2018深圳宝安数学一模
- 格式:doc
- 大小:10.48 MB
- 文档页数:4
2018年广东省深圳市数学中考一模试卷扫描二维码,下载客户端,随时随地做题支持iPhone/Android手机1.2018的相反数是()A. -2018B.C. 2018D.2.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.3.下列计算结果正确的是()A.B.C.D.4.据报道,我国自行研发的第一艘001A型航空母舰吨位达到6.5万吨,造价30亿美元,用科学记数法表示6.5万吨为()A. 吨B. 吨C. 吨D. 吨5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个6.如图,一只蚂蚁以均匀的速度沿台爬行,那么蚂蚁爬行的高度h随时间t变化的图象大致是()A.B.C.D.7.我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:则该班同学筹款金额的众数和中位数分别是()A. 11,20B. 25,11C. 20,25D. 25,208.在中,,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.B.C.D.9.如图所示,在中,,以点B为圆心,BC长为半径做弧,交AB于点D,再以点A为圆心,AD长为半径画弧,交AC于点E,下列结论错误的是()A.B.C.D.10.下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形11.已知二次函的图象如图所示,它与x轴的两个交点分别,,对于下列命题:①;②;③;④,其中正确的是()A.3个B.2个C.1个D.0个12.如图,在矩形ABCD中,E是AD的中点,垂足为F,连接DF,下列四个结论;③;④,。
其中正确的是()A. ①②③B. ②③④C. ①③④D. ①②④13.若一元二次方有两个相等的实数根,则c的值是。
2017-2018学年第一学期宝安区期末调研试卷九年级 数学第一部分 (选择题,共36分)一、选择题:(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1. 一元二次方程x x 32=的根是( )A.3=xB.3=xC.3021-==x x ,D.3021==x x , 2.下面左侧几何体的左视图是( )3.如果2=b a ,则ba ba -+的值是( ) A.3 B.﹣3 C.21 D.234.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n 个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球。
经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值约为( )A.20B.30C.40D.505.关于x 的一元二次方程0232=-+x ax 有两个不相等的实数根,则a 的值可以是( ) A.0 B.﹣1 C.﹣2 D.﹣36.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民20XX 年人均收入300美元,预计2018年人均年收入将达到950美元,设20XX 年到2018年该地区居民人均年收入平均增长率为x ,可列方程( )A.950%13002=+)(x B.95013002=+)(x C.95021300=+)(x D.95013002=+)(x 7.今年,某公司推出一款的新手机深受消费者推崇,但价格不菲。
为此,某电子商城推出分期付款购买新手机的活动。
一部售价为9688元的新手机,前期付款2000元,后期每个月分期付相同的数额,则每个月的付款额y (元)与付款月数x (x 为正整数)之间的函数关系式是( ) A.20007688+=x y B.20009688-=x y C.x y 7688= D.xy 2000= 8.如图1,延长矩形ABCD 的边BC 至点E ,使CE=BD ,连结AE ,如果∠ADB=38°,则∠E 的值是( ) A.19° B.18° C.20° D.21°9.下列说法正确的是( )A.二次函数3)1(2-+=x y 的顶点坐标是(1,﹣3);B.将二次函数2x y =的图象向上平移2个单位,得到二次函数2)2(+=x y 的图象; C.菱形的对角线互相垂直且相等;D.平面内,两条平行线间的距离处处相等;10.如图2,一路灯B 距地面高BA=7m ,身高1.4m 的小红从路灯下的点D 出发,沿A →H 的方向行走至点G ,若AD=6m ,DG=4m ,则小红在点D 到G 处的影长相对于点G 处的影长变化是( )A.变长1mB.变长1.2mC.变长1.5mD.变长1.8m11.一次函数c ax y +=的图象如下图3所示,则二次函数c x ax y ++=2的图象可能大致是( )12. 如图4,点P 是边长为2的正方形ABCD 的对角线BD 上的动点,过点P 分别作PE ⊥BC 于点E ,PF ⊥DC 于点F ,连接AP 并延长,交射线BC 于点H ,交射线DC 于点M ,连接EF 交AH 于点G 。
广东省深圳市宝安区2018-2019学年九年级(上)期末模拟题(一)一.选择题(共12小题,满分36分)1.方程x(x﹣1)=x的解是()A.x=0B.x=0、x=1C.x=0和x=2D.x=0或x=22.下列图形中,主视图为图①的是()A.B.C.D.3.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A.15个B.20个C.10个D.25个5.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k<﹣2C.k<2D.k>26.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=1007.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5B.C.D.9.已知坐标平面上有两个二次函数y=a(x﹣1)(x+7),y=b(x+1)(x﹣15)的图象,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移8单位B.向右平移8单位C.向左平移10单位D.向右平移10单位10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=.15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k=.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为.三.解答题(共7小题,满分42分)17.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.18.(5分)解方程:x2+3x+2=0.19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.21.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠P BN=45°时,求m的值.参考答案一.选择题1.解:方程移项得:x(x﹣1)﹣x=0,分解因式得:x(x﹣2)=0,解得:x=0或x=2,故选:D.2.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.3.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.解:设袋中白球有x个,根据题意,得:=0.25,解得:x=15,经检验:x=15是分式方程的解,所以袋中白球有15个,故选:A.5.解:∵方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△=(﹣2k)2﹣4(k2﹣k+2)=4k﹣8>0,解得:k>2.故选:D.6.解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.7.解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:∵y=a(x﹣1)(x+7)=ax2+6ax﹣7a,y=b(x+1)(x﹣15)=bx2﹣14bx﹣15b,∴二次函数y=a(x﹣1)(x+7)的对称轴为直线x=﹣3,二次函数y=b(x+1)(x﹣15)的对称轴为直线x=7,∵﹣3﹣7=﹣10,∴将二次函数y=b(x+1)(x﹣15)的图形向左平移10个单位,两图形的对称轴重叠.故选:C.10.解:如图,根据常识桌面与地面平行,所以,△ADE∽△ABC,∴=,解得BC=1.8,所以,地面上阴影部分的面积=π•()2=0.81π平方米.