP 是 Rt △ EFC 斜边上的中线, EP=CF2要使得 CF2( AF BC ) ,只要 EP=2 QP,即 Rt △ PQE 是等腰直角三角形,5 xQP=QE=∴ AF=2QP-BC=25 x -6 ∵A B 90°, EF CE ,∴∠ AFE+∠ AEF=90°,∠ BEC+∠ AEF=90° ∴∠ AFE=∠ BEC ∴ Rt △ EBC ∽ Rt △ FAE∴ EBBC ,即2 5 x 6 10 6 xFA AE x当 0≤ x ≤ 5 时, 5 x = 5 x , 2 5 x -6= 4 2xx6 , x 1 1197 〔舍〕, x 2 11 974 2x 10x当 5< x ≤ 10 时, 5 x = x 5 , 2 5 x -6= 2x 16x6 , x 1197 , x 2197 〔舍〕2x 1610 x综上所述: x 1197或 -1+97 时, CF2( AFBC )25、〔本题总分值 14 分〕解:〔 1〕证明:∵y kxk 2 k( x 1) 2∴当 x 1 时, y 2 ,即直线 y kx k 2过定点 P 〔1,2 〕〔2〕当 k0 时,直线 y kxk 22 ,交点 A 〔 x 1 , y 1 〕、 B 〔 x 2 , y 2 〕的坐标切合方程组:y 2 x 1 1 x 2 3115 ,解得:x 2 y 12y 2 ,即 A 〔 -1,2 〕, B 〔 3,2 〕yx 424 2抛物线 y1 x2 1 x 5 = 1( x 1)2 1 ,抛物线的对称轴与 x 轴交于点 Q4 2 4 4∴ Q 〔 1,0 〕∴ AB= ( 1 3)2 (2 2)2 4AQ= ( 1 1)2 (2 0) 2 2 2BQ=(3 1)2 (2 0) 2 2 2222AQB 是等腰直角三角形∴ AB=AQ+BQ , AQ=BQ ,即〔3〕存在定直线与以AB 为直径的圆相切,此直线即 x 轴,分析式是 y 0 . 原因以下:交点 A 〔 x 1 , y 1 〕、 B 〔 x 2 , y 2 〕的坐标切合方程组:y kx k 2,即: 1x2(13y 1 x 2 1 x 5 k )x k4 244 2 4∵x 1 x 2 2 4k , x 1x 2 4k 3∴( x 1 x 2 )2 (x 1 x 2 )2 4x 1x 2 16k 2 16 ( y 1 y 2 )2k 2 ( x 1 x 2 ) 2y 1 y 2 (kx 1 k2) (kx 2 k 2) k( x 1 x 2 ) 2k4 4k 2 4∴ AB=( x 1 x 2 ) 2 ( y 1 y 2 ) 2 k 21 ( x 1 x2 )2 4k 2 4 ,即以 AB 为直径的圆的半径为2k 2 2∵ AB 的中点是〔x 1 x2 ,y1y 2 〕2 22k 1, 2k2∴ AB 的中点,即以 AB 为直径的圆的圆心坐标为〔2 〕,∵圆心到 x 轴的距离恰好等于半径x 轴,分析式是∴存在定直线与以AB 为直径的圆相切,此直线即y0.。
2019届广东省广州市海珠区中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 实数﹣3的绝对值是()A. 3B. ﹣3C. 0D. ±二、选择题2. 下面汽车标志中,属于轴对称图形的是()A. B. C. D.3. 如图,在平行四边形ABCD中,如果∠A=50°,则∠C=()A.40° B.50° C.130° D.150°4. 下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4 D.aa2=a25. 方程组的解是()A. B. C. D.6. 为了解当地气温变化情况,某研究小组记录了寒假期间连续4天的最高气温,结果如下(单位:℃):5,﹣1,﹣3,﹣1.则下列结论错误的是()A.方差是8 B.中位数是﹣1C.众数是﹣1 D.平均数是07. 某几何体的三视图如图所示,则其侧面积是()A.12π B.6π C.4π D.68. 已知一元二次方程x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定9. 如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是()A.R=2r B.R=r C.R=3r D.R=4r10. 将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是()A.1 B.2 C.3 D.411. 已知∠α=25°,那么∠α的余角等于度.三、填空题12. 若在实数范围内有意义,则x的取值范围是.13. 不等式组的解集是.14. 反比例函数y=,在每一象限内,y随x的增大而减小,则m的取值范围.15. 如图,两建筑物AB和CD的水平距离为24米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为米.(结果保留根号)16. 如图,正方形ABCD的边长为3,对角线AC与BD相交于点O,CM交BD于点N,若BM=1,则线段ON的长为.四、解答题17. 解方程:.18. 如图,四边形ABCD是平行四边形.(1)利用尺规作∠ABC的平分线BE,交AD于E(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求证:AB=AE.19. 已知A=(x﹣2)2+(x+2)(x﹣2)(1)化简A;(2)若x2﹣2x+1=0,求A的值.20. 已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,3),B点的横坐标为﹣3.(1)求反比例函数和一次函数的解析式;(2)根据图象直接写出使得y1>y2时,x的取值范围.21. 为了庆祝新年的到来,我市某中学举行“青春飞扬”元旦汇演,正式表演前,把各班的节目分为A(戏类),B(小品类),C(歌舞类),D(其他)四个类别,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题.(1)参加汇演的节目数共有个,在扇形统计图中,表示“B类”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)学校决定从本次汇演的D类节目中,选出2个去参加市中学生文艺汇演.已知D类节目中有相声节目2个,魔术节目1个,朗诵节目1个,请求出所选2个节目恰好是一个相声和一个魔术概率.22. 某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:23. 购买学校购买型号及数量(个)购买支出款项(元)AB甲38622乙54402<td><td><td><td>td24. 