当前位置:文档之家› 质粒载体的构建

质粒载体的构建

质粒载体的构建
质粒载体的构建

(整理)质粒的分子生物学与质粒载体

第三章质粒的分子生物学与质粒载体 一、填空题 1.基因工程中有3种主要类型的载体:——-------、------------一、-----------. 2.由于不同构型的DNA插入EB的量不同,它们在琼脂糖凝胶电泳中的迁移率也不同,SC DNA的泳动速度—----------—,OC DNA泳动速度—---------—,L DNA居中,通过凝胶电泳和EB染色的方法可将不同构型的DNA分别开来。 3.质粒的复制像染色体的复制一样,是从特定的起始点区开始的。然而,质粒的复制可以是—---—向的、或是—----—向的。在杂种质粒中,每个复制子的起点都可以有效地加以使用。但是在正常条件下只有一个起点可能居支配地位。并认为:当某些具有低拷贝数的严紧型质粒与松弛性质粒融合后,在正常情况下—------—的复制起点可能被苯闭。 4.就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分:—-----—、—---------—、—----------------—。另外,一个理想的质粒载体必须具有低分子量。 5.如果两个质粒不能稳定地共存于同一个寄主细胞中,则属于—---------—群,这是因为它们的——————————所致。 6.质粒拷贝数是指细胞中—------------------------—。 7.复制子由三部分组成:(1)—-----------------—---(2)——-----------————(3)—--------------—。 8.酵母的2μm质粒有------------,可以配对形成哑铃结构。 9.一个带有质粒的细菌在有EB的培养液中培养一段时间后,一部分细胞中已测不出质粒,这种现象叫----------------。 10.pBR322是一种改造型的质粒,它的复制子来源于----——,它的四环素抗性基因来自于—-----------—,它的氨苄青霉素抗性基因来自于—---------—。 11.质粒的消失同染色体基因的突变是不同的,前者不能恢复,后者可以通过—------—恢复该基因的性状。 12.ColEl质粒复制的起始需要三种酶,即—-----------—、一------------和一------。 13.YAC的最大容载能力是—-----------—,BAC载体的最大容载能力是—---------—。 14.pSCl01是一种---------——复制的质粒。 15.把那些没有可检测表型的质粒称为—--------------—。 16.转座子主要由下列部分组成:(1)—-----————————(2)---------------—— (3)—----------------—。

如何选择质粒

一、一个合格质粒的组成要素 复制起始位点Ori 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ 多克隆位点MCS 克隆携带外源基因片段 P/E 启动子/增强子 Terms 终止信号 加poly(A)信号可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活 (5)hygr 使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号 启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。增强子/沉默子-为真核基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发挥作用。/沉默子-负增强子,负调控序列。 核糖体结合位点/起始密码/SD序列(Rbs/AGU/SDs):mRNA有核糖体的两个结合位点,对于原核而言是AUG(起始密码)和SD序列。 转录终止顺序(终止子)/翻译终止密码子:结构基因的最后一个外显子中有一个AA TAAA 的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。结构基因的最后一个外显子中有一个AA TAAA的保守序列,此位点down-stream 有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。 回答有人之前提出的一个问题:为什么质粒图谱上有的箭头顺时针有的箭头逆时针,那其实是代表两条DNA链,即质粒是环状双链DNA,它的启动子等在其中一条链上,而它的抗性基因在另一条链上. 三、介绍一下关于载体的知识(虽然课本上都有写) 1. 什么是载体