故选:B.11.解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选:A.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.14.解:∵由题意函数y=2x2+bx的交换函数为y=bx2+2x,∵函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,两个函数的对称轴相同,∴﹣=﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.15.解:如图,连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,由题可得AO=BO,AC=BC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴Rt△AOC中,OC:AO=1:,∵∠AOD+∠COE=90°,∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,=|﹣3|=,∴S△AOD=×=,即|k|=,∴S△OCE∴k=±1,又∵k>0,∴k=1.故答案为:1.16.解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF﹣FM=1﹣=,则BC=CF+BF=1+=.故答案为:.三.解答题(共7小题,满分42分)17.解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.18.解:分解因式得:(x+1)(x+2)=0,可得x+1=0或x+2=0,解得:x1=﹣1,x2=﹣2.19.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.20.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x=,答:MD长为.21.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.22.解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形A BCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=3223.解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,k=﹣,∴直线AB的解析式为:y=﹣x+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣x2+bx+c中,则,解得:,二次函数的表达式为:y=﹣;(2)①设M(m,0),则P(m,﹣m+2),N(m,﹣)有两种情况:①当N在P的上方时,如图1,∴PN=y N﹣y P=(﹣)﹣(﹣m+2)=﹣+4m,由于四边形OBNP为平行四边形得PN=OB=2,∴+4m=2,解得:m=或;②当N在P的下方时,同理可得:PN=(﹣m+2)﹣(﹣)=﹣4m=2,解得:m=;综上,m=或;②有两解,N点在AB的上方或下方,如图2,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由∠PBN=45°得∠GBP=45°,∴GH=BH,设GH=BH=t,则由△AHG∽△AOB,得AH=t,GA=,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA﹣AG=3﹣=,即G(,0)…………(7分)由B(0,2),G(,0)得:直线BG:y=﹣5x+2,直线BN:y=0.2x+2.则,解得:x1=0(舍),x2=,即m=;则,解得:x1=0(舍),x2=;即m=;故m=与m=为所求.…………(9分)。
广东省深圳市宝安区2018-2019学年九年级(上)期末模拟题(一)一.选择题(共12小题,满分36分)1.方程x(x﹣1)=x的解是()A.x=0B.x=0、x=1C.x=0和x=2D.x=0或x=22.下列图形中,主视图为图①的是()A.B.C.D.3.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A.15个B.20个C.10个D.25个5.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k<﹣2C.k<2D.k>26.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=1007.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5B.C.D.9.已知坐标平面上有两个二次函数y=a(x﹣1)(x+7),y=b(x+1)(x﹣15)的图象,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移8单位B.向右平移8单位C.向左平移10单位D.向右平移10单位10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=.15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k=.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为.三.解答题(共7小题,满分42分)17.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.18.(5分)解方程:x2+3x+2=0.19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.21.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠P BN=45°时,求m的值.参考答案一.选择题1.解:方程移项得:x(x﹣1)﹣x=0,分解因式得:x(x﹣2)=0,解得:x=0或x=2,故选:D.2.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.3.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.解:设袋中白球有x个,根据题意,得:=0.25,解得:x=15,经检验:x=15是分式方程的解,所以袋中白球有15个,故选:A.5.解:∵方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△=(﹣2k)2﹣4(k2﹣k+2)=4k﹣8>0,解得:k>2.故选:D.6.解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.7.解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:∵y=a(x﹣1)(x+7)=ax2+6ax﹣7a,y=b(x+1)(x﹣15)=bx2﹣14bx﹣15b,∴二次函数y=a(x﹣1)(x+7)的对称轴为直线x=﹣3,二次函数y=b(x+1)(x﹣15)的对称轴为直线x=7,∵﹣3﹣7=﹣10,∴将二次函数y=b(x+1)(x﹣15)的图形向左平移10个单位,两图形的对称轴重叠.故选:C.10.解:如图,根据常识桌面与地面平行,所以,△ADE∽△ABC,∴=,解得BC=1.8,所以,地面上阴影部分的面积=π•()2=0.81π平方米.故选:B.11.解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选:A.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.14.解:∵由题意函数y=2x2+bx的交换函数为y=bx2+2x,∵函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,两个函数的对称轴相同,∴﹣=﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.15.解:如图,连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,由题可得AO=BO,AC=BC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴Rt△AOC中,OC:AO=1:,∵∠AOD+∠COE=90°,∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,=|﹣3|=,∴S△AOD=×=,即|k|=,∴S△OCE∴k=±1,又∵k>0,∴k=1.