如图,已知AB是⊙O的弦,半径OA=2,OA和AB的长度是关于x的一元二次方程x2﹣4x+a=0的两个实数根.(1)求弦AB的长度;(2)计算;(3)⊙O上一动点P从A点出发,沿逆时针方向运动一周,当时,求P点所经过的弧长(不考虑点P与点B重合的情形).25. 已知正方形ABCD和正方形CEFG,连结AF交BC于点O,点P是AF的中点,过点P作PH⊥DG于H,CD=2,CG=1.(1)如图1,点D、C、G在同一直线上,点E在BC边上,求PH的长;(2)把正方形CEFG绕着点C逆时针旋转α(0°<α<180°)①如图2,当点E落在AF上时,求CO的长;②如图3,当DG=时,求PH的长.26. 如图,抛物线1=x2+bx+c与x轴交于点A、B,交y轴于点C(0,﹣2),且抛物线对称轴x=﹣2交x轴于点D,E是抛物线在第3象限内一动点.(1)求抛物线y1的解析式;(2)将△OCD沿CD翻折后,O点对称点O′是否在抛物线y1上?请说明理由.(3)若点E关于直线CD的对称点E′恰好落在x轴上,过E′作x轴的垂线交抛物线y1于点F,①求点F的坐标;②直线CD上是否存在点P,使|PE﹣PF|最大?若存在,试写出|PE﹣PF|最大值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
2019年广东省广州市海珠区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为( )A.﹣2B.±5C.5D.﹣5 2.下列计算正确的是( )A.x2•x3=x6B.(x2)3=x5C.3﹣=2D.x5﹣x2=x3 3.一元一次不等式组的解集在数轴上表示正确的是( )A.B .C .D.4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是( )A.35°B.25°C.65°D.50°5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A.B .C .D.6.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是( )A.5,5B.5,6C.6,6D.6,57.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D. x(x﹣1)=2108.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为( )(精确到1米,=1.732).A.585米B.1014米C.805米D.820米9.如图,在直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M 与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为( )A.(4,5)B.(﹣5,4)C.(﹣4,6)D.(﹣4,5)10.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则sin∠FCD=( )A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣的绝对值是 ,倒数是 .12.要使代数式有意义,x的取值范围是 .13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD 的位置,则旋转角为 .14.若a是方程x2﹣3x+1=0的根,计算:a2﹣3a+= .15.已知⊙O的半径为26cm,弦AB∥CD,AB=48cm,CD=20cm,则AB、CD之间的距离为 .16.在直角坐标系内,设A(0,0),B(4,0),C(t+4,4),D(t,4)(t为实数),记N为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N的值可能为 .三.解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.19.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为 .20.(10分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是 .(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.21.(12分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?22.(12分)如图,AB是⊙O的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD延长线上,且∠BOC+∠ADF=90°.(1)求证:;(2)求证:CD是⊙O的切线.23.(12分)如图,已知点A在反比函数y=(k<0)的图象上,点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=(k<0)的图象上,点Q在直线y=x﹣3的图象上,P、Q两点关于y轴对称,设点P的坐标为(m,n),求+的值.24.(14分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.25.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2019年广东省广州市海珠区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.2.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式合并同类二次根式得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=x5,错误;B、原式=x6,错误;C、原式=2,正确;D、原式不能合并,错误,故选:C.【点评】此题考查了二次根式的加减法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】根据平行线的性质求出∠3,再求出∠BAC=90°,即可求出答案.【解答】解:∵直线a∥b,∴∠1=∠3=55°,∵AC⊥AB,∴∠BAC=90°,∴∠2=180°﹣∠BAC﹣∠3=35°,故选:A.【点评】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.5.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.8.