质粒载体基础

第一节质粒载体 一、质粒的基本特性 1.质粒的复制 通常一个质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区(整个遗传单位定义为复制子)。在不同的质粒中,复制起始区的组成方式是不同的,有的可决定复制的方式,如滚环复制和θ复制。在大肠杆菌中使用的大多数载体都带有一个来源于pMB1 质粒或ColE1 质粒的复制起始位点。图3-1 是其复制其始示意图。 在复制时,首先合成前RNAⅡ,即前引物,并与DNA 形成杂交体;而后RNase H 切割前RNAⅡ,使之成为成熟的RNAⅡ,并形成三叶草二级结构,该引物引导质粒的复制。形成的RNAⅠ可控制RNAⅡ形成二级结构,同时Rop 增强RNAⅠ的作用,从而控制质粒的拷贝数。削弱RNAⅠ和RNAⅡ之间相互作用的突变,将增加带有pMB1 或(ColE1)复制子的拷贝数。 图3-1 带pMB1(或ColE1)复制起点的质粒在复 制起始阶段所产生的转录的方向及其粗略大小。 2.质粒的拷贝数 质粒拷贝数分为严谨型与松驰型。严谨型质粒每个细胞中拷贝数有限,大约1 ~几个;松驰型质粒拷贝数较多,可达几百。表5-1 就是不同类的质粒与复

制子及拷贝数的大致关系。 表3-1 :质粒载体及其拷贝数 pUC 系列质粒的复制单位来自质粒pMB1 ,但其拷贝数较高。pMB1 质粒的复制并不需要质粒编码的功能蛋白,而是完全依靠宿主提供的半衰期较长的酶(DNA 聚合酶Ⅰ,DNA 聚合酶Ⅲ),依赖于DNA 的RNA 聚合酶,以及宿主基因dnaB 、dnaC 、dnaD 和danZ 的产物。因此,存在抑制蛋白质合成并阻断细菌染色体复制的氯霉素或壮观霉素等抗生素时,带有pMB1(或ColE1)复制子的质粒将继续复制,最后每个细胞中可积聚2~3 千个质粒。3.质粒的不相容性 两个质粒在同一宿主中不能共存的现象称质粒的不相容性,它是指在第二个质粒导入后,在不涉及DNA 限制系统时出现的现象。不相容的质粒一般都利用同一复制系统,从而导致不能共存于同一宿主中。两个不相容性质粒在同一个细胞中复制时,在分配到子细胞的过程中会竞争,随机挑选,微小的差异最终被放

载体和质粒

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。 克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。 是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。 表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。 表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔 5-13bp),其后的多克隆位点可装载要表达的目标基因。 克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。但不具备表达元件。而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内都是低拷贝的,防止渗漏表达。 克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。 1.载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(ector)。 2. 载体的分类 按功能分成:(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs 等)还具有转录/翻译所必需的DNA顺序的载体。 按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle ector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间). 克隆载体顾名思义就是质粒拷贝数比较高,在做上游克隆时比较方便, 其重点在于质粒的复制

质粒载体分类及阅读

质粒载体分类及阅读 一.九种表达载体 Pllp-OmpA, pllp-STII, pMBP-P, pMBP-C, pET-GST, pET-Trx, pET-His, pET-CKS, pET-DsbA 二.克隆载体 pTZ19R DNA pUC57 DNA PMD18T PQE30 pUC18 pUC19 pTrcHisA pTrxFus pRSET-A pRSET-B pVAX1 PBR322 pbv220 pBluescript II KS (+) L4440 pCAMBIA-1301 pMAL-p2X pGD926 三.PET系列表达载体 Protein Expression ? Prokaryotic Expression ? pET Dsb Fusion Systems 39b and 40b Protein Expression ? Prokaryotic Expression ? pET Expression System 33b Protein Expression ? Prokaryotic Expression ? p ET Expression Systems Protein Expression ? Prokaryotic Expression ? pET Expression Systems plus Competent Cells Protein Expression ? Prokaryotic Expression ? pET GST Fusion Systems 41 and 42 Protein Expression ? Prokaryotic Expression ? pET NusA Fusion Systems 43.1 and 44 Protein Expression ? Prokaryotic Expression ? pET Vector DNA Protein Purification ? Purification Systems ? Strep?Tactin Resins and Purification Kits 四.PGEX系列表达载体 T EcoR pGEX-1 I/BAP pGEX-2T pGEX-2TK pGEX-3X