故答案为:1.16.解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF﹣FM=1﹣=,则BC=CF+BF=1+=.故答案为:.三.解答题(共7小题,满分42分)17.解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.18.解:分解因式得:(x+1)(x+2)=0,可得x+1=0或x+2=0,解得:x1=﹣1,x2=﹣2.19.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.20.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x=,答:MD长为.21.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.22.解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形A BCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=3223.解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,k=﹣,∴直线AB的解析式为:y=﹣x+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣x2+bx+c中,则,解得:,二次函数的表达式为:y=﹣;(2)①设M(m,0),则P(m,﹣m+2),N(m,﹣)有两种情况:①当N在P的上方时,如图1,∴PN=y N﹣y P=(﹣)﹣(﹣m+2)=﹣+4m,由于四边形OBNP为平行四边形得PN=OB=2,∴+4m=2,解得:m=或;②当N在P的下方时,同理可得:PN=(﹣m+2)﹣(﹣)=﹣4m=2,解得:m=;综上,m=或;②有两解,N点在AB的上方或下方,如图2,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由∠PBN=45°得∠GBP=45°,∴GH=BH,设GH=BH=t,则由△AHG∽△AOB,得AH=t,GA=,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA﹣AG=3﹣=,即G(,0)…………(7分)由B(0,2),G(,0)得:直线BG:y=﹣5x+2,直线BN:y=0.2x+2.则,解得:x1=0(舍),x2=,即m=;则,解得:x1=0(舍),x2=;即m=;故m=与m=为所求.…………(9分)。
2018深圳一模文科数学word含答案广东省深圳市2018届高三第一次调研考试绝密★启用后深圳市2018届高三年级第一次调研考试数学(文科)2018.3第I卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-2<0\}$,$B=\{x|x\geq 1\}$,则$A\cap B=$A。
$(,-1]$B。
$[-1,0)$C。
$[-1,2)$D。
$[0,2)$2.已知$a\in R$,$i$ 为虚数单位,若复数$z=ai$ 纯虚数,则 $a=$A。
$0$B。
$1$XXXD。
$-1$3.其食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场上收集到了一部分不同年份的该酒品,并测定了其芳香度(如下表)。
年份 $x$ | 芳香度 $y$ |1$。
|。
$1.3$。
|4$。
|。
$1.8$。
|5$。
|。
$5.6$。
|6$。
|。
$7.4$。
|8$。
|。
$9.3$。
|其中,$y\hat{y}=1.03x+1.13$,但不小心在检测后滴到表格上一滴检测液,污损了一个数据,请你推断该数据为A。
$6.1$B。
$6.28$C。
$6.5$D。
$6.8$4.设有下面四个命题:N,n^2>2n$;R,“x>1”$ 是“$x>2$” 的充分不必要条件;p_3:$ 命题“若 $x=y$,则 $\sin x=\sin y$” 的逆否命题是“若 $\sin x\neq\sin y$,则 $x\neq y$”;p_4:$ 若“$p\lor q$” 是真命题,则 $p$ 一定是真命题。
其中为真命题的是A。
$p_1,p_2$B。
$p_2,p_3$C。
$p_2,p_4$D。
$p_1,p_3$5.已知焦点在 $x$ 轴上的双曲线的一条渐近线的倾斜角为$\frac{\pi}{6}$,线的标准方程为 $\sqrt{3}y=x-2$,且其焦点到渐近线的距离为 $2$,则该双曲线的方程为A。
高一数学 第1页 (共4页)深圳市宝安区2018学年第一学期期末调研测试卷 高一 数学1一、选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合}9,7,5,3,1{=U ,}9,1{=A ,则=A C U ( )A .{2,4,8,10}B .{3,5,7}C .{1,3}D .{1,7,9}2.设函数111)(+-++=x x x f ,则)(x f ( )A .奇函数B .非奇非偶函数C .偶函数D .既是奇函数又是偶函数 3.函数y = )A .),1[+∞B .)2,1[C .]1,0(D .)1,0( 4.要得到)2cos()(-=x x f 的图像只需要把)1cos()(+=x x f 的图像( )A .向右移动1个单位B .向左移动1个单位C .向右移动3个单位D .向左移动3个单位5.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A,点A 的纵坐标为54,cos α=( ).A .53-B .53C .52-D .526.已知y x ,为正实数,则下列选项中正确的是( )A .y x y x lg lg lg lg 222+=+B .y x y x lg lg )lg(222∙=+C .y x y x lg lg lg lg 222+=∙D .y x xy lg lg )lg(222∙=7.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A .(),a b 和(),b c 内B .(),a -∞和(),a b 内C .(),b c 和(),c +∞内D .(),a -∞和(),c +∞内8.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )高一数学 第2页 (共4页)A .2,3π- B .2,6π-C .4,6π- D .4,3π二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.已知集合A ={}2,1,2-,B=}1,a +,且B A ⊆,则实数a 的值是 。
2018-2019年宝安区高三上学期调研考试数学(理)试题本试卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数52i -的共轭复数是( ) A .2i + B .2i -+ C .2i -- D .2i -2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ⊆,则实数a 的取值集合( ) A .{1} B .{1,1}- C .{1,0} D .{1,1,0}-3. 定义某种运算:S m n ⊗=⊗的运算原理如右边的流程图所示,则6547⊗-⊗=( ) A.3 B.1 C.4 D. 04.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为( ) A .110B .16C .15D .565.已知函数2lg(54)y x x =++的零点是1tan x α=和2tan x β=,则tan()αβ+=( )A .53B .53-C .52D .52-6.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >> 7. 在ABC ∆中,“tan tan 1B C >”是“ABC ∆为锐角三角形”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件 8.在61(1)x x+-的展开式中,含5x 项的系数为( ) A .6 B .6- C .24 D .24- 9. 若实数x ,y 满足||||2x y +≤,则222M x y x =+-的最小值为( )A .2-B .0C 1D .12-10. 如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=,1AB AD ==.