2018年深圳市龙岗区中考数学一模试卷-有答案
- 格式:docx
- 大小:172.62 KB
- 文档页数:11
2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
龙岗区2018-2019学年第二学期数学质量监测试题参考答案一、选择题二、填空题(每小题3分,共12分)三、解答题17. 解:原式=2142-+⨯-……………………………4分(每个知识点各1分)=1……………………………5分18. 解:原式=242111x xx x x⎛⎫+-÷⎪---⎝⎭……………………………1分=24+211 x xx x-÷--=(2)(2)112x x xx x+---+……………………………3分=2x-,……………………………4分当=2x时,原式=2-2=0. ……………………………6分19.解:(1)m= 50,n= 30%,文学所对人数为20;………………………3分(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是___72___度;………5分(3)由题意可知:15900=27050⨯(名)………………………………………6分答:估计该校900名学生中有270名学生最喜欢科普类图书。
………………7分20. 解:(1)∵DE∥AC,CE∥BD,∴四边形OCED是□ .…………………2分∵矩形ABCD,∴OC =OD , …………………3分 ∴四边形OCED 是菱形. …………………4分 (2)∵∠AOD =120°∴∠COD =60° …………………5分 ∵菱形OCED ∴OC =CE =ED =DO∴△OCD 、△CDE 均为等边△∴OB =OD = DE = CD = 2 …………………6分 作EF ⊥BD 交BD 延长线于点F , ∵∠ODE =60°+60°=120° ∴∠EDF =60°∴DF =1,EF…………………7分∴tan ∠. …………………8分21.解:(1)设甲种商品的销售单价是x 元,乙种商品的单价为y 元.根据题意得: 23y3x 21500x y =⎧⎨-=⎩…………………2分解得: =900=600x y ⎧⎨⎩ …………………3分答:甲种商品的销售单价是900元,乙种商品的单价为600元。
深圳市2018 年中考数学模拟测试卷考试时间:100 分钟;总分100 分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题)一、单选题1.﹣2 的相反数是()1 1A. ﹣B.C. ﹣2D. 22 22.如图是由6 个大小相同的小正方体组成的几何体,它的主视图是()A. B.C. D.3.数字150000 用科学记数法表示为()A. 1.5×104B. 0.15×106C. 15×104D. 1.5×1054.下列图形中,既是轴对称图形,又是中心对称图形的是( )(A (B (C (D5.如图,分别过矩形ABCD 的顶点A、D 作直线l1、l2,使l1∥l2,l2与边BC 交于点P,若∠1=38°,则∠BPD 为()A. 162°B. 152°C. 142°D. 128°3 36. 若不等式组 的解集为﹣1<x <1,则(a ﹣3)(b+3)的值为( )A. 1B. ﹣1C. 2D. ﹣27. 某商场将一种商品 A 按标价的 9 折出售(即优惠 10%)仍可获利润 10%,若商品 A 的标价为 33 元,则该商品的进价为()A. 27 元B. 29.7 元C. 30.2 元D. 31 元8. 尺规作图作 AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、 D ,再分别以点C 、 D 为圆心,以大于1CD 长为半径画弧,两弧交于点2P ,作射线OP 由作法得△O ≌C △PODP 的根据是()A .SASB .ASAC .AASD .SSS9. 下列说法中正确的是()A. 原命题是真命题,则它的逆命题不一定是真命题B. 原命题是真命题,则它的逆命题不是命题C. 每个定理都有逆定理D.只有真命题才有逆命题10. 根据下表中的信息解决问题:若该组数据的中位数不大于 38,则符合条件的正整数 a 的取值共有( )A. 3 个B. 4 个C. 5 个D. 6 个11. 如图,在 2×2 正方形网格中,以格点为顶点的△ABC,则 sin∠CAB=A.3B.C. 10D. 3255 1012. 如图,在矩形 ABCD 中,AB <BC ,E 为 CD 边的中点,将△ADE 绕点 E 顺时针旋转180°,点 D 的对应点为 C ,点 A 的对应点为 F ,过点 E 作 ME ⊥AF 交 BC 于点 M ,连接 AM 、BD 交于点 N ,现有下列结论:①AM =AD +MC ;②AM =DE +BM ;③DE 2=AD •CM ;④点 N 为△ABM 的外心.其中正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个第 II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.因式分解:2a2-4a +2= .14.某中学举行演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,九年级同学获得第一名的概率是.a b15.阅读理解:我们把c d1 3a b称作二阶行列式,规定它的运算法则为c d2 3 -x=ad -bc ,例如=1⨯ 4 - 2 ⨯ 3 =-2 ,如果24 1>0 ,则x 的取值范围是x16.如图,在Rt△ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交BC 于D 点,E,F 分别是AD,AC 上的动点,则CE+EF 的最小值为三、解答题17.计算:.先化简,再求值:⎛x -1+3 - 3x ⎪⎫x2 -x ,其中x 的值从不等式组18.18. x -1 ÷x +1⎝⎭ 2 -x ≤ 3{2x - 4 < 1的整数解中选取.19.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4 个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600 名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3 人中,有2 名女生,1 名男生,老师想从这3 人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.20.要建一个面积为150m2的长方形养鸡场,为了节约材料,•鸡场的一边靠着原有的一堵墙,墙长为am,另三边用竹篱笆围成,如果篱笆的长为35m.(1)求鸡场的长与宽各是多少?(2)题中墙的长度a 对解题有什么作用.621.直线y=kx+b 与反比例函数y= (x>0)的图象分别交于点A(m,3)和点xB(6,n),与坐标轴分别交于点C 和点D.