【分析】过点D作DE⊥AC,可得到△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.可以设EC=x,在直角△BDF中,根据勾股定理,可以用x表示出BF,根据AC=BC就可以得到关于x的方程,就可以求出x,得到BC,求出山高.【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.故选:C.【点评】本题的难度较大,建立数学模型是关键.根据勾股定理,把问题转化为方程问题.9.【分析】过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,因为四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA=4,AB=8,DM=8﹣R,AM=R,又因△ADM是直角三角形,利用勾股定理即可得到关于R的方程,解之即可.【解答】解:过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,∵四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,点A的坐标为(0,8),∴DA=4,AB=8,DM=8﹣R,AM=R,又∵△ADM是直角三角形,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,解得R=5,∴M(﹣4,5).故选:D.【点评】本题需仔细分析题意及图形,利用勾股定理来解决问题.10.【分析】由四边形ABCD为正方形,得到四个内角为直角,四条边相等,可得出AD与BC都与半圆相切,利用切线长定理得到FA=FE,CB=CE,设正方形的边长为4a,FA=FE=x,由FE+FC表示出EC,由AD﹣AF表示出FD,在直角三角形FDC中,利用勾股定理列出关系式,用a表示出x,进而用a表示出FD与FC,利用锐角三角函数定义即可求出sin∠FCD的值.【解答】解:∵四边形ABCD为正方形,∴∠A=∠B=90°,AB=BC=CD=AD,∴AD与BC都与半圆O相切,又CF与半圆相切,∴AF=EF,CB=CE,设AB=BC=CD=AD=4a,AF=EF=x,∴FC=EF+EC=4a+x,FD=AD﹣AF=4a﹣x,在Rt△DFC中,由勾股定理得:FC2=FD2+CD2,∴(4a+x)2=(4a﹣x)2+(4a)2,整理得:x=a,∴FC=4a+x=5a,FD=4a﹣x=3a,∴在Rt△DFC中,sin∠FCD==.故选:B.【点评】此题考查了正方形的性质,切线的判定,切线长定理,勾股定理,以及锐角三角函数定义,利用了转化及等量代换的思想,灵活运用切线长定理是解本题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据负数的绝对值是它的相反数,乘积是1的两数互为倒数可得答案.【解答】解:﹣的绝对值是,倒数是﹣,故答案为:;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握绝对值的性质和倒数定义.12.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】根据旋转的性质,对应边的夹角∠BOD即为旋转角.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.14.【分析】由方程的解的定义得出a2﹣3a+1=0,即a2﹣3a=﹣1、a2+1=3a,整体代入计算可得.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,则a2﹣3a=﹣1,a2+1=3a,所以原式=﹣1+1=0,故答案为:0.【点评】本题主要考查一元二次方程的解,解题的关键是掌握方程的解的定义及整体代入思想的运用.15.【分析】首先作AB、CD的垂线EF,然后根据垂径定理求得CE=DE=10cm,AF=BF=24cm;再在直角三角形OED和直角三角形OBF中,利用勾股定理求得OE、OF的长度;最后根据图示的两种情况计算EF的长度即可.【解答】解:有两种情况.如图.过O作AB、CD的垂线EF,交AB于点F,交CD于点E.∴EF就是AB、CD间的距离.∵AB=48cm,CD=20cm,根据垂径定理,得CE=DE=10cm,AF=BF=24cm,∵OD=OB=26cm,∴在直角三角形OED和直角三角形OBF中,∴OE=24cm,OF=10cm(勾股定理),∴①EF=24+10=34cm②EF=24﹣10=14cm.故答案为:34或14cm.【点评】本题考查了勾股定理、垂径定理的综合运用.解答此题时,要分类讨论,以防漏解.16.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有:(1,1);(1,2);(1,3);(2,1);(2,2);(2,3)(3,1);(3,2);(3,3)共9个点,所以N(0)=9,此时平行四边形ABCD是矩形,当平行四边形ABCD是一般平行四边形时,将边AD,BC变动起来,结合图象得到N(t)的所有可能取值为11,12.综上所述:N的值可能为:9或11或12.故答案为:9或11或12.【点评】本题考查了平行四边形的性质以及一次函数图形,此题画可行域、利用数形结合的数学思想方法得出是解题关键.三.解答题(共9小题,满分102分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】求出∠AED=∠EDC,∠DFE=∠C,证△DFE≌△DCE,即可得出答案.【解答】证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC∴∠ADE=∠DEC,∵AE=AD,∴∠ADE=∠AED,∴∠AED=∠DEC,∠DFE=∠C=90°,又∵DE是公共边,∴△DFE≌△DCE(AAS),∴DF=DC.【点评】本题考查了矩形性质和全等三角形的性质和判定的应用,主要考查了学生的推理能力.19.【分析】(1)根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A 顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.21.【分析】(1)设B种零件的单价为x元,则A零件的单价为(x+30)元,根据用900元购买A种零件的数量和用600元购买B种零件的数量相等,列方程求解;(2)设购进A种零件m件,则购进B种零件(200﹣m)件,根据工厂购买两种零件的总费用不超过14700元,列不等式求出m的取值范围,然后求出工厂最多购买A种零件多少件.