质粒与载体

质 质粒 粒与 与载 载体 体 中央研究院 植物研究所 杜 镇 研究员 一、质粒 绝大多数的生物都是以 DNA 的形式来储藏其遗传信息。遗传物质要能生生不息地传给后代 的首要条件就是它至少要具有一个复制原(ori, origin of replication ,或译为复制起点),使整 个基因体得以复制。含有复制原的遗传物质称为 replicon ,我们姑且把它译为为复制体吧!。 原核性复制体分为原核染色体、质粒(plasmids)和噬菌体基因体(phage genome)等三类。其中 质粒的基因体和原核染色体类似,是由双绞炼 DNA 构成,并以超卷曲的形式存在。它们的 基因体约由 2,000 至 150,000 个碱基对组成,绝大多数呈环状,但也有极少数是线状构造(如 Borrelia burgdorfferi)。事实上你可以把它们视为比较小的原核染色体。在自然环境中它们相 当普遍地生存在原核生物细胞内,并和其宿主的许多特殊功能有关,诸如:赤贺氏杆菌 (Shigella)的抗药、根瘤菌(Rhizobium)的固氮、农杆菌(Agrobacterium)的引瘤及假单胞杆菌 (Pseudomonas)对环状有机物的分解等等。以下我们谈的以细菌性质粒为主,尤其是革兰氏阴 性菌的质粒。 二、质粒的类型 当我们谈到质粒的类型时,就要看你从哪个角度来看它们,譬如说抗药性、结合生殖能力、 宿主范围及 DNA 复制方式等等。这些分型标准之间并无横向关联。你无法说能结合生殖的 质粒一定抗药或不抗药,也无法确定宿主范围和质粒套数的调控有何关联。我们用到这些名 词时,只是对特定质粒的性状做一些描述而已。质粒的真正系统分类标准并非靠些性状,而 是依据它们的不共容性(incompatibility)。 有的质粒带有显著特征可供我们侦测它们的存在,无已知特征的质粒称为隐性质粒(cryptic plasmids);有特征者称为显性质粒(acryptic plasmids);带有抗药基因的天然质粒称为 R-质 粒(R-plasmids)。有些质粒能在多种不同菌属细胞中生存,我们称它们为泛宿主性质粒 (broad-host-range plasmids);有一些质粒只能在少数相关宿主中生存,我们称它们为狭宿主 性质粒(narrow-host-range plasmids)。具有结合生殖(conjugation)能力的质粒为结合质粒 (conjugative plasmids);没有这种能力的质粒便是非结合质粒(non-conjugative plasmids)。其 它如侵袭性质粒(virulence plasmid)、 共生质粒(symbiotic plasmids)及巨型质粒(megaplasmids) 等等有关质粒性状叙述的名词不一而足。 三、质粒的复制 环状质粒的复制形式主要分 theta (θ)及 rolling circle 两种。基因体的复制都是由复制原开始。 原核性复制原约由 250 个碱基对组成,一般质粒的复制原常称为 oriV (origin of vegetative replication);有时 R-质粒的复制原称为 oriR ;大肠杆菌的复制原称为 oriC 。Theta 形式的质 粒复制与细菌基因体复制一样,以 RNA 聚合脢(RNA polymerase)在复制原制造 RNA 引子 (RNA primer),然后由 DNA 聚合脢(DNA polymerase)接手由此向两个方向分别复制 DNA , 直到整个基因体复制完成。在复制过程中当然还有许多其它酵素的参与,这些酵素多由宿主 提供。有的质粒自己携带一些与复制有关的基因,这些基因多被命名为 rep ,如 repA 、repB

认识质粒图谱

一、如何阅读质粒图谱 载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一、一个合格质粒的组成要素 复制起始位点Ori,即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。 而真核生物DNA分子有多个复制起始位点。 抗生素抗性基因:可以便于加以检测,如Amp+ ,Kan+ 多l克隆位点:MCS克隆携带外源基因片段 P/E:启动子/增强子 Terms:终止信号 加poly(A)信号:可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) Ori的箭头指复制方向,其他元件标注的箭头多指转录方向(正向)。 第二步:再看筛选标记,如抗性,决定使用什么筛选标记: (1)Ampr:水解β-内酰胺环,解除氨苄的毒性。 (2)tetr :可以阻止四环素进入细胞。 (3)camr:生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr):氨基糖苷磷酸转移酶,使G418(卡那霉素衍生物)失活。 (5)hygr:使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点,便于外源基因的插入。 如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。 一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。 这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 二、相关概念: 启动子-核糖体结合位点-克隆位点-转录终止信号 启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。 增强子/沉默子-为真核l基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发挥作用。沉默子-负增强子,负调控序列。 核糖体结合位点/起始密码/SD序列(Rbs/AGU/SDs):mRNA有核糖体的两个结合位点,对于原核而言是AUG(起始密码)和SD序列。 l转录终止顺序(终止子)/翻译终止密码子:结构基因的最后一个外显子中有一个AATAAA 的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。结构基因的最后一个外显子中有一个AATAAA的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。 三、载体及其分类 载体:即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载