(1)求直线AB 的解析式;(2)若点P 是x 轴上一动点,当△COD 与△ADP 相似时,求点P 的坐标.22.如图,四边形ABCD 内接于圆O,∠BAD=90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E,过AC 的三等分点F(靠近点C)作CE 的平行线交AB 于点G,连结CG.(1)求证:AB=CD;(2)求证:CD2=BE•BC;(3)当CG=,BE= 时,求CD 的长.23.如图,已知抛物线经过原点O 和x 轴上另一点A,它的对称轴x=2 与x 轴交于点C,直线y=﹣2x﹣1 经过抛物线上一点B(﹣2,m),且与y 轴、直线x=2 分别交于点D、E.(1)求m 的值及该抛物线对应的函数关系式;(2)求证:①CB=CE;②D 是BE 的中点;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P 的坐标;若不存在,请说明理由.参考答案1.D【解析】解:﹣2 的相反数是2.故选D.2.C【解析】解:该主视图是:底层是3 个正方形横放,右上角有一个正方形,故选C.3.D【解析】解:数字150000 用科学记数法表示为 1.5×105.故选D.4.D【解析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可。
2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。
x=2B。
x=-2C。
x1=2,x2=-2D。
x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。
(x-2)^2+7B。
(x-2)^2-1C。
(x+2)^2+7D。
(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。
变小B。
变大C。
不变D。
以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。
5/4B。
4/5C。
3/5D。
4/37.下列性质中正方形具有而矩形没有的是()A。
对角线互相平分B。
对角线相等C。
对角线互相垂直D。
四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。
12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。
13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。
15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。
龙岗区2018-2019学年第二学期质量监测试题九年级数学注意事项:1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共23个小题,考试时间90分钟,满分100分。
一、选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)。
1.-5的倒数是( )A .-5B .5C .D . 2 据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为( )A .37×105B .3.7×105C .3.7×106D .0.37×1073.下列运算正确的是( )A .2325a a a += B .2222a b a b a b -= C .333a b ab += D .523a a a -= 4. 下列图案中既是轴对称又是中心对称图形的是( )A .B .C .D . 第5题图5. 如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=36°,那么∠2=( )A .54°B .56°C .44°D .46°6.在六张卡片上分别写有13,π,1.5 , 5, 0, 2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16 B . 13 C . 12 D . 567.数据2、5、6、0、6、1、8的中位数是( )A .8B .6C .5D .08.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )6004806004806004806004801515-9.下列命题中哪一个是假命题...( ) A .8的立方根是2 B .在函数y =3x 的图象中,y 随x 增大而增大 C .菱形的对角线相等且平分 D .在同圆中,相等的圆心角所对的弧相等10. 如图,在△ABC 中,∠C =90°,以点B 为圆心,以适当长为半径画弧交AB 、BC 于P 、Q 两点,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线BN 交AC 于点D . 若AB =10,AC =8,则CD 的长是( )A .2B .2.4C .3D .411. 如图,抛物线265(0)y ax ax a a =-+>与x 轴交于A 、B 两点,顶点为C 点. 以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .(2,-2) B .(4,-5) C .(3,-5) D .(3,-4)12. 如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)ky k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4 C.D .6第10题图 第11题图二、填空题(本部分共4小题,每小题3分,共12分,请将正确的答案填在答题卡上)。
深圳2018年中考第一次模拟考试试题一、选择题(本大题共12小题,每小题3分,共36分) 1、2018的相反数是( )A 、-2018B 、2018C 、20181 D 、20181- 2、下列各图中,可以是一个正方体平面展开图的是( )3、下列计算结果正确的是( )A 、632a a a =⋅ B 、5322a a a =+ C 、()2222b ab a b a ++=+ D 、()232ab ab ab b a =÷+ 4、据报道,我国自行研发的第一艘001A 型航空母舰吨位达到6.5万吨,造价30亿美元,用科学记数法表示6.5万吨为( )A 、4105.6⨯吨 B 、41065.0⨯吨 C 、31065.0⨯吨 D 、3105.6⨯吨 5、下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A 、1个B 、2个C 、3个D 、4个6、如图,一只蚂蚁以均匀的速度爬台阶54321A A A A A →→→→爬行,那么蚂蚁爬行的高度h 随时间t 的变化的图像大致是( )7、我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材。