【解答】解:(1)设B种零件的单价为x元,则A零件的单价为(x+30)元.=,解得x=60,经检验:x=60 是原分式方程的解,x+30=90.答:A种零件的单价为90元,B种零件的单价为60元.(2)设购进A种零件m件,则购进B种零件(200﹣m)件.90m+60(200﹣m)≤14700,解得:m≤90,m在取值范围内,取最大正整数,m=90.答:最多购进A种零件90件.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.【分析】(1)证明弧相等可转化为证明弧所对的圆心角相等即证明∠BOC=∠COD即可;(2)由(1)可得∠BOC=∠OAD,∠OAD=∠ODA,再由已知条件证明∠ODF=90°即可.【解答】证明:(1)连接OD.∵AD∥OC,∴∠BOC=∠OAD,∠COD=∠ODA,∵OA=OD,∴∠OAD=∠ODA.∴∠BOC=∠COD,∴=;(2)由(1)∠BOC=∠OAD,∠OAD=∠ODA.∴∠BOC=∠ODA.∵∠BOC+∠ADF=90°.∴∠ODA+∠ADF=90°,即∠ODF=90°.∵OD是⊙O的半径,∴CD是⊙O的切线.【点评】本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.【分析】(1)想办法求出点A坐标即可解决问题;(2)设P(m,﹣),则Q(﹣m,﹣),想办法构建方程即可解决问题;【解答】解:(1)由题意B(2,﹣1),∵×2×AB=4,∴AB=4,∵AB∥y轴,∴A(2,﹣5),∵A(2,﹣5)在y=的图象上,∴k=﹣10.(2)设P(m,﹣),则Q(﹣m,﹣),∵点Q在y=x﹣3上,∴﹣=﹣m﹣3,整理得:m2+3m﹣10=0,解得m=﹣5或2,当m=﹣5,n=2时, +=﹣,当m=2,n=﹣5时, +=﹣,故+=﹣.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上的点的坐标等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.24.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.25.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.2020年春九年级数学下册【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.中考加油!。
2019年广东省广州市海珠区中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
一、选择题1、-3的相反数是()A. -3B. 3C. D.2、下列图形中是中心对称图形的是()A. B.C. D.3、把不等式组的解集表示在数轴上正确的是()A. B.C. D.4、在△ABC中,D、E分别为AB、AC边上中点,且DE=6,则BC的长度是()A. 3B. 6C. 9D. 125、在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为:1.8、2、2.2、1.7、2、1.9,那么关于这组数据的说法正确的是()A. 平均数是2B. 中位数是2C. 众数是2D. 方差是26、若一个正多边形的一个外角是30°,则这个正多边形的边数是()A. 12B. 11C. 10D. 97、如图,AB∥DE,∠E=62°,则∠B+∠C等于()A. 138°B. 118°C. 38°D. 62°8、对于二次函数y=-2x2-4x+1,下列说法正确的是()A. 当x<0,y随x的增大而增大B. 当x=-1时,y有最大值3C. 图象的顶点坐标为(1,3)D. 图象与x轴有一个交点9、已知圆锥的母线长是4cm,侧面积是12πcm2,则这个圆锥底面圆的半径是()A. 3cmB. 4cmC. 5cmD. 6cm10、将抛物线y=x2-4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线、直线y=-3和x轴围成的图形的面积S(图中阴影部分)是()A. 5B. 6C. 7D. 8二、填空题1、分解因式:2a2-4ab=______.2、计算:=______.3、命题“如果两个角是直角,那么它们相等”的逆命题是______;逆命题是______命题(填“真”或“假”).4、一次函数的图象经过一、二、四象限,请写出符合该条件的一个一次函数关系式:____ __.5、如图,PA、PB是⊙O的两条切线,A、B是切点,PA=OA,阴影部分的面积为6π,则⊙O的半径长为______.6、如图,把矩形ABCD翻折,使得点A与BC边上的点G重合,折痕为DE,连结AG交DE于点F,若EF=1,DG=,则BE=______.三、解答题1、解分式方程:.______2、如图,在▱ABCD中,BE、DF分别是∠ABC和∠CDA的平分线.求证:四边形BEDF是平行四边形.______四、计算题1、先化简,再求值:(a+b)2+(a-b)(a+b)-3a2,其中a=-2.______2、某校响应国家号召,鼓励学生积极参与体育锻炼.为了解学生一星期参与体育锻炼的时间情况,从全校2000名学生中,随机抽取50名学生进行调查,按参与体育锻炼的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)样本中E类学生有______人,补全条形统计图;(2)估计全校的D类学生有______人;(3)从该样本参与体育锻炼时间在0≤t≤4的学生中任选2人,求这2人参与体育锻炼时间都在2<t≤4中的概率.______3、如图,楼房BD的前方竖立着旗杆AC.小亮在B处观察旗杆顶端C的仰角为45°,在D处观察旗杆顶端C的俯角为30°,楼高BD为20米.(1)求∠BCD的度数;(2)求旗杆AC的高度.______4、如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.______5、如图,双曲线与直线y2=k2x+b相交于A(1,m+2),B(4,m-1),点P是x轴上一动点.(1)当y1>y2时,直接写出x的取值范围;(2)求双曲线与直线y2=k2x+b的解析式;(3)当△PAB是等腰三角形时,求点P的坐标.______6、如图,二次函数y=ax2+c的图象经过点和点C(-4,5),点B(0,5)(1)求二次函数y=ax2+c的解析式;(2)在图①中仅用尺规作图(保留作图痕迹,不要求写作法)在y轴上确定点P,使∠APO =∠BPC,直接写出点P的坐标;(3)在(2)的条件下,如图②,过点P的直线y=kx+b交二次函数y=ax2+c的图象于D(x1,y1),E(x2,y2),且x1<0<x2,过点D、E作x轴的垂线段,垂足分别是F、G,连接PF、P G,①求证:无论k为何值,总有∠FPO=∠PGO;②当PF+PG取最小值时,求点O到直线y=kx+b的距离.