所有质粒载体汇总

酿酒酵母表达载体 pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6,pYCplac22-GFP, 酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,p Y14TEF,pY15TEF,pY16TEF, 酵母基因重组表达载体pUG6,pSH47, 酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424, 酵母双杂交系统:酿酒酵母 Y187, 酿酒酵母AH109;质粒pGADT7,pGBKT7;对照质粒pGBKT7-53,pGBKT7-lam,pGADT7-T,PCL1, 酿酒酵母菌株INVSc1,YM4271, AH109,Y187,Y190, 毕赤酵母表达载体pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pP ICZA,B,C,pGAPZαA,pAO815,pPIC9k-His,pHIL-S1,pPink hc, 配套毕赤酵母Pichiapink, 毕赤酵母宿主X33,KM71,KM71H,GS115, 原核表达载体pQE30,31,32,40,60,61,62,等原核表达载体,包括pET系列,pE T-GST,pGEX系列(含GST标签),pMAL系列pMAL-c2x,-c4x,- c4e,-c5x,-p5x,pBAD,pBADHis,pBADmycHis系列,pQE系列,pTrc99 a,pTrcHis系列,pBV220,221,222,pTXB系列,pLLP-om pA,pIN-III-ompA(分泌型表达系列),pQBI63(原核表达带荧光)pET3a, pET 3d, pET 11a,pET12a, pET14b, pET 15b, pET 16b, pET 17b,pET 19b, pET 20b, pET 21a,b,d, pET 22b,pET 23a,pET 23b, pET24a,b,pET 25b, pET 26b, pET27b, pET 28a,b, pET 29a,pET 30a, pET 31b, pET32a, pET35b, pET 38b, pET39b,pET 40b, pET41a,b pET 42a,pET 43、1a,b pET 44a, pET49bpET302,303 pET His,pET Dsb,pET GST,pET Trx pQE2, pQE9 pQE30,31,32, pQE 40pQE70pQE80L pQETirs system pR SET-A pRSET-B pRSET-C pGEX4T-1,-2,-3,5x-1,6p-1,6p-2,2tk,3c pBV220,221,222 pTrcHisA,B,C pBAD24,34,43 pBADHisA,B,C pPinPoint-Xa1,Xa2,Xa3 pMALc2x, p2x pBV220 pGEM Ex1, pGEM7ZF(+), pTrc99A,pTwin1, pEZZ18pkk232-8,pkk 233-3,pACYC184,pBR322,p UC119 pTYB1,pTYB2,pTYB4,pTYB11 pBlueScript SK(+),pBlueScript SK(-) pLLP ompA, pINIIIompA,pMBP-P,pMBP-C, 大肠杆菌冷激质粒: p ColdIpColdII pColdIIIpColdTF 原核共表达质粒:pACYCduet-1,p