若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A.2116 B. 32 C. 2516D. 311.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( ) A .[2,4]ππ B .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12. 已知,,A F P 分别为双曲线22221(0,0)x y a b a b-=>> 的左顶点、右焦点以及右支上的动点,若2PFA PAF ∠=∠恒成立,则双曲线的离心率为( )A.B. C. 2D. 1+二、填空题:本题共4小题,每小题5分,共20分. 13.已知2)4πtan(-=+α,则=-αα2cos 2sin 1 14.过双曲线2222:1(,0)x y E a b a b-=>的右焦点,且斜率为2的直线与E 的右支有两个不同的公共点,则双曲线离心率的取值范围是________.15.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111C B A ABC -中,4,3,51====BC AB AC AA ,则阳马111A ABB C -的外接球的表面积是16.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥时21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 三、解答题:共70分。
2017-2018学年第一学期宝安区高三调研测试卷数学(理科)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的班别、姓名、考号填写在答题卡的密封线内.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能写在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列函数中,不满足...:(2)2()f x f x =的是 A .()||f x x = B .()||f x x x =-C .()1f x x =+D .()f x x =-2.复数Z =32ii-++的共轭复数是 ( ) A .2i + B .2i -C .1i -+D .1i --3.集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =A . (1,2)B . [1,2)C . (1,2]D . [1,2]4.如图所示,程序框图(算法流程图)的输出结果是( ) A .3 B .4 C .5 D .85.已知点A(0,1),B(3,2),向量(4,3)AC =--,则向量BC =( ) A .(-7,-4) B .(1,2) C .(-1,4) D .(1,4)6.双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于A .5B .24C .3D .5 7.已知函数()233x f x x +=,数列{}n a 满足1111,,n n a a f n N a *+⎛⎫==∈ ⎪⎝⎭.数列{}n a 的通项公式; A .2133n a n =+ B .2133n a n =- C .1133n a n =+ D .2134n a n =+ 8.下列正确的是A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 9.设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充要条件是 A .a b =- B .//a b 且方向相同 C .2a b = D .//a b 且||||a b =10.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种 11.设函数⎩⎨⎧=为无理数为有理数x x x D ,0,1)(,则下列结论错误的是A .)(x D 的值域为}1,0{B .)(x D 是偶函数C .)(xD 不是周期函数 D .)(x D 不是单调函数12.已知四边形ABCD 是椭圆2214x y +=的内接菱形,则四边形ABCD 的内切圆方程是( ) A .2215x y +=B .222(1)5x y -+=C .2245x y +=D .2235x y += 二、填空题:本大题共4小题,每小题5分,满分20分.13.已知递增的等差数列{}n a 满足21321,4a a a ==-,则_____n a =14.函数x x f 6log 21)(-=的定义域为15.4)(x a +的展开式中3x 的系数等于8,则实数=a _________16.已知某个几何体的三视图如图所示,根据图中标出的尺寸,则这个几何体的体积是 三、解答题:本大题共6小题(其中22、23、24题任选一题),满分70分. 解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别是a b c ,,,且,,A B C 成等差数列,(1)若1,a b ==求sin C ;(2)若a b c ,,成等差数列,试判断ABC ∆的形状. 18.(本小题满分12分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:试根据图表中的信息解答下列问题:(1)求全班的学生人数及分数在[70,80)之间的频数;(2)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中成绩位于[70,80)分数段的人数X 的分布列和数学期望. 19.(本小题满分12分)在平行四边形ABCD 中,6,10,8AB AD BD ===,E 是线段AD 的中点.如图所示,沿直线BD 将BCD ∆翻折成BC D '∆,使得平面BC D '⊥平面ABD . (1)求证:C D '⊥平面ABD ;(2)求直线BD 与平面BEC '所成角的正弦值.20.(本小题满分12分)如图,在抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N . (1)若点C 的纵坐标为2,求MN ;(2)若2AF AM AN =⋅,求圆C 的半径.21.(本小题满分12分)设函数()y f x =在(,)a b 上的导函数为()f x ',()f x '在(,)a b 上的导函数为()f x '',若在(,)a b 上,()0f x ''<恒成立,则称函数()f x 在(,)a b 上为“凸函数”.已知432113()1262f x x mx x =--. (Ⅰ)若()f x 为区间(1,3)-上的“凸函数”,试确定实数m 的值;(Ⅱ)若当实数m 满足||2m ≤时,函数()f x 在(,)a b 上总为“凸函数”,求b a -的最大值.22.(本题满分10分)选修4-1几何证明选讲如图,AB 为圆O 的直径,AC 与圆O 相切于点A ,BC 交圆O 于点E (1)若D 为AC 的中点,证明DE 是圆O 的切线; (2)若OA =,求ACB ∠的大小。
1.1.2集合间的基本关系第2课时1.一个集合的所有真子集共有n 个,则n 不可能取以下哪个数( )A 、0B 、1C 、2D 、32.已知合A={x|x=4n+1,n ∈Z,B=(x|x=4-3,n ∈Z,C=(x|x=8n+1,n ∈Z,则A.B 、C 之间的关系是3.已知全集U={x|0<x<9),A=(x|1<x<a},若非空集合A ⊆U,则实数a 的取值范围是( )A {a|a<9 } B.{a|a ≤9} C.{a|1<a<9} D.}a|l<a ≤9}4.已知集合A=(x 3≤x 2≤5,X ∈Z,则集合A 的真子集的个数为( )A. 1 B 、2 C 、3 D 、45.设A=(x|1<x<2},B={x|x<a},若A ⊆B,则a 的取值范围是6.若A ⊆B,A ⊆C,B={0,1,2,3,4},C=(0,2,4.8},则满足上述条件的集合A 有 个7.集合(-1,0,1)共有 子集8.设集合A={-1.1),集合B={x|x 2-2ax+b}若B ≠∅ A B ⊆,求ab 的值9. 已知集合A={|x|l ≤x ≤2},B={x|1≤x ≤a,a ≥1}(1) 若A ⊄B,求a 的取值范围(2)若B ⊆C,求a 的取值范围能力提升训练10.含有三个实数的集合可表示为{a ,ab ,1},也可表示为{a 2,a+b ,0},则a 2011+b 2012的值为( ) A. 0 B. -1 C. 1 D. ±111.若x ∈A 则x 1∈A,就称A 是伙伴关系集合,集合M={−1,0,31,21,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为( )A. 15B. 16C. 28D. 2512.已知集合A={x|x <3},集合B={x|x <m},且A ⊆B ,则实数m 满足的条件是13.已知集合A={x|0<ax+1≤5},集合B={x|-21<x ≤2}. (1)若A ⊆B ,求实数a 的取值范围;(2)若B ⊆A ,求实数a 的取值范围;(3)A 、B 能否相等?若能,求出a 的值;若不能,试说明理由.14.已知集合A 1,A 2,满足A={x|x ∈A 1或x ∈A 2},则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合A={1,2,3}的不同分拆的种数是( )A. 27B. 26C. 9D. 815. 设集合S ={1,2,…,9},集合A ={ a 1, a 2 ,a 3 }是S 的子集,且a 1,a 2 ,a 3 满足 a 1<a 2<a 3 ,a 3-a 2≤6,那么满足条件的子集A 的个数为( )A.78B.76C.84D.8316.试写出满足条件{1,2,5}⫋M ⫋A={1,4,8,x ,y ,x-y}的所有不同的集合M.。