全班50名同学筹款情况如下表。
则该班同学筹款金额的众数和中位数分别是( )A 、11,13B 、13,11C 、20,25D 、25,208、如图,在ACB Rt ∆中,∠ACB=90°,AC=32,以点B 为圆心,BC 长为半径做弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积为( )A 、π3232-B 、π3234-C 、π3432-D 、π32 9、如图所示,在ACB Rt ∆中,∠ACB=90°,BC=21AC ,以点B 为圆心,BC 长为半径做弧,交AB 于点D ,再以点A 为圆心,AD 长为半径画弧,交AC 于点E ,下列结论错误的是( ) A 、55=AB BC B 、215-=AC AE C 、253+=AC EC D 、552=AB AC第8题图第9题图第11题图第12题图10、下列说法正确的是()A、真命题的逆命题都是真命题B、在同圆或等圆中,同弦或等弦所对的圆周角相等C、等腰三角形的高线、中线、角平分线互相重合D、对角线相等且互相平分的四边形是矩形11、已知二次函数cbxaxy++=2的图像如图所示,它与x轴的两个交点分别是(-1,0),(3,0),对于下列命题:①02=-ab;②0<abc;③0<++cba;④08>+ca.其中正确的有()A、3个B、2个C、1个D、0个12、如图,在矩形ABCD中,E是AD的中点,BE⊥AC,垂足为F,连接DF,下列四个结论:①AEF∆∽CAB∆;②5.0tan=∠CAD;③DF=CD;④若AF=1,则BF=2。
2018-2019学年第一学期第一次学情调研九年级数学参考答案及评分标准(时间:90分钟 满分:100分)一、选择题(每小题3分)二、填空题(每小题3分)13.x=4或-4 14、m >﹣1且m ≠0 15、x (x ﹣1)=1035 16、___或10___ 三、解答题(共52分)17.解下列方程(共8分,每小题4分)(1)x 2=2x +35解:整理得:x 2﹣2x ﹣35=0, 即(x ﹣7)(x +5)=0, 所以 x ﹣7=0,x +5=0,所以 x 1=7,x 2=﹣5.………….4分(2)08922=+-x x解: a=2 b=-9 c=8△ =b 2-4ac=(-9)2-4×2×8=17>0x 1=aac b b 242-+- 2217)9(2422⨯---=---=a ac b b x =4179- ………….4分18.(5分)解:设小路的宽为x m .由题意得:(40-x )(32-x )=1 140. ………….2分解得x 1=2,x 2=70(不合题意,舍去).………….4分 ∴小路的宽为2 m .答:小路的宽为2 m ………….5分19.(6分)解:(1)证明:∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形;………….3分(2)∵∠ACB=30°,∴∠DCO=90°﹣30°=60°.又∵OD=OC,∴△OCD是等边三角形.又菱形OCED的面积═△OCD的面积的2倍,∴即18=2×,………….4分∴OC2=36,∴OC=6.∴AC=12.………….6分20.(8分)(1)证明:∵AB=AC,∴∠B=∠ACB,又∵在▱ABDE中,AB=DE,AB∥DE,∴∠B=∠EDC=∠ACB,AC=DE,在△ADC和△ECD中,,∴△ADC≌△ECD(SAS).………….3分(2)点D在BC的中点上时,四边形ADCE是矩形,………….4分解:∵四边形ABDE是平行四边形,∴AE=BD,AE∥BC,∵D为边长中点,∴BD=CD,∴AE=CD,AE∥CD,∴四边形ADCE是平行四边形,∵△ADC≌△ECD,∴AC=DE,∴四边形ADCE是矩形,即点D在BC的中点上时,四边形ADCE是矩形.………….8分21.(8分)解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元,故答案为:(20+2x),(40﹣x);………….2分(2)根据题意,得:(20+2x)(40﹣x)=1200………….4分解得:x1=20,x2=10………….5分答:每件童装降价20元或10元,平均每天赢利1200元;………….6分(3)不能,∵(20+2x)(40﹣x)=2000 此方程无解,故不可能做到平均每天盈利2000元.………….8分22.(8分)解:(1)BD=CE,………….1分理由是:∵△ABE和△ACD是等边三角形,∴AE=AB,AC=AD,∠BAE=∠CAD=60°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD(SAS)∴BD=CE;………….3分(2)如图2,连接EB、EC,∵四边形ACMD和四边形ABNE是正方形,∴AE=AB,AD=AC,∠EAB=∠DAC=90°∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD,∴BD=CE.∵∠EBA=∠ABC=45°∴∠EBC=90°∵AE=AB=5,∠EAB=90°,∴BE=5,∵BC=3∴EC===,∴BD=EC=;………….6分(3)如图3,在线段AC的右侧过点A作AE⊥AB于点A,交BC的延长线于点E,连接BE.∵AE⊥AB,∴∠BAE=90°,又∵∠ABC=45°,∴∠E=∠ABC=45°,∴AE=AB=5,BE=5,又∵∠BAE=∠DAC=90°,∴∠BAE﹣∠BAC=∠DAC﹣∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD,∴BD=CE,∵BC=3,∴BD=CE=(5﹣3)cm.………….8分23.(9分)解:(1)如图1,过A作AM⊥DC于M,∵在四边形ABCD中,AB∥CD,∠BCD=90°,∴AM∥BC,∴四边形AMCB是矩形,∵AB=AD=10cm,BC=8cm,∴AM=BC=8cm,CM=AB=10cm,在Rt△AMD中,由勾股定理得:DM=6cm,CD=DM+CM=10cm+6cm=16cm;………….3分(2)如图2,当四边形PBQD是平行四边形时,PB=DQ,即10﹣3t=2t,解得t=2,此时DQ=4,CQ=12,B Q==,所以C□PBQD=2(BQ+DQ)=;即四边形PBQD的周长是(8+8)cm;………….6分(3)当P在AB上时,如图3,即,S△BPQ=BP•BC=4(10﹣3t)=20,解得;当P在BC上时,如图4,即,S△BPQ=BP•CQ=(3t﹣10)(16﹣2t)=20,、此方程没有实数解;当P在CD上时:若点P在点Q的右侧,如图5,即,S△BPQ=PQ•BC=4(34﹣5t)=20,解得,不合题意,应舍去;若P在Q的左侧,如图6,即,S△BPQ=PQ•BC=4(5t﹣34)=20,解得;综上所述,当秒或秒时,△BPQ的面积为20cm2.………….9分。
