弹塑性力学第八章分析
- 格式:ppt
- 大小:2.30 MB
- 文档页数:13
弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。
5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。
固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。
从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。
弹塑性力学引言一、固体力学在工程中的作用工程中的各种机械都是用固体材料制造而成的、各种结构物也都是用固体材料建造的。
为了使机械结构正常使用、实现其设计的功能,首先要保证它们在工作载荷与环境作用下不发生材料的破坏或影响使用的过大的变形,即保证它们具有足够的强度、刚度和稳定性。
在设计阶段,要根据要求实现的功能,对于设计的机械结构的形式按强度要求确定其各部分的形状和尺寸,以及所需选择的材料。
要完成这样的任务,首先要解决如下基本问题:在给定形状尺寸与材料的机械结构在设计规定载荷与环境(如温度)作用下所产生的变形与应力。
对于柔性结构,如细长梁、薄板、薄壳,以及它们的组合结构,还要分析其是否会丧失稳定性。
这些都是固体力学的基本问题。
如果机械结构所受载荷或环境的作用是随时间变化的,那么,它们的振动特性也对其性能有重要的影响。
在设计时往往要对其进行模态分析,求出影响最大的各个低阶固有频率与相应的振型,以确保不会与主要的激振载荷产生共振,导致过大的交变应力与变形,影响强度和舒适性。
有些情况下还要考虑它们在瞬态或冲击载荷作用下的瞬态响应。
这些也是固体力学的基本问题。
此外、许多机械零件和结构元件在制造工程中,采用各种成型工艺,材料要产生很大的塑性变形。
如何保证加工质量,提高形状准确性、减少残余应力、避免产生裂纹、皱曲等缺陷?如何设计加工用的各种模具,加工的压力,以及整个工艺流程,这里也都有固体力学问题。
正因为工程中提出了各种各样的固体力学问题,有时还有流体力学问题,在19世纪产生了弹性力学和流体力学,才导致力学逐渐从物理学中独立出来。
工程技术发展的要求是工程力学,包括固体力学、流体力学等发展的最重要的推动力。
而工程力学的发展则大大推动了许多工程技术的飞速发展。
因此,力学是许多工程部门设计研究人员的基本素质之一。
二、力学发展概况力学曾经是物理学的一个部分,最初也是物理学中最重要的组成部分。
力学知识最早起源于人们对自然现象的观察和在生产劳动中积累的经验。
弹塑性力学第七章塑性力学的基本方程与解法一、非弹性本构关系的实验基础拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。
图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。
C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。
由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。
由D到H是一接近水平的线段,称为塑性流动段。
对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。
如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。
即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。
在图中b点之后,试件产生颈缩现象,最后试件被拉断。
如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。
图7.1 低碳钢单向拉伸应力应变曲线有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。
这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。
记为0.2图7.2 高强度合金钢单向拉伸应力应变曲线第七章 塑性力学的基本方程与解法如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。
在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。
这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。