______7、已知点A、B在⊙O上,∠AOB=90°,OA=,(1)点P是优弧上的一个动点,求∠APB的度数;(2)如图①,当tan∠OAP=-1时,求证:∠APO=∠BPO;(3)如图②,当点P运动到优弧的中点时,点Q在上移动(点Q不与点P、B重合),若△QPA的面积为S1,△QPB的面积为S2,求S1+S2的取值范围.______2019年广东省广州市海珠区中考数学一模试卷参考答案一、选择题第1题参考答案: B解:-3的相反数是3.故选:B.依据相反数的定义求解即可.本题主要考查的是相反数的定义,熟练掌握相反数的定义是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: D解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.根据中心对称图形的概念即可求解.本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: A解:解不等式x+1>0,得:x>-1,解不等式6-3x≥0,得:x≤2,则不等式组的解集为-1<x≤2,故选:A.分别求出每个不等式的解集,再根据口诀即可确定不等式组的解集.本题主要考查解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: D解:∵△ABC中,D、E分别是边AB、AC的中点且DE=6,∴BC=2DE=2×6=12,故选:D.根据三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍,计算即可.此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: C解:平均数=≈1.9,中位数是1.95,众数是2,方差=[(1.8-1.9)2+(2-1.9)2+(2.2-1.9)2+(1.7-1.9)2+(2-1.9)2+(1.9-1.9)2]≈0.037,故选:C.根据平均数,中位数,众数,方差的定义即可解决问题.本题考查平均数,中位数,众数,方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: A解:360°÷30°=12.故选:A.由已知得每个外角为30°,根据外角和为360°即可求得多边形的边数.本题主要考查的是正多边形的内角和与外角和,掌握边数×一个外角=360°是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: D解:∵AB∥DE,∴∠E=∠BFE=62°,∵∠BFE=∠B+∠C,∴∠B+∠C=62°,故选:D.利用平行线的性质结合三角形的外角的性质解决问题即可.本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: B解:∵y=-2x2-4x+1=-2(x+1)2+3,∴开口向下,对称轴为直线x=-1,顶点为(-1,3),当x=-1时,y,有最大值3,当x>-1时,y随x的增大而减小;当x<-1时,y随x的增大而增大,故A、C、D错误,B正确,故选:B.配方后确定对称轴、开口方向、增减性后即可确定正确的选项.本题考查了二次函数的性质,能够将二次函数的一般式转化为顶点式是解答本题的关键,难度不大.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第9题参考答案: A解:设圆锥的底面半径为rcm,则×2πr×4=12π,解得,r=3(cm),故选:A.根据扇形面积公式计算,得到答案.本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第10题参考答案: B解:B,C分别是顶点,A是抛物线与x轴的一个交点,连接DC,AB,如图,阴影部分的面积就是平行四边形ABCD的面积,可知B(0,-3),C(2,-3),则S=2×3=6;故选:B.B,C分别是顶点,A是抛物线与x轴的一个交点,连接DC,AB,阴影部分的面积就是平行四边形ABCD的面积,本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.二、填空题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 2a(a-2b)解:原式=2a(a-2b).直接提取公因式2a即可.本题考查了提公因式法分解因式,确定公因式:一找系数的最大公约数是2,二找相同字母的最低次幂是a.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 1解:原式=3+(-1)-2×=3-1-1=1故答案为1.本题涉及有理数的乘方、算术平方根、特殊角三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角三角函数等考点的运算.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 如果两个角相等,那么它们是直角假;解:命题“如果两个角是直角,那么它们相等”的逆命题是如果两个角相等,那么它们是直角,此逆命题是假命题.故答案为如果两个角相等,那么它们是直角;假.先交换原命题的题设与结论部分得到其逆命题,然后根据直角的定义判断逆命题的真假.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: y=-x+1(答案不唯一)解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图象经过一、二、四象限,∴k<0,b>0,∴符合该条件的一个一次函数关系式可以是:y=-x+1(答案不唯一).故答案为:y=-x+1(答案不唯一).先根据一次函数的图象经过一、二、四象限判断出函数k及b的符号,再写出符合条件的一次函数解析式即可.本题考查的是一次函数的性质,能根据题意判断出k、b的符号是解答此题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 3解:连接OP,∵PA、PB是⊙O的两条切线,∴∠PAO=90°,∵PA=OA,∴tan∠POA==,∴∠POA=60°,∴∠AOB=120°,∵阴影部分的面积为6π,∴=6π,∴OA=3,∴⊙O的半径长为3,故答案为:3.