宝安一小2018-2019学年三年级下学期数学模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)文化社区有44人去划船,每条船限乘5人,至少要租()条船。
A. 7B. 8C. 9【答案】C【考点】100以内数有余数的除法及应用【解析】【解答】44÷5=8(条)……4(人),至少要租:8+1=9(条).故答案为:C.【分析】根据题意可知,要求44人需要租几条船,就是求44里面有几个5,用除法计算,不管余数是几,都要比商多租一条,据此列式解答.2.(2分)35×28=()。
A. 980B. 940C. 970【答案】A【考点】两位数乘两位数的笔算乘法(进位)【解析】【解答】用竖式计算35×28可得980,所以答案选项为A【分析】 3 52 8——————2 8 07 0——————9 8 03.(2分)一块面积为500平方米的土地,里面有一个长3米、宽2米的水池,这块地可以用来种菜的面积为()。
A. 6平方米B. 500平方米C. 494平方米【答案】C【考点】长方形的面积【解析】【解答】解:这块地可以用来种菜的面积为:500-3×2=494平方米。
故答案为:C。
【分析】因为这块地里面有一个水池,所以这块地可以用来种菜的面积=这块地的面积-水池的面积,其中水池的面积=长×宽。
4.(2分)要使450×□的积末尾有两个0,□里最小应填()A. 2B. 4C. 8D. 9【答案】A【考点】两位数乘两位数【解析】【解答】解:A、450×2=900,900的末尾有两个0;B、450×4=1800,1800的末尾有两个0;C、450×8=3600,300的末尾有两个0;由以上可得450与2、4、8相乘的积的末尾都有2个0;2<4<8;所以,□最小应填2.故选:A.【分析】整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0,一个因数450的尾数是0,想使积德尾数是两个0,那么要与5的乘积的尾数是0,据此分析。
2017-2018学年第一学期宝安区期末调研试卷九年级 数学第一部分 (选择题,共36分)一、选择题:(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1. 一元二次方程x x 32=的根是( )A.3=xB.3=xC.3021-==x x ,D.3021==x x ,2.下面左侧几何体的左视图是( )3.如果2=b a ,则ba b a -+的值是( ) A.3 B.﹣3 C.21 D.23 4.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n 个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球。
经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值约为( )A.20B.30C.40D.505.关于x 的一元二次方程0232=-+x ax 有两个不相等的实数根,则a 的值可以是( )A.0B.﹣1C.﹣2D.﹣36.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x ,可列方程( ) A.950%13002=+)(x B.95013002=+)(x C.95021300=+)(x D.95013002=+)(x 7.今年,某公司推出一款的新手机深受消费者推崇,但价格不菲。
为此,某电子商城推出分期付款购买新手机的活动。
一部售价为9688元的新手机,前期付款2000元,后期每个月分期付相同的数额,则每个月的付款额y (元)与付款月数x (x 为正整数)之间的函数关系式是( )A.20007688+=x yB.20009688-=x yC.x y 7688=D.xy 2000= 8.如图1,延长矩形ABCD 的边BC 至点E ,使CE=BD ,连结AE ,如果∠ADB=38°,则∠E 的值是( )A.19°B.18°C.20°D.21°9.下列说法正确的是( )A.二次函数3)1(2-+=x y 的顶点坐标是(1,﹣3);B.将二次函数2x y =的图象向上平移2个单位,得到二次函数2)2(+=x y 的图象;C.菱形的对角线互相垂直且相等;D.平面内,两条平行线间的距离处处相等;10.如图2,一路灯B 距地面高BA=7m ,身高1.4m 的小红从路灯下的点D 出发,沿A →H 的方向行走至点G ,若AD=6m ,DG=4m ,则小红在点D 到G 处的影长相对于点G 处的影长变化是( )A.变长1mB.变长1.2mC.变长1.5mD.变长1.8m11.一次函数c ax y +=的图象如下图3所示,则二次函数c x ax y ++=2的图象可能大致是( )12. 如图4,点P 是边长为2的正方形ABCD 的对角线BD 上的动点,过点P 分别作PE ⊥BC 于点E ,PF ⊥DC 于点F ,连接AP 并延长,交射线BC 于点H ,交射线DC 于点M ,连接EF 交AH 于点G 。
广东省深圳市宝安区2018-2019学年九年级数学上学期期末模拟题(一)一.选择题(共12小题,满分36分)1.方程x(x﹣1)=x的解是()A.x=0 B.x=0、x=1 C.x=0和x=2 D.x=0或x=2 2.下列图形中,主视图为图①的是()A.B.C.D.3.已知=(a≠0,b≠0),下列变形错误的是()A. =B.2a=3b C. =D.3a=2b4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A.15个B.20个C.10个D.25个5.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>26.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80C.80(1+2x)=100 D.80(1+x2)=1007.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知坐标平面上有两个二次函数y=a(x﹣1)(x+7),y=b(x+1)(x﹣15)的图象,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移8单位B.向右平移8单位C.向左平移10单位D.向右平移10单位10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x 与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b= .15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k= .16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为.三.解答题(共7小题,满分42分)17.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.18.(5分)解方程:x2+3x+2=0.19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.21.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠P BN=45°时,求m的值.参考答案一.选择题1.解:方程移项得:x(x﹣1)﹣x=0,分解因式得:x(x﹣2)=0,解得:x=0或x=2,故选:D.2.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.3.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.