2018年广东省深圳市中考数学突破模拟试卷(一)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,恰有一个是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应的位置上)1.(3分)已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.302.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.3.(3分)某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米4.(3分)若,,则x的取值范围()A.B.或C.或D.以上答案都不对5.(3分)某家庭搬进新居后又添置了新的电冰箱,电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:日期 1日 2日 3日 4日 5日 6日 7日 8日电表显示度数 (度) 115 118 122 127133136 140 143这个家庭六月份用电度数为( )A .105度B .108.5度C .120度D .124度6.(3分)二次函数y=﹣2x 2+4x +1的图象如何移动就得到y=﹣2x 2的图象( )A .向左移动1个单位,向上移动3个单位B .向右移动1个单位,向上移动3个单位C .向左移动1个单位,向下移动3个单位D .向右移动1个单位,向下移动3个单位7.(3分)如图所示,在平行四边形ABCD 中,CE 是∠DCB 的平分线,且交AB 于E ,DB 与CE 相交于O ,已知AB=6,BC=4,则等于( )A .B .C .D .不一定8.(3分)如图:二次函数y=ax 2+bx +2的图象与x 轴交于A 、B 两点,与y 轴交于C 点,若AC ⊥BC ,则a 的值为( )A .﹣B .﹣C .﹣1D .﹣29.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x +1)=1035B .x (x ﹣1)=1035×2C .x (x ﹣1)=1035D .2x (x +1)=103510.(3分)如图,下列各坐标对应点正好在图中直线l上的是()A.(0,2) B.(0,4) C.(1,2) D.(2,0)11.(3分)如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和点B(b,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④若AB>2,则m<﹣1.其中正确判断的序号是()A.①B.②C.③D.④12.(3分)如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是()A.DE=1 B.tan∠AFO=C.AF= D.四边形AFCE的面积为二、填空题(共4小题)13.(3分)有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正确的是.14.(3分)如图:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,…,按此规律得到四边形A n B n C n D n.若矩形A1B1C1D1的面积为24,那么四边形A n B n C n D n的面积为.15.(3分)如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=.16.(3分)已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.三、解答题(共7小题)17.计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.18.某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.19.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.20.如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?22.如图,在▱ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.23.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2018年广东省深圳市中考数学突破模拟试卷(一)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,恰有一个是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应的位置上)1.(3分)已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.30【解答】解:方法一:方程x2﹣2x﹣4=0解是x=,即x=1±,∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴①当α=1+,β=1﹣时,α3+8β+6,=(1+)3+8(1﹣)+6,=16+8+8﹣8+6,=30;②当α=1﹣,β=1+时,α3+8β+6,=(1﹣)3+8(1+)+6,=16﹣8+8+8+6,=30.方法二:∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴α+β=2,α2﹣2α﹣4=0,∴α2=2α+4∴α3+8β+6=α•α2+8β+6=α•(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8(α+β)+14=30,故选:D.2.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【解答】解:A、左视图是两个正方形,俯视图是三个正方形,不符合题意;B、左视图与俯视图不同,不符合题意;C、左视图与俯视图相同,符合题意;D左视图与俯视图不同,不符合题意,故选:C.3.(3分)某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.4.(3分)若,,则x的取值范围()A.B.或C.或D.以上答案都不对【解答】解:作出函数y=与y=2、y=﹣3的图象,由图象可知交点为(,2),(﹣,﹣3),∴当或时,有,.故选:C.5.(3分)某家庭搬进新居后又添置了新的电冰箱,电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:日期 1日 2日 3日 4日 5日 6日 7日 8日电表显示度数 (度) 115 118 122 127133136 140 143 这个家庭六月份用电度数为( )A .105度B .108.5度C .120度D .124度【解答】解:这七天一共用电的度数=(143﹣115)÷7=4,月份用电度数=4×30=120(度),故选C .6.