连接OP,根据切线的性质得到∠PAO=90°,根据已知条件得到∠POA=60°,根据扇形的面积公式即可得到结论.本题考查了切线的性质,扇形的面积公式,三角函数的定义,熟练掌握切线的性质是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案:解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=90°,AB=CD,AD=BC,由折叠的性质得:∠DGE=∠DAE=90°,AD=DG=,AE=GE,DE垂直平分AG,∴∠DFG=∠EFG=∠DGE=90°,∵∠FDG=∠GDE,∴△DFG∽△DGE,∴=,∴DF×DE=DG2=6,即DF(DF+1)=6,解得:DF=2,或DF=-3(舍去),∴DF=2,DE=3,同理:GE2=EF×DE=3,∴AE=GE=,∵∠BEG+∠BGE=90°,∠BGE+∠CGD=90°,∴∠BEG=∠CGD,∴△BEG∽△CGD,∴====,设BE=x,则CG=x,CD=AB=x+,BG=-x,∴=,解得:x=,即BE=;故答案为:.由矩形的性质得出∠BAD=∠B=∠C=90°,AB=CD,AD=BC,由折叠的性质得:∠DGE=∠DAE=9 0°,AD=DG=,AE=GE,DE垂直平分AG,证明△DFG∽△DGE,得出DF×DE=DG2=6,求出DF=2,DE=3,同理:GE2=EF×DE=3,求出AE=GE=,再证明△BEG∽△CGD,得出====,设BE=x,则CG=x,CD=AB=x+,BG=-x,则=,解得:x=即可.本题考查了翻折变换的性质、矩形的性质、折叠变换的性质、相似三角形的判定与性质等知识;熟练掌握翻折变换的性质,证明三角形相似是解决问题的关键.三、解答题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:去分母,得1-2(x-4)=-x,去括号,得1-2x+8=-x解得 x=9经检验:将x=9代入,得左边==右边x=9是原方程的解∴方程的解是x=9.先去分母将方程化为一元一次方程,然后求解,最后验根.本题考查了解分式方程,熟练掌握分式方程的解法是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 证明:在平行四边形ABCD中,则AD∥BC,∴∠AEB=∠CBE,又BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,即AB=AE,同理CF=CD,又AB=CD,∴CF=AE,∴BF=DE,∴四边形EBFD是平行四边形.由平行四边形的性质及角平分线的性质可得AB=AE,CF=CD,再由AB=CD可得CF=AE,进而得到DE=BF,可得四边形EBFD是平行四边形.此题主要考查平行四边形的性质及角平分线的性质问题,要熟练掌握,并能够求解一些简单的计算、证明问题.四、计算题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:原式=a2+2ab+b2+a2-b2-3a2,=-a2+2ab,当时,原式==-8-8=-16.先算乘法,再合并同类项,最后代入求出即可.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 5 720解:(1)E类学生有50-(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,所以估计全校的D类学生有2000×36%=720(人);故答案为:720;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人锻炼时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人锻炼时间都在2<t≤4中的概率为.(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得D类人数占被调查人数的百分比,再乘以总人数20 00即可得;(3)列举所有等可能结果,根据概率公式求解可得.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 解:(1)过点C作CE⊥BD于E,则DF∥CE,AB∥CE∵DF∥CE∴∠ECD=∠CDF=30°同理∠ECB=∠ABC=45°∴∠BCD=∠ECD+∠ECB=75°.(2)在Rt△ECD中,∠ECD=30°∵∴同理BE=CE∵BD=BE+DE∴答:(1)∠BCD为75°;(2)旗杆AC的高度CE为米.(1)过点C作CE⊥BD于E,则DF∥CE,AB∥CE.利用平行线的性质求得相关角的度数.(2)本题涉及到两个直角三角形△ECD、△BCE,通过解这两个直角三角形求得DE、BD长度,进而可解即可求出答案.本题考查解直角三角形的应用-仰角俯角问题.解直角梯形可以通过作高线转化为解直角三角形和矩形的问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: (1)证明:连接OE,∵∠B的平分线BE交AC于D,∴∠CBE=∠ABE.∵EF∥AC,∴∠CAE=∠FEA.∵∠OBE=∠OEB,∠CBE=∠CAE,∴∠FEA=∠OEB.∵∠AEB=90°,∴∠FEO=90°.∴EF是⊙O切线.(2)解:∵AF•FB=EF•EF,∴AF×(AF+15)=10×10.∴AF=5.∴FB=20.∵∠F=∠F,∠FEA=∠FBE,∴△FEA∽△FBE.∴EF=10∵AE2+BE2=15×15.∴AE=3.(1)要证EF是⊙O的切线,只要连接OE,再证∠FEO=90°即可;(2)证明△FEA∽△FBA,得出AE,BF的比例关系式,勾股定理得出AE,BF的关系式,求出AE的长.本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 解:(1)∵点A(1,m+2),B(4,m-1)是反比例函数和直线的交点坐标,∴0<x<1或x>4;(2)∵A(1,m+2),B(4,m-1)是反比例函数y1=上,∴,解得∴A(1,4),B(4,1)∵点A,B在直线y2=k2x+b上,∴,解得∴双曲线的解析式为,直线的解析式为y=-x+5;(3)设点P(a,0),则PA2=(a-1)2+42,AB2=18,PB2=(a-4)2+12①当PA=PB时,(a-1)2+42=(a-4)2+12解得a=0,∴P1(0,0),②当PA=AB时,(a-1)2+42=18,解得,,∴,,③当PB=AB时,(a-4)2+12=18,解得,,∴,,综上述,P1(0,0),,,,.