图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。
第八章 能量原理及其应用弹塑性力学问题实质上是边值问题,即求解满足一定边界条件的偏微分方程组。
然而只有对一些特殊的结构在特定加载条件下才能找到精确解,而对于一般的力学问题,如空间问题,泛定方程为含有15个未知量的6个偏微分方程,在给定边界条件时.求解是极其困难的,而且往往足小对能的。
因此,为了解决具体的工程结构力学问题,目前都广泛应用数值方法,如有限元法、无限元法、边界元法、无网格化法及样条元法等等。
这些解法的依据都是能量原理。
本章将讨论利用能量原理和极值原理求解弹塑性力学问题的近似解法。
本章共讨论五个能量原理。
首先是虚位移原理,由虚位移原理推导出最小势能原理,其次介绍虚应力原理,和由虚应力原理推导出最小余能原理。
另外,还简单介绍最大耗散能原理。
本章还讲述了根据上述的能量原理建立的有关弹性力学问题的数值解法。
8.1 基本概念1.1 物体变形的热力学过程由第四章知,物体在外界因素影响下的变形过程,严格来说都是一个热力学过程。
因此研究物体的状态,不仅要知道物体的变形状态,而且还要知道物体中每一点的温度。
如果物体在变形过程中,各点的温度与其周围介质的温度保持平衡,则称这一过程为等温过程;若在变形过程中,物体的温度没有改变,即既没有热量损失也没有热量增加,则称这一过程为绝热过程。
物体的瞬态高频振动,高速变形过程都可视为绝热过程。
令物体在变形过程中的动能为E ,应变能为U ,则在微小的t δ时间间隔内,物体从一种状态过渡到另一种状态时,根据热力学第一定律,总能量的变化为 Q W U E δδδδ+=+ (a) 其中,W δ为作用于物体上的体力和面力所完成的功;Q δ是物体由其周围介质所吸收(或向外发散)的热量,并以等量的功度量。
假定弹性变形过程是绝热的,则对于静力平衡问题有00==Q ,E δδ (b)将式(b)代入式(a),则有W U δδ= (8.1-1)1.2 应变能由第四章的式(4.1-5b)知,在线弹性情况下,单位体积的应变能为ik ij ij ij ij d U εσεσε2100==⎰ (8.1-2)对于一维应力状态,在x x εσ-平面内,则0U 实际上就是应力应变曲线与x ε轴和'x x εε=所围成的面积(图8.1),即⎰='0Xx x d U εεσ (8.1-3)其中'x ε是物体变形过程某一指定时刻的应变,应 图8.1 应变能与应变余能 变能0U 表示物体在变形过程中所储存的能量。
一般力学与力学基础的弹塑性分析方法弹塑性分析方法是一般力学和力学基础中重要的研究领域之一。
本文将介绍弹塑性分析方法的基本概念、应用领域以及常用的数学模型和计算方法。
一、弹塑性分析方法的基本概念弹塑性分析方法是一种综合运用弹性力学和塑性力学理论的方法,用于描述材料在外力作用下的弹性变形和塑性变形过程。
在弹塑性分析中,材料会先发生弹性变形,当应力达到一定临界值时,开始发生塑性变形。
弹塑性分析方法可以更准确地预测材料的变形和破坏行为。
二、弹塑性分析方法的应用领域弹塑性分析方法广泛应用于工程结构、土力学、岩石力学等领域。
例如,在工程结构的设计中,使用弹塑性分析方法可以预测结构在外载荷作用下的变形和破坏行为,从而确定结构的合理尺寸和材料强度要求。
在土力学和岩石力学中,弹塑性分析方法可以用于预测土体和岩石的变形和破坏特性,为工程施工和地质灾害的预测提供依据。
三、弹塑性分析的数学模型弹塑性分析方法使用了多种数学模型来描述材料的力学行为。
其中常用的模型包括线性弹性模型、单一参数塑性模型和本构模型等。
1. 线性弹性模型:线性弹性模型假设材料的应力与应变之间呈线性关系,常用于描述小应变范围内的材料行为。
2. 单一参数塑性模型:单一参数塑性模型假设材料的塑性行为由一个参数来描述,常用于描述中等应变范围内的材料行为。
3. 本构模型:本构模型是更为复杂的数学模型,可用于描述广泛的材料行为。
常见的本构模型包括弹塑性本构模型、弹塑性本构模型、弹粘塑性本构模型等。
四、弹塑性分析的计算方法弹塑性分析方法使用了多种计算方法来求解材料的变形和应力分布。
其中常用的计算方法包括有限元法、边界元法和等。
这些方法可以将实际结构离散成有限个子区域,通过求解子区域的变形和应力,得到整个结构的变形和应力分布。
这些计算方法具有高精度和较强的通用性,广泛应用于工程和科学研究领域。
综上所述,弹塑性分析方法是一般力学和力学基础中重要的研究领域,用于描述材料在外力作用下的弹性变形和塑性变形过程。