(3分)二次函数y=﹣2x 2+4x +1的图象如何移动就得到y=﹣2x 2的图象( )A .向左移动1个单位,向上移动3个单位B .向右移动1个单位,向上移动3个单位C .向左移动1个单位,向下移动3个单位D .向右移动1个单位,向下移动3个单位【解答】解:二次函数y=﹣2x 2+4x +1的顶点坐标为(1,3),y=﹣2x 2的顶点坐标为(0,0),∴向左移动1个单位,向下移动3个单位.故选:C .7.(3分)如图所示,在平行四边形ABCD 中,CE 是∠DCB 的平分线,且交AB 于E ,DB 与CE 相交于O ,已知AB=6,BC=4,则等于( )A .B .C .D .不一定【解答】解:∵CE 是∠DCB 的平分线,DC ∥AB∴∠DCO=∠BCE ,∠DCO=∠BEC∴∠BEC=∠BCE∴BE=BC=4∵DC∥AB∴△DOC∽△BOE∴OB:OD=BE:CD=2:3∴=故选:B.8.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣ B.﹣ C.﹣1 D.﹣2【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.9.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.10.(3分)如图,下列各坐标对应点正好在图中直线l上的是()A.(0,2) B.(0,4) C.(1,2) D.(2,0)【解答】解:设直线l解析式为y=kx+b,将点(2,1)(4,0)代入,得,解得,∴y=﹣x+2令x=0,得y=2;令x=1,得y=1;令x=2,得y=1.故选:A.11.(3分)如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和点B(b,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④若AB>2,则m<﹣1.其中正确判断的序号是()A.①B.②C.③D.④【解答】解:当a<x<b时,y>0,所以①错误;抛物线的对称轴为直线x=﹣=1,而A(﹣1,0),所以B点坐标为(3,0),所以②错误;因为x1<1<x2,且x1+x2>2,则点Q到直线x=1的距离比点P到直线x=1的距离大,所以y1>y2,所以③正确;因为a+b=2,ab=﹣(m+1),所以AB===>2,解得m>﹣1,所以④错误.故选:C.12.(3分)如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是()A.DE=1 B.tan∠AFO=C.AF= D.四边形AFCE的面积为【解答】解:∵四边形ABCD是正方形,∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,∴OD=OB=OA=,∠ABF=∠ADE=135°,在Rt△AEO中,EO===,∴DE=,故A错误.∵∠EAF=135°,∠BAD=90°,∴∠BAF+∠DAE=45°,∵∠ADO=∠DAE+∠AED=45°,∴∠BAF=∠AED,∴△ABF∽△EDA,∴=,∴=,∴BF=,在Rt△AOF中,AF===,故C正确,tan∠AFO===,故B错误,=•AC•EF=××=,故D错误,∴S四边形AECF故选:C.二、填空题(共4小题)13.(3分)有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正确的是①②④.【解答】解:①由a=b,得5﹣2a=5﹣2b,正确;②由a=b,得ac=bc,正确;③由a=b(c≠0),得=,不正确;④由,得3a=2b,正确;⑤由a2=b2,得a=b或a=﹣b,不正确.故答案为:①②④14.(3分)如图:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,…,按此规律得到四边形A n B n C n D n.若矩形A1B1C1D1的面积为24,那么四边形A n B n C n D n的面积为.【解答】解:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为矩形A1B1C1D1面积的一半,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,故新四边形与原四边形的面积的一半,则四边形A n B n C n D n面积为矩形A1B1C1D1面积的,∴四边形A n B n C n D n面积=的×24=,故答案为.15.(3分)如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=2.【解答】解:在BC上取一点F,使BF=CD=3,连接AF,∴CF=BC﹣BF=5﹣3=2,过F作FG⊥AB于G,∵tanB==,设FG=x,BG=2x,则BF=x,∴x=3,x=,即FG=,延长AC至E,连接BD,∵∠BCA=90°﹣∠BCD,∴2∠BCA+∠BCD=180°,∵∠BCA+∠BCD+∠DCE=180°,∴∠BCA=∠DCE,∵∠ABC=∠ADC,∴A、B、D、C四点共圆,∴∠DCE=∠ABD,∠BCA=∠ADB,∴∠ABD=∠ADB,∴AB=AD,在△ABF和△ADC中,∵,∴△ABF≌△ADC(SAS),∴AF=AC,过A作AH⊥BC于H,∴FH=HC=FC=1,由勾股定理得:AB2=BH2+AH2=42+AH2①,S△ABF=AB•GF=BF•AH,∴AB•=3AH,∴AH=,∴AH2=②,把②代入①得:AB2=16+,解得:AB=,∵AB>0,∴AD=AB=2,故答案为:2.16.(3分)已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为17.【解答】解:连结AD,过D点作DG∥CM.∵=,△AOC的面积是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=17.故答案为:17.三、解答题(共7小题)17.计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.【解答】解:原式=+1﹣2×+=.18.某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.【解答】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是=.19.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.【解答】解:(1)过P作PC⊥y轴于C,∵P(,n),∴OC=n,PC=,∵tan∠BOP=,∴n=4,∴P(,4),设反比例函数的解析式为y=,∴a=4,∴反比例函数的解析式为y=,∴Q(4,),把P(,4),Q(4,)代入y=kx+b中得,,∴,∴直线的函数表达式为y=﹣x+;(2)过Q作QD⊥y轴于D,=S四边形PCDQ=×(+4)×(4﹣)=;则S△POQ(3)由图象知,当﹣x+>时,或x<020.