(1)根据图形和点A,B坐标即可得出结论;(2)根据点A,B在反比例函数图象上,求出m,k1,再代入直线解析式中,即可得出结论;(3)设出P坐标,利用等腰三角形的性质分三种情况,建立方程求解即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题分关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 解:(1)将点和点C(-4,5)代入二次函数y=ax2+c,得:,解得:,所以二次函数的解析式为;(2)如图,点P即为所求.点A(-1,)关于y轴的对称点A′(1,),结合C(-4,5)知直线A′C的解析式为y=-x+2,当x=0时y=2,则点P坐标为(0,2);(3)①证明:将点P(0,2)代入直线y=kx+b,得b=2 联立,化简得:x2-4kx-4=0,解得:,∵x1<0<x2,∴,,∴OF=,OG=,∴OF×OG=4=OP2∴,即△FOP∽△POG,∴∠FPO=∠PGO;②∵x1+x2=4k,x1x2=-4,∴==,不妨令,t≥1,∴PF+PG=4,∴当k=0时,t=1,此时PF+PG取最小值,∴点O到直线y=kx+b的距离即OP=2.(1)待定系数法求解可得;(2)先作点A关于y轴的对称点A′,连接A′C与y轴的交点即为所求;(3)①联立得,依据x1<0<x2知OF=,OG=,根据OF×OG=4=OP2知△FOP∽△POG,从而得出∠FPO=∠PGO;②由x1+x2=4k,x1x2=-4知(PF+PG)2==,不妨令,t≥1知PF+PG=4,据此可得答案.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、轴对称的性质、相似三角形的判定与性质、抛物线与直线相交的问题等知识点.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: (1)解:∵∠AOB=90°,∴∠APB=∠AOB=45°,(2)证明:过点O作OC⊥PA于C,在CA上截取CD=OC,如图①所示:∵,∴,即AC=OC,∵CD=OC,∴AD=AC-CD=(+1)OC-OC=OC∵∠OCD=90°,OC=CD,∴OD=OC,∠CDO=45°,∴AD=OD,∴∠A=∠DOA,∵∠A+∠DOA=∠CDO=45°,∴∠A=22.5°,∵OP=OA,∴∠APO=∠A=22.5°,∵∠APB=45°,∴∠BPO=∠APB-∠APO=22.5°,∴∠APO=∠BPO;(3)解:连接AB,连接PO并延长交AB于E,则PE⊥AB,把△PBQ沿着PQ翻折得△PB′Q,如图②所示:则PB′=PB=PA,∠PQB=∠PQB′,S2=S△QPB=S△QB'P,∵∠AQP=∠ABP,∠ABP=∠PAB,∴∠AQP=∠PAB,∵四边形PABQ内接于⊙O,∴∠PAB+∠PQB=180°,∴∠AQP+∠PQB′=180°,∴点A、Q、B′三点共线,∵S1+S2=S△QPA+S△QB'P=S△PAB',∴S1+S2>0当且仅当PA⊥PB′时,S1+S2有最大值,在Rt△PAE中,AE=1,PE=,PA2=AE2+PE2=4+2,∴,∴0<S1+S2≤.(1)由圆周角定理即可得出结果;(2)过点O作OC⊥PA于C,在CA上截取CD=OC,由等腰直角三角形的性质得出OD=OC,∠CDO=45°,得出AD=OD,∠A=∠DOA,求出∠A=22.5°,即可得出结论;(3)连接AB,连接PO并延长交AB于E,则PE⊥AB,把△PBQ沿着PQ翻折得△PB′Q,则PB′=PB=PA,∠PQB=∠PQB′,S2=S△QPB=S△QB'P,证出点A、Q、B′三点共线,由S1+S2=S△QPA+S=S△PAB',得出S1+S2>0当且仅当PA⊥PB′时,S1+S2有最大值,在Rt△PAE中,AE △QB'P=1,PE=,由勾股定理得出PA2=AE2+PE2=4+2,即可得出结论.本题是圆的综合题目,考查了圆周角定理、垂径定理、等腰直角三角形的性质、翻折变换的性质、等腰三角形的性质、勾股定理、三点共线以及最大值问题;本题综合性强,熟练掌握圆周角定理和垂径定理是解题的关键.。
2019广州市海珠区中考一模数学试卷及答案时间:120分钟,满分:150分 成绩姓名: 分发日:201 年 月 日;回收日201 年 月 日 一、选择题(10小题,共30分)1、实灵敏-3的绝对值是( )A 、3B 、-3C 、0D 、±3 2、下面汽车标志中,属于轴对称图形的是( )3、如图,在平行四边形ABCD 中,如果∠A=50°,则∠C=(A 、40°B 、50°C 、130°D 、150°4、下列运算中,错误的题是( ) A 、2a-3a=-a B 、3)(ab -=-33b a C 、6a÷2a=4a D 、a ·2a =2a 5、方程组⎩⎨⎧=+=-31y x y x 的解是( )A 、⎩⎨⎧==21y x B 、⎩⎨⎧==31y x C 、⎩⎨⎧==13y x D 、⎩⎨⎧==12y x6、为了解当地气温变化情况,某研究小组纪录了寒假期间连续4天的最高气温,结果如下(单位:°C ): 5, -1,-3,-1.则下列结论错误的是( ) A 、方差是8 B 、中位数是-1 C 、众数是-1 D 、平均数是07、某几何体的三视图如图所示,则侧面积是( ) A 、12π B 、6πC 、4πD 、68、已知一元二次方程0352=+-x x ,则该方程根的情况是( ) A 、有二个不相等的实数根 B 、有两个相等的实数根 C 、无实数根 D 、无法确定9、如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R ,扇形的圆心角 等于90°,则r 与R 之间的关系是( ) A 、R=2r B 、R=3r C 、R=4r D 、R=5rC第7题图主视图左视图俯视图A B C DR10、将抛物线342+-=x x y 向上平移至顶点落在x 轴上,如图所示,则两条抛物线、 对称轴和y 轴围成的图形的面积S (图中阴影部分)是( )A 、1 BC 、3 D二、填空题11、已知∠α=25°,那么∠α的余角= 度。
2019学年广东省广州市海珠区九年级下学期一模数学
试卷【含答案及解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. 在0,1,﹣1,四个数中,最小的实数是()
A.﹣1 B. C.0 D.1
2. 若∽,且,则()
A.1:3 B.1:9 C.1: D.1:1.5
3. 如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()
A.70° B.20° C.35° D.110°
4. 下列运算正确的是( )