解:设袋中白球有x个,根据题意,得: =0.25,解得:x=15,经检验:x=15是分式方程的解,所以袋中白球有15个,故选:A.5.解:∵方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△=(﹣2k)2﹣4(k2﹣k+2)=4k﹣8>0,解得:k>2.故选:D.6.解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.7.解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:∵y=a(x﹣1)(x+7)=ax2+6ax﹣7a,y=b(x+1)(x﹣15)=bx2﹣14bx﹣15b,∴二次函数y=a(x﹣1)(x+7)的对称轴为直线x=﹣3,二次函数y=b(x+1)(x﹣15)的对称轴为直线x=7,∵﹣3﹣7=﹣10,∴将二次函数y=b(x+1)(x﹣15)的图形向左平移10个单位,两图形的对称轴重叠.故选:C.10.解:如图,根据常识桌面与地面平行,所以,△ADE∽△ABC,∴=,即=,解得BC=1.8,所以,地面上阴影部分的面积=π•()2=0.81π平方米.故选:B.11.解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选:A.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.14.解:∵由题意函数y=2x2+bx的交换函数为y=bx2+2x,∵函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,两个函数的对称轴相同,∴﹣=﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.15.解:如图,连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,由题可得AO=BO,AC=BC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴Rt△AOC中,OC:AO=1:,∵∠AOD+∠COE=90°,∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴S△AOD=|﹣3|=,∴S△OCE=×=,即|k|=,∴k=±1,又∵k>0,∴k=1.故答案为:1.16.解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF﹣FM=1﹣=,则BC=CF+BF=1+=.故答案为:.三.解答题(共7小题,满分42分)17.解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.18.解:分解因式得:(x+1)(x+2)=0,可得x+1=0或x+2=0,解得:x1=﹣1,x2=﹣2.19.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∴选择摇奖.20.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x=,答:MD长为.21.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.22.解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD 为平行四边形,∵BD ⊥AC ,∴四边形A BCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P , ∴BD=AC当x=4时,y==,y==∴B (4,),D (4,),∴P (4,),∴A (,),C (,)∵AC=BD ,∴﹣=﹣,∴m+n=3223.解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,k=﹣,∴直线AB的解析式为:y=﹣x+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣x2+bx+c中,则,解得:,二次函数的表达式为:y=﹣;(2)①设M(m,0),则P(m,﹣m+2),N(m,﹣)有两种情况:①当N在P的上方时,如图1,∴PN=y N﹣y P=(﹣)﹣(﹣m+2)=﹣+4m,由于四边形OBNP为平行四边形得PN=OB=2,∴+4m=2,解得:m=或;②当N在P的下方时,同理可得:PN=(﹣m+2)﹣(﹣)=﹣4m=2,解得:m=;综上,m=或;②有两解,N点在AB的上方或下方,如图2,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由∠PBN=45°得∠GBP=45°,∴GH=BH,设GH=BH=t,则由△AHG∽△AOB,得AH=t,GA=,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA﹣AG=3﹣=,即G(,0)…………(7分)由B(0,2),G(,0)得:直线BG:y=﹣5x+2,直线BN:y=0.2x+2.则,解得:x1=0(舍),x2=,即m=;则,解得:x1=0(舍),x2=;即m=;故m=与m=为所求.…………(9分)。
2018年深圳市高三年级第一次调研考试数 学 2018.3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第5页.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共50分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目用2B 铅笔涂写在小答题卡上.同时,用黑色钢笔将姓名、考号、座位号填写在模拟答题卡上.2.每小题选出答案后,用2B 铅笔把模拟答题卡上对应题目的答案标号涂黑;最后,用2B 铅笔将模拟答题卡上的答案转涂到小答题卡上,不能答在试题卷上. 3.考试结束后,将模拟答题卡和小答题卡一并交回参考公式:(1)如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ); (2)如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B );一.选择题:本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 1.在复平面内,复数11i+所对应的点位于A .第一象限 B.第二象限 C .第三象限 D.第四象限 2.50<<x 是不等式4|4|<-x 成立的A .充分不必要条件 B.必要不充分条件C .充要条件 D.既不充分也不必要条件 3. 已知直线l 及三个平面αβγ、、,给出下列命题:①若l //α,l //β,则//αβ ②若,αβαγ⊥⊥,则βγ⊥ ③若,,l l αβ⊥⊥ 则//αβ ④若,//l l ⊂αβ,则//αβ 其中真命题是A. ①B. ②C. ③D. ④4. 已知实数x 、y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则y x z 42+=的最大值为A. 24B. 20C. 16D. 125. 已知R 上的奇函数)(x f 在区间(-∞,0)内单调增加,且0)2(=-f ,则不等式()0f x ≤的解集为A. []2,2-B. (][],20,2-∞-⋃C. (][),22,-∞-⋃+∞D. [][)2,02,-⋃+∞6. 某学校要派遣6位教师中的4位去参加一个学术会议,其中甲、乙两位教师不能同时参加,则派遣教师的不同方法数共有 A .7种 B .8种 C .9种 D .10种7. 按向量)2,6(π=a 平移函数()2sin()3f x x π=-的图象,得到函数()y g x =的图象,则A. ()2cos 2g x x =-+B. ()2cos 2g x x =--C. ()2sin 2g x x =-+D. ()2sin 2g x x =--8. 函数()f x (x ∈R )由ln ()0x f x -=确定,则导函数()y f x '=图象的大致形状是A. B. C.D.9. 曲线214x y =上的点P 到点(1,A --与到y 轴的距离之和为,d 则d 的最小值是 B.3 C. D.410. 若点A B C 、、是半径为2的球面上三点,且2AB =,则球心到平面ABC 的距离之最大值为A.2第Ⅱ卷(非选择题共100分)注意事项:第Ⅱ卷全部是非选择题,必须在答题卡非选择题答题区域内,用黑色钢笔或签字笔作答,不能答在试卷上,否则答案无效.二. 填空题:本大题共4小题;每小题5分,共20分.11则第3组的频率为 ▲ .12. 14lim14nnn →∞-=+ ▲ . 