如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?【解答】解:过P作PB⊥AM于B,在Rt△APB中,∵∠PAB=30°,∴PB=AP=×32=16海里,∵16<16,故轮船有触礁危险.为了安全,应该变航行方向,并且保证点P到航线的距离不小于暗礁的半径16海里,即这个距离至少为16海里,设安全航向为AC,作PD⊥AC于点D,由题意得,AP=32海里,PD=16海里,∵sin∠PAC===,∴在Rt△PAD中,∠PAC=45°,∴∠BAC=∠PAC﹣∠PAB=45°﹣30°=15°.答:轮船自A处开始至少沿南偏东75°度方向航行,才能安全通过这一海域.21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【解答】解:由题意得:(1)50+x﹣40=x+10(元)(3分)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3分)(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)22.如图,在▱ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,∵△EAC是等边三角形,∴EA=EC,∴EO⊥AC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,AC=8,∴AO=CO=4,DO=BO,在Rt△ABO中,BO==3,∴DO=BO=3,在Rt△EAO中,EO==4,∴ED=EO﹣DO=4﹣3.23.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。
(1)广东省深圳市龙岗区2018届九年级数学中考一模试卷一、单选题1.的倒数是)A. 2B.C.D.2.在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的有)A. 0个B. 1个C. 2个D. 3个3.2017年龙岗区GDP总量实现历史性突破,生产总值达386000000000元,首次跃居全市各区第二将3860000000000用科学记数法表示为)A. B. C. D.4.观察下列图形,其中既是轴对称又是中心对称图形的是)A. B. C. D.5.下列计算正确的是)A. B. C. D.6.在中,,如果,那么的值是)A. B. C. D. 37.如图:能判断的条件是)A. B. C. D.8.下列事件中,属于必然事件的是)A. 三角形的外心到三边的距离相等B. 某射击运动员射击一次,命中靶心C. 任意画一个三角形,其内角和是D. 抛一枚硬币,落地后正面朝上9.一元二次方程的根是()A.,B.,C.,D.,10.抛物线与轴的交点的坐标是()A. B. C. D.11.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE 的长等于()A. 4cmB. 5cmC. 6cmD. 8cm12.二次函数的图象如图,下列四个结论:;;关于x的一元二次方程没有实数根;为常数.其中正确结论的个数是)A. 4个B. 3个C. 2个D. 1个二、填空题13.已知,则=________.14.在实数范围内定义一种运算“*”,其规则为,根据这个规则求方程的解为________.15.将一次函数的图象向下平移3个单位长度,相应的函数表达式为________.16.如图,已知反比例函数的图象经过点,在该图象上找一点P,使,则点P的坐标为________.三、解答题17. .18.计算:先化简,再求值:,其中.19.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡” 某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为,,,,现对,,,统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出所在扇形的圆心角的度数;(3)现从,中各选出一人进行座谈,若中有一名女生,中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.20.六一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?21.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是和,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由;(2)求信号发射点的深度结果精确到1m,参考数据:,22.如图,的半径,AB是弦,直线EF经过点B,于点C,.(1)求证:EF是的切线;(2)若,求AB的长;(3)在的条件下,求图中阴影部分的面积.23.如图,在平面直角坐标系中,抛物线的图象经过点,交x轴于点A、点在B点左侧,顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将沿直线BC对折,点A的对称点为,试求的坐标;(3)抛物线的对称轴上是否存在点P,使?若存在,求出点P的坐标;若不存在,请说明理由.广东省深圳市龙岗区2018届九年级数学中考一模试卷答案解析部分一、单选题1.【答案】D2.【答案】B3.【答案】C4.【答案】D5.【答案】C6.【答案】A7.【答案】A8.【答案】C9.【答案】D.10.【答案】D11.【答案】C12.【答案】D二、填空题13.【答案】14.【答案】x1=x2=515.【答案】16.【答案】三、解答题17.【答案】解:原式,,.18. 【答案】解:原式=.当时,原式.19.【答案】(1)解:总数人数为:人(2)解:的人数为人补全图形,如图所示所在圆心角度数为:(3)解:画出树状图如下:故所求概率为:20.【答案】(1)解:设A品牌服装每套进价为x元,则B品牌服装每套进价为元,由题意得:,解得:,经检验:是原分式方程的解,,答:A、B两种品牌服装每套进价分别为100元、75元;(2)解:设购进A品牌的服装a套,则购进B品牌服装套,由题意得:,解得:,答:至少购进A品牌服装的数量是17套.21.【答案】(1)解:由题意可得CD⊥AD,∠BCA=30°CB=BA=400米,在Rt△CDB中又含30°角,得DB= CB=200米可以知道BD= AB, ,(2)解:由勾股定理,米,∴点C的垂直深度CD是346米.22.【答案】(1)证明:,,,,,,,是的切线;(2)解:过点O作于点D,则,,∽,,即,;(3)解:,为等边三角形,,,,,∴==23.【答案】(1)解:把C(0,2)代入y=ax2-3ax-4a得-4a=2,解得a=−.所以抛物线的解析式为y=−x2+ x+2.