A. B.
C. D.
5. 如图,将△ABC绕着点C顺时针旋转60°后得到△AʹBʹC,若∠A=40°,∠B=110°,则∠BCAʹ的度数是()
A.100° B.90° C.70° D.110°
6. 我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必
须清楚这9名同学成绩的()
A.众数 B.平均数 C.中位数 D.方差
7. 在□ABCD中,对角线AC、BD相交于O,下列说法一定正确的是()
A.AC=BD B.AC⊥BD C.AO=DO D.AO=CO
8. 已知数轴上点A(表示整数a)在点B(表示整数b)的左侧,如果,且线段AB
长为6,那么点A表示的数是().
A.3 B.6 C.-6 D.-3
9. 已知、、分别为Rt△ABC(∠C=90°)的三边的长,则关于的一元二次方程
根的情况是()
A.方程无实数根
B.方程有两个不相等的实数根
C.方程有两个相等的实数根
D.无法判断
10. 若点、是一次函数与反比例函数图象的两个交点,其中点的横坐标为1,下列结论:①一次函数的图象不经过第三象限;②点的纵坐标为1;③若将一次函数的图象向下平移1个单位,则与反比例函数图象有且只有一个交点;④当.其中结论正确的个
数是()
A.4个 B.3个 C.2个 D.1个
二、填空题
11. 若梯形的中位线长为8,高为4,则梯形的面积为 _.
12. 分解因式:= _.
13. 半径等于12的圆中,垂直平分半径的弦长为 _.
14. 一个几何体的三视图如图所示,根据图示的数据计算该几何体的全面积为 _.
15. 将矩形ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则菱形AECF的周长为 _.
16. 如图一组有规律的正多边形,各正多边形中的阴影部分面积均为,按此规律,则第
个正多边形的面积为 _.
三、解答题
17. (本题满分10分,每小题5分)
(1)解分式方程:;(2)解不等式组:.
18. (本题满分10分)如图,在正方形ABCD中,点E、F在线段BC上,且BE=CF,连结AF、DE相交于点G,求证:EG=FG.
19. (本题满分10分)
已知方程的两个根分别是和,求代数式的值.
20. (本题满分10分)
随着科技的不断发展,人与人的沟通方式也发生了很大的变化,广州市某中学九年级的一
个数学兴趣小组在本年级学生中进行“学生最常用的交流方式”的专题调查活动,采取随
机抽样的方式进行问卷调查,问卷调查的结果分为四类:A.面对面交谈;B.微信和QQ
等聊天软件交流;C.短信与书信交流;D.电话交流.根据调查数据结果绘制成以下两幅
不完整的统计图:
(1)本次调查,一共调查了名同学,其中C类女生有名,D类男生有名;(2)若该年级有学生150名,请根据调查结果估计这些学生中以“D.电话交流”为最常
用的交流方式的人数约为多少?
(3)在本次调查中以“C.短信与书信交流”为最常用交流方式的几位同学中随机抽取两
名同学参加广州市中学生书信节比赛,请用列举法求所抽取的两名同学都是男同学的概率.
21. (本题满分10分)
某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进
行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.
(1)若购买两种树总金额为560000元,求甲、乙两种树各购买了多少棵?
(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?
22. (本题满分12分)
实验数据显示:一般成人喝半斤低度白酒后,1.5小时内(包括1.5小时)其血液中酒精
含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x表示;
1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)表示(如图所示).
(1)求k的值.
(2)假设某驾驶员晚上在家喝完半斤低度白酒,求有多长时间其酒精含量不低于72毫克
/百毫升?(用分钟表示)
23. (本题满分12分)如图,在△ABC中,AB=BC,点E在边AB上,EF⊥AC于F.
(1)尺规作图:过点A作AD⊥BC于点D(保留作图痕迹,不写作法);
(2)求证:∠CAD=∠AEF;(3)若∠ABC=45°,AD与EF交于点G,求证:EG=2AF.
24. (本题满分14分)
如图,AB是⊙O的直径,直线与⊙O相切于点C,AE⊥交直线于点E、
交⊙O于点F,BD⊥交直线于点D.
(1)求证:△AEC∽△CDB;
(2)求证:AE+EF=AB;
(3)若AC=8,BC=6,点P从点A出发沿线段AB向点B以2的速度运动,点Q从点B出发沿线段BC向点C以1的速度运动,两点同时出发,当点P运动到点B 时,两点都停止运动.设运动时间为秒,求当为何值时,△BPQ为等腰三角形?
25. (本题满分14分)
如图,已知抛物线过点A(6,0),B(-2,0),C(0,-3).
(1)求此抛物线的解析式;
(2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积;
(3)若点Q在轴上,点G为该抛物线的顶点,且∠QGA=45º,求点Q的坐标.
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】
第25题【答案】。