13. 圆22:2270C x y x y +---=的圆心坐标为 ▲ ,设P 是该圆的过点(3,3)的弦的中点,则动点P 的轨迹方程是 ▲ .14.将给定的25个数排成如右图所示的数表,若 每行5个数按从左至右的顺序构成等差数列,每列 的5个数按从上到下的顺序也构成等差数列,且表 正中间一个数a 33=1,则表中所有数之和为 ▲ .11121314152122232425313233343541424344455152535455a a a a a a a a a a a a a a a a a a a a a a a a a三.解答题:本大题6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知向量a =)sin ,(cos x x , b =)cos ,cos (x x -, c =)0,1(-. (Ⅰ)若6π=x ,求向量、的夹角;(Ⅱ)当]89,2[ππ∈x 时,求函数12)(+⋅=b a x f 的最大值.16.(本小题满分13分)已知袋中装有大小相同的2个白球和4个红球.(Ⅰ)从袋中随机地将球逐个取出,每次取后不放回,直到取出两个红球为止,求取球次数ξ的数学期望;(Ⅱ)从袋中随机地取出一个球,放回后再随机地取出一个球,这样连续取4次球,求共取得红球次数η的方差.17. (本小题满分13分)如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22,M 为BC 的中点.(Ⅰ)证明:AM ⊥PM ;(Ⅱ)求二面角P -AM -D 的大小; (Ⅲ)求点D 到平面AMP 的距离. 18.(本题满分14分)已知函数()f x x b =+的图象与函数23)(2++=x x x g 的图象相切,记()()()F x f x g x =.(Ⅰ)求实数b 的值及函数()F x 的极值;(Ⅱ)若关于x 的方程k x F =)(恰有三个不等的实数根,求实数k 的取值范围.MPDCA19.(本题满分13分)已知椭圆221:36(0)x c y t t+=>的两条准线与双曲线222:536c x y -=的两条准线所围成的四边形之面积为直线l 与双曲线2c 的右支相交于,P Q 两点(其中点P 在第一象限),线段OP 与椭圆1c 交于点,A O 为坐标原点(如图所示). (I )求实数t 的值;(II )若3OP OA =⋅,PAQ ∆的面积26tan S PAQ =-⋅∠求直线l 的方程.20.(本题满分14分)已知数列{}n a 的前n 项和n S 满足:11,S =-121(),n n S S n N *++=-∈数列{}n b 的通项公式为34().n b n n N *=-∈ (I )求数列{}n a 的通项公式;(II )试比较n a 与n b 的大小,并加以证明;(III )是否存在圆心在x 轴上的圆C 及互不相等的正整数n m k 、、,使得三点(,),(,),(,)n n n m m m k k k A b a A b a A b a 落在圆C 上?说明理由.2018年深圳市高三年级第一次调研考试(数学)答案及评分标准说明:一.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四.只给整数分数,选择题和填空题不给中间分数.一.选择题:本大题每小题5分,满分50分.1. D2. A3. C4. B5. B6. C7. A8. C9. B 10. D 二.填空题:本大题每小题5分,满分20分.11. 24.0 12. 1- 13. (1,1);22(2)(2)2x y -+-= 14. 25 三.解答题:本大题满分80分. 15.(本小题满分13分)已知向量=)sin ,(cos x x , =)cos ,cos (x x -, =)0,1(-. (Ⅰ)若6π=x ,求向量、的夹角;(Ⅱ)当]89,2[ππ∈x 时,求函数12)(+⋅=x f 的最大值.解: (Ⅰ)当6π=x 时,2cos ,cos a c a c a c ⋅==⋅ …………………2分 6cos cos π-=-=x ……………………………3分5cos 6π= ……………………………4分∵π≤≤c a,0 ∴65,π=c a…………………………6分(Ⅱ) 1)cos sin cos (212)(2++-=+⋅=x x x x f ……………………8分)1cos 2(cos sin 22--=x x x)42sin(22cos 2sin π-=-=x x x (10)分∵]89,2[ππ∈x∴]2,43[42πππ∈-x ,故]22,1[)42sin(-∈-πx ………………………11分 ∴当4342ππ=-x ,即2π=x 时, 1)(max =x f ………………………13分 16.(本小题满分13分)已知袋中装有大小相同的2个白球和4个红球.(Ⅰ)从袋中随机地将球逐个取出,每次取后不放回,直到取出两个红球为止,求取球次数ξ的数学期望;(Ⅱ)从袋中随机地取出一个球,放回后再随机地取出一个球,这样连续取4次球,求共取得红球次数η的方差.解:(Ⅰ) 依题意,ξ的可能取值为2,3,4 ……………………………1分52)2(2624===A A P ξ; ……………………………3分52)()3(3613221412===A C A C C P ξ; ……………………………5分 51)()4(4613331422===A C A C C P ξ; ……………………………7分 ∴ 514514523522=⨯+⨯+⨯=ξE . 故取球次数ξ的数学期望为14.5…………………………8分(Ⅱ) 依题意,连续摸4次球可视作4次独立重复试验,且每次摸得红球的概率均为32,则η )32,4(B ……………………………10分∴98)321(324=-⨯⨯=ηD . 故共取得红球次数η的方差为8.9……………………………13分17. (本小题满分13分)如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22,M 为BC 的中点.(Ⅰ)证明:AM ⊥PM ;(Ⅱ)求二面角P -AM -D 的大小; (Ⅲ)求点D 到平面AMP 的距离.解法1:(Ⅰ) 取CD 的中点E ,连结PE 、EM 、EA ∵△PCD 为正三角形∴PE ⊥CD ,PE=PDsin ∠PDE=2sin60°=3 ∵平面PCD ⊥平面ABCD∴PE ⊥平面ABCD …………………3分 ∵四边形ABCD 是矩形∴△ADE 、△ECM 、△ABM 均为直角三角形 由勾股定理可求得 EM=3,AM=6,AE=3 ∴222AE AMEM =+……………………………5分∴∠AME=90°∴AM ⊥PM ……………………………6分 (Ⅱ)由(Ⅰ)可知EM ⊥AM ,PM ⊥AM∴∠PME 是二面角P -AM -D 的平面角……………………………8分 ∴tan ∠PME=133==EM PE ∴∠PME=45°∴二面角P -AM -D 为45°; ……………………………10分 (Ⅲ)设D 点到平面PAM 的距离为d ,连结DM ,则PAM D ADM P V V --=……………………………11分MPDCBAEABCDPM∴d S PE S PAM ADM ⋅=⋅∆∆3131 而2221=⋅=∆CD AD S ADM在Rt PEM ∆中,由勾股定理可求得PM=6.132PAM S AM PM ∆∴=⋅=, 所以:d ⨯⨯=⨯⨯33132231,∴362=d . 即点D 到平面PAM 的距离为362.……………………………13分 解法2:(Ⅰ) ∵四边形ABCD 是矩形 ∴BC ⊥CD∵平面PCD ⊥平面ABCD∴BC ⊥平面PCD ……………………………2分 而PC ⊂平面PCD ∴BC ⊥PC 同理AD ⊥PD在Rt △PCM 中,PM=62)2(2222=+=+PC MC同理可求PA=32,AM=6 ∴222PA PMAM =+…………………………5分∴∠PMA=90°即PM ⊥AM ……………………6分 (Ⅱ)取CD 的中点E ,连结PE 、EM ∵△PCD 为正三角形∴PE ⊥CD ,PE=PDsin ∠PDE=2sin60°=3 ∵平面PCD ⊥平面ABCD ∴PE ⊥平面ABCD 由(Ⅰ) 可知PM ⊥AM ∴EM ⊥AMEABCDPM∴∠PME 是二面角P -AM -D 的平面角……………………………8分 ∴sin ∠PME=2263==PM PE ∴∠PME=45°∴二面角P -AM -D 为45°; ……………………………10分 (Ⅲ)同解法(Ⅰ)解法3:(Ⅰ) 以D 点为原点,分别以直线DA 、DC 为x 轴、y 轴,建立如图所示的空间直角坐标系D xyz -,依题意,可得),0,2,0(),3,1,0(),0,0,0(C P D )0,2,2(),0,0,22(M A ……2分∴)3,1,2()3,1,0()0,2,2(-=-=)0,2,2()0,0,22()0,2,2(-=-=AM …4分∴0)0,2,2()3,1,2(=-⋅-=⋅即AM PM ⊥,∴AM ⊥PM. ……………………………6分 (Ⅱ)设),,(z y x =,且⊥平面PAM ,则⎪⎩⎪⎨⎧=⋅=⋅0即⎪⎩⎪⎨⎧-⋅-⋅)0,2,2(),,()3,1,2(),,(z y x z y x ∴⎪⎩⎪⎨⎧=+-=-+022032y x z y x ⎪⎩⎪⎨⎧==yx yz 23取1=y ,得)3,1,2(=……………………………6分取)1,0,0(=,显然⊥平面ABCD∴2263||||==⋅=p n 结合图形可知,二面角P -AM -D 为45°;……………………………10分(Ⅲ) 设点D 到平面PAM 的距离为d ,由(Ⅱ)可知)3,1,2(=与平面PAM 垂直,则||n d =362)3(1)2(|)3,1,2()0,0,22(|222=++⋅. 