令−x2+ x+2=0,可得:x1=-1,x2=4.所以A(-1,0),B(4,0).(2)解:如图2,作A'H⊥x轴于H,因为,且∠AOC=∠COB=90°,所以△AOC∽△COB,所以∠ACO=∠CBO,可得∠ACB=∠OBC+∠BCO=90°,由A'H∥OC,AC=A'C得OH=OA=1,A'H=2OC=4;所以A'(1,4);(3)解:分两种情况:①如图3,以AB为直径作⊙M,⊙M交抛物线的对称轴于P(BC的下方),由圆周角定理得∠CPB=∠CAB,易得:MP= AB.所以P(,−).②如图4,类比第(2)小题的背景将△ABC沿直线BC对折,(1)2018广东省深圳市龙岗区届九年级数学中考一模试卷点A的对称点为A',以A'B为直径作⊙M',⊙M'交抛物线的对称轴于P'(BC的上方),则∠CP2B=∠CA'B=∠CAB.作M'E⊥A'H于E,交对称轴于F.则M'E= BH= ,EF= −1= .所以M'F= −=1.在Rt△M'P'F中,P'F= = ,所以P'M=2+ .所以P'(,2+ ).综上所述,P的坐标为(,−)或(,2+ ).11/ 11。
2018年广东省深圳市龙岗区中考数学一模试卷一、选择题1.的倒数是A. 2B.C.D.2.在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的有A. 0个B. 1个C. 2个D. 3个3.2017年龙岗区GDP总量实现历史性突破,生产总值达386000000000元,首次跃居全市各区第二将3860000000000用科学记数法表示为A. B. C. D.4.观察下列图形,其中既是轴对称又是中心对称图形的是A. B. C. D.5.下列计算正确的是A. B. C. D.6.在中,,如果,那么的值是A. B. C. D. 37.如图:能判断的条件是A.B.C.D.8.下列事件中,属于必然事件的是A. 三角形的外心到三边的距离相等B. 某射击运动员射击一次,命中靶心C. 任意画一个三角形,其内角和是D. 抛一枚硬币,落地后正面朝上9.一元二次方程的根是A. ,B. ,C. ,D. ,10.抛物线与y轴的交点的坐标是A. B. C. D.11.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于A. 4cmB. 5cmC. 6cmD. 8cm12.二次函数的图象如图,下列四个结论:;;关于x的一元二次方程没有实数根;为常数.其中正确结论的个数是A. 4个B. 3个C. 2个D. 1个二、填空题13.已知,则______.14.在实数范围内定义一种运算“”,其规则为,根据这个规则求方程的解为______.15.将一次函数的图象向下平移3个单位长度,相应的函数表达式为______.16.如图,已知反比例函数的图象经过点,在该图象上年找一点P,使,则点P的坐标为______.三、解答题17.如图,的半径,AB是弦,直线EF经过点B,于点C,.求证:EF是的切线;若,求AB的长;在的条件下,求图中阴影部分的面积.18.计算:.19.先化简,再求值:,其中.20.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为,,,,现对,,,统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出所在扇形的圆心角的度数;现从,中各选出一人进行座谈,若中有一名女生,中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.六一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.求A、B两种品牌服装每套进价分别为多少元?该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?22.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是和,若CD的长是点C到海平面的最短距离.问BD与AB有什么数量关系,试说明理由;求信号发射点的深度结果精确到1m,参考数据:,23.如图,在平面直角坐标系中,抛物线的图象经过点,交x轴于点A、点在B点左侧,顶点为D.求抛物线的解析式及点A、B的坐标;将沿直线BC对折,点A的对称点为,试求的坐标;抛物线的对称轴上是否存在点P,使?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析【答案】1. D2. B3. C4. D5. C6. A7. A8. C9. D10. D11. C12. D13.14.15.16.17. 证明:,,,,,,,是的切线;解:过点O作于点D,则,,∽ ,,即,;解:,为等边三角形,,,,,阴影部分四边形扇形扇形18. 解:原式,,.19. 解:原式.当时,原式.20. 解:总数人数为:人的人数为人补全图形,如图所示所在圆心角度数为:画出树状图如下:故所求概率为:21. 解:设A品牌服装每套进价为x元,则B品牌服装每套进价为元,由题意得:,解得:,经检验:是原分式方程的解,,答:A、B两种品牌服装每套进价分别为100元、75元;设购进A品牌的服装a套,则购进B品牌服装套,由题意得:,解得:,答:至少购进A品牌服装的数量是17套.22. 解:由图形可得,米,在中又含角,得米,可知,,由勾股定理,米,点C的垂直深度CD是346米.23. 解:把代入得,解得.所以抛物线的解析式为.令,可得:,.所以,.如图2,作轴于H,因为,且,所以 ∽ ,所以,可得,由,得,;所以;分两种情况:如图3,以AB为直径作,交抛物线的对称轴于的下方,由圆周角定理得,易得:所以如图4,类比第小题的背景将沿直线BC对折,点A的对称点为,以为直径作,交抛物线的对称轴于的上方,则.作于E,交对称轴于F.则,.所以.在中,,所以.所以综上所述,P的坐标为或【解析】1. 解:,的倒数是.故选:D.根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2. 解:在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的是球,故选:B.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到主视图、左视图和俯视图完全相同的选项即可.本题考查的是简单几何体的三视图,考查常见立体图形的三视图和学生的空间想象能力解决本题的关键是找到几何体的三视图,掌握完全相同的含义.3. 解:将3860000000000用科学记数法表示为,故选:C.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:A、不是中心对称图形,也不是轴对称图形,此选项不符合题意;B、不是轴对称图形,也不是中心对称图形,此选项不符合题意;C、不是中心对称图形,是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选:D.