即点D 到平面PAM 的距离为362.……………………………13分 18.(本题满分14分)已知函数()f x x b =+的图象与函数23)(2++=x x x g 的图象相切,记 ()()()F x f x g x =.(Ⅰ)求实数b 的值及函数()F x 的极值;(Ⅱ)若关于x 的方程k x F =)(恰有三个不等的实数根,求实数k 的取值范围. 解:(Ⅰ)依题意,令.1,321),()(-=+='='x x x g x f 故得∴函数()f x 的图象与函数()g x 的图象的切点为).0,1(- ……………2分 将切点坐标代入函数()f x x b =+可得 1=b . ……………5分 或:依题意得方程)()(x g x f =,即0222=-++b x x 有唯一实数解………2分故0)2(422=--=∆b ,即1=b …………………5分∴254)23)(1()(232+++=+++=x x x x x x x F ,故)35)(1(3583)(22++=++='x x x x x F , 令0)(='x F ,解得1-=x ,或35-=x . ………………………8分 列表如下 :从上表可知)(x F 在35-=x 处取得极大值274,在1-=x 处取得极小值. ……10分(Ⅱ)由(Ⅰ)可知函数)(x F y =大致图象如下图所示.……………………………12分作函数k y =的图象,当)(x F y =的图象与函数k y =的图象有三个交点时, 关于x 的方程k x F =)(恰有三个不等的实数根.结合图形可知:)274,0(∈k ……………………………14分 19.(本题满分13分)已知椭圆221:36(0)x c y t t+=>的两条准线与双曲线222:536c x y -=的两条准线所围成的四边形之面积为直线l 与双曲线2c 的右支相交于,P Q 两点(其中点P 在第一象限),线段OP 与椭圆1c 交于点,A O 为坐标原点(如图所示).(I)求实数t的值;(II)若3OP OA=⋅,PAQ∆的面积26S=-⋅求直线l的方程.(I)解:由题意知椭圆221:36(0)xc y tt+=>上,0 1.t∴<<……1分椭圆1c的两条准线的方程为y=y==……3分双曲线222:536c x y-=的两条准线的方程为x=x=,这两条准线相…………4分上述四条准线所围成的四边形是矩形, =1.5t=故实数t的值是15.……………………………5分(II)设(,),A m n由3OP OA=⋅及P在第一象限得(3,3),0,0.P m n m n>>12,,A c P c∈∈∴2222536,54,m n m n+=-=解得2,4,m n==即(2,4),(6,12).A P……………………………8分设(,),Q x y则22536.x y-=①由26tan,S PAQ=-∠得1sin26tan2AP AQ PAQ PAQ⋅⋅∠=-∠,52AP AQ∴⋅=-,即(4,8)(2,4)52,230.x y x y⋅--=-++=②……………………………10分联解① ②得5119319x y ⎧=-⎪⎪⎨⎪=-⎪⎩,或3.3x y =⎧⎨=-⎩因点Q 在双曲线2c 的右支,故点Q 的坐标为(3,3)-. ……………………11分 由(6,12),P (3,3)Q -得直线l 的方程为33,12363y x +-=+-即5180.x y --= ……………………13分 20.(本题满分14分)已知数列{}n a 的前n 和n S 满足:11,S =-121(),n n S S n N *++=-∈数列{}n b 的通项公式为34().n b n n N *=-∈ (I )求数列{}n a 的通项公式;(II )试比较n a 与n b 的大小,并加以证明;(III )是否存在圆心在x 轴上的圆C 及互不相等的正整数n m k 、、,使得三点(,),(,),(,)n n n m m m k k k A b a A b a A b a 落在圆C 上?说明理由.解:(I )121(),n n S S n N *++=-∈12121,21(),n n n n S S S S n N *+++∴+=-+=-∈两式相减得212120,2().n n n n a a a a n N *+++++==-∈…………………………2分 又111,a S ==-211221231,2.S S a a a a +=+=-=-111,2(),n n a a a n N *+∴=-=-∈即数列{}n a 是首项为1,-公比为2-的等比数列,其通项公式是1(2)().n n a n N -*=--∈ ……………………………4分另解一:111,21(),n n S S S n N *+=-+=-∈111211,2()(),3333n n S S S n N *+∴+=-+=-+∈即数列13n S ⎧⎫+⎨⎬⎩⎭是首项为2,3-公比为2-的等比数列,其通项公式是1(2)().33nn S n N *-+=∈ (2)分当2n ≥时, 111(2)1(2)1(2),3333n n n n n n a S S ---⎡⎤⎡⎤--=-=---=--⎢⎥⎢⎥⎣⎦⎣⎦ 又111,(2)().n n a a n N -*∴=-∴=--∈ ……………………………4分 (II )(1)1122441,1;2,2;8,8.a b a b a b =-=-====∴当1,2,4n =时,.n n a b = ……………………………6分(2)当21()n k k N *=+∈时, 22121(2)0,610,.k k k n n a b k a b ++=--<=->∴<……………………………7分(3)当2(,3)n k k N k *=∈≥时,252521425012222(11)16()3264,64,k k k k k k a C C k b k ----==⋅+≥+=-=- 2660180,n n a b k ∴-≥-≥>即.n n a b > ……………………………9分(III )不存在圆心在x 轴上的圆C 及互不相等的正整数n m k 、、,使得三点,,n m k A A A 落在圆C 上. …………10分假设存在圆心在x 轴上的圆C 及互不相等的正整数n m k 、、,使得三点,,n m kA A A 即11(34,(2)),(34,(2)),n n n m A n A m --------1(34,(2))k k A k ----落在圆C 上.不妨设,n m k >>设圆C 的方程为:220x y Dx F +++=. 从而21924164(34)0n n n n D F --+++-+= ①21924164(34)0m m m m D F --+++-+= ②21924164(34)0k k k k D F --+++-+= ③由①-②, ②-③得119()()24()(44)3()0n m n m n m n m n m D --+---+-+-=119()()24()(44)3()0m k m k m k m k m k D --+---+-+-=即11449()2430n m n m D n m---+-++=- ④ 11449()2430m k m k D m k---+-++=- ⑤由④-⑤得111144449()0n m m k n k n m m k-------+-=--整理得14449()()()()()0()()k n k m kn k m k n k n m n m m k n k m k ---⎡⎤-+---+-=⎢⎥----⎣⎦,441,.n k m kn m k n k m k-->>≥∴<-- (12)分作函数4()(1),x f x x x =≥由224ln 444(ln 41)()0(1),x x x x x f x x x x ⋅-⋅-'==>≥ 知函数4()(1)xf x x x=≥是增函数. 441,1,,n k m kn m k n k m k n k m k-->>≥∴->-≥>--产生矛盾. 故不存在圆心在x 轴上的圆C 及互不相等的正整数n m k 、、,使得三点,,n m kA A A 落在圆C 上. ……………………………14分。