根据中心对称图形的定义旋转后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5. 解:A、,故原题计算错误;B、,故原题计算错误;C、,故原题计算正确;D、和不是同类项,故原题计算错误;故选:C.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.此题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则.6.解:中,,,,,.故选:A.一个角的正弦值等于它的余角的余弦值.此题考查的是互余两角三角函数的关系,属基础题,掌握正余弦的这一转换关系:一个角的正弦值等于它的余角的余弦值.7. 解:当时,;当时,不能得到;当时,不能得到;当时,不能得到;故选:A.两条直线被第三条所截,如果内错角相等,那么这两条直线平行,据此进行判断.本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行.8. 解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.必然事件就是一定发生的事件,依据定义即可作出判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9. 解:,故选:D.本题应对原方程进行因式分解,得出,然后根据“两式相乘值为0,这两式中至少有一式值为”来解题.本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法本题运用的是因式分解法.10. 解:把代入得.所以抛物线的顶点为,故选:D.根据y轴上点的坐标特征,把代入抛物线解析式计算出对应的函数值即可得到交点坐标.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11. 解:菱形ABCD的周长为48cm,,,是AD的中点,.故选:C.由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE的长.此题考查了菱形的性质以及直角三角形斜边的中线的性质此题难度不大,注意掌握数形结合思想的应用.12. 解:因为二次函数的对称轴是直线,由图象可得左交点的横坐标大于,小于,所以,,当时,,即,,,,,所以此选项结论正确;抛物线的对称轴是直线,的值最大,即把代入得:,,,所以此选项结论不正确;,,,,,,,,关于x的一元二次方程有实数根;由图象得:当时,y随x的增大而减小,当k为常数时,,当的值大于的函数值,即,,所以此选项结论不正确;所以正确结论的个数是1个,故选:D.根据对称轴列式,得,由图象可知:左交点的横坐标大于,当时,,代入可得结论正确;开口向下,则顶点坐标的纵坐标是最大值,那么,化简可得结论不正确;计算的值作判断;比较与的值,根据当时,y随x的增大而减小,由图象得出结论.本题考查二次函数与系数关系,在解题时,注意二次函数的系数与其图象的形状、对称轴,特殊点的关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.13. 解:设时,,则.故答案为.根据已知条件,可设,则,然后把它们代入所求式子,即可求出的值.本题根据x、y之间的关系,进而求出分式的值.14. 解:,即,解得,故答案是:.根据新定义运算法则列出关于x的一元二次方程,然后利用直接开平方法解答.本题考查学生读题做题的能力正确理解这种运算的规则是解题的关键.15. 解:将一次函数的图象向下平移3个单位长度,相应的函数是;故答案为:.直接根据函数图象平移的法则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.16. 解:作轴于E,将线段OA绕点O顺时针旋转得到,作轴于F,则 ≌ ,可得,,即反比例函数的图象经过点,所以由勾股定理可知:,,,,,的中点,直线OK的解析式为,由,解得或,点P在第一象限,,故答案为作轴于E,将线段OA绕点O顺时针旋转得到,作轴于F,则 ≌ ,可得,,即,求出线段的中垂线的解析式,利用方程组确定交点坐标即可.本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.17. 由得到,加上,则,于是可判断,由于,所以,则可根据切线的判定定理得到EF是的切线;过点O作于点D,根据垂径定理得,再证明 ∽ ,利用相似比可计算出;由可判断为等边三角形,则,则,则可计算出,然后根据三角形面积公式和扇形面积公式,利用阴影部分四边形扇形扇形进行计算即可.本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线也考查了等边三角形的判定与性质、相似三角形的判定与性质和扇形面积的计算.18. 本题涉及开平方、零次幂、绝对值、特殊角的三角函数,在计算时,需要针对每个考点分别进行计算,然后再根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.19. 利用同分母的分式减法法则,先算括号里面的,再做乘法运算.本题考查了分式的化简求值注意分式化简的结果需是整式或最简分式代入取值的结果应分母有理化.20. 根据的人数除以所占的百分比即可求出总人数.根据的人数的所占的百分比即可取出圆心角的度数.列出树状图即可求出答案.本题考查统计与概率,解题的关键是熟练运用统计与概率的公式,本题属于基础题型.21. 首先设A品牌服装每套进价为x元,则B品牌服装每套进价为元,根据关键语句“用2000元购进A 种服装数量是用750元购进B种服装数量的2倍”列出方程,解方程即可;首先设购进A品牌的服装a套,则购进B品牌服装套,根据“可使总的获利超过1200元”可得不等式,再解不等式即可.本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.22. 易证三角形ABC的是等腰三角形,再根据所对直角边是斜边的一半可求出DB的长,由结合勾股定理即可求出CD的长.本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形,解直角三角形,也考查了把实际问题转化为数学问题的能力.23. 将代入抛物线解析式求得a的值,从而得出抛物线的解析式,再令,得出x的值,即可求得点A、B的坐标;如图2,作轴于H,可证明 ∽ ,得出,由,即可得出的长,即可求得的坐标;分两种情况:如图3,以AB为直径作,交抛物线的对称轴于的下方,由圆周角定理得出点P 坐标;如图4,类比第小题的背景将沿直线BC对折,点A的对称点为,以为直径作,交抛物线的对称轴于的上方,作于E,交对称轴于F,求得,在中,由勾股定理得出得的长,从而得出点P的坐标即可.本题考查了二次函数的相关性质、一次函数的相关性质、一元二次方程的解法以及二次根式的运算、勾股定理等本题解题技巧要求高,而且运算复杂,因此对考生的综合能力提出了很高的要求.。