质粒载体的构建分析

质粒载体的构建 摘要:质粒载体的构建。首先要获得目的DNA。根据其目的基因序列和启动子序列设计引物,为提高目的基因产率,采用两次PCR的方法,即第一次设计引物扩增全序列基因,第二次设计带酶切位点的引物以第一次扩增产物为模板进行扩增,进而加尾连接到T-DNA上,再利用电转化的方法将连接产物转化到带有PCAMBIA1381的DH5α感受态细胞中复制表达。 关键词:质粒DNA PCR 电泳感受态转化 1.引言 质粒(plasmid)是细菌或细胞染色质以外的,能自主复制的,与细菌或细胞共生的遗传成分。其特点如下: ①是染色质外的双链共价闭合环形DNA(cccDNA),可自然形成超螺旋结构,不同质 粒大小在2-300kb之间,<15kb的小质粒比较容易分离纯化,>15kb的大质粒则不易提取。 ②能自主复制,是能独立复制的复制子。一般质粒DNA复制的质粒可随宿主细胞分裂而 传给后代。 ③质粒对宿主生存并不是必需的。某些质粒携带的基因功能有利于宿主细胞的 特定条件下生存,例如,细菌中许多天然的质粒带有抗药性基因,如编码合成能分解破坏四环素、氯霉素、氨芐表霉素等的酶基因,这种质粒称为抗药性质粒,又称R质粒,带有R质粒的细菌就能在相应的抗生素存在生存繁殖。 所以质粒对宿主不是寄生的,而是共生的。现在分子生物学使用的质粒载体

都已不是原来细菌或细胞中天然存在的质粒,而是经过了许多的人工的改造。从不同的实验目的出发,人们设计了各种不同的类型的质粒载体。 质粒载体pBR322是研究得最多,是使用最早且应用最广泛的大肠杆菌质粒载体之一。符号质粒载体pBR322中的“p代表质粒;“BR”代表两位两位研究者Bolivar和Rogigerus姓氏的字首,“322”是实验编号。 质粒载体pBR322的大小为4361bp,相对分子质量较小的是它第一个优点。优点之二是它带有一个复制起始位点,保证了该质粒只在大肠杆菌的细胞中行使复制的功能。具有两种抗生素抗性基因,可供转化子的选择标记是它的第三个优点。 质粒载体pBR322的第四个优点是具有较高的拷贝数,经过氯霉素扩增以后,每个细胞中可累积1000-3000份拷贝,该特性为重组体DNA的制备提供了极大的方便。 构建质粒载体所用的方法基本上是分子克隆技术,是在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增。 2. 材料方法 2.1目的DNA的获得 2.1.1 引物设计 第一次引物设计: 正向引物:sinn3F 冰盒标注:P2a 引物序列:5’—AAGCAAAATCTAACCGTGTAATGTA—3’ 引物长度:25bp 反向引物:sinn3R 冰盒标注:P2b

质粒载体

载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一、一个合格质粒的组成要素 a复制起始位点Ori 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 b 抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ c 多克隆位点MCS 克隆携带外源基因片段 d P/E 启动子/增强子 e Terms 终止信号 f 加poly(A)信号可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活 (5)hygr 使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号 a 启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。b增强子/沉默子-为真核基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发

所有质粒载体汇总

酿酒酵母表达载体 p YES2 ,p YES2/NT ,p YES2/CT ,p YES3 ,p YES6, pYCp Iac22-GF P, 酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,pY14TEF PY15TEF, pY16TEF, 酵母基因重组表达载体p UG6, p SH47, 酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424,酵母双杂交系统:酿酒酵母Y187, 酿酒酵母AH109 ;质粒PGADT7,pGBKT7 ;对照质粒pGBKT7-53,pGBKT7-lam,pGADT7-T , PCL1, 酿酒酵母菌株INVSc1,YM4271, AH109,丫187,丫190, 毕赤酵母表达载体 pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pPICZA,B,C,pGAPZ a A,pAO815,pPIC9k-His,pHIL-S1,pPink hc, 配套毕赤酵母Pichiapink, 毕赤酵母宿主X33,KM71,KM71H,GS115, 原核表达载体pQE30,31,32,40,60,61,62等原核表达载体,包括pET系列, pET-GST, PGEX 系列(含GST标签),pMAL 系列 pMAL-c2x,-c4x,-c4e,-c5x,-p5x,pBAD,pBADHis,pBADmycHis 系列,pQE 系 列,pTrc99a,pTrcHis系列,pBV220,221,222,pTXB 系列,pLLP-ompA,pIN-HI-ompA (分泌型表达系列),pQBI63 (原核表达带荧光)pET3a, pET 3d, pET 11a, pET 12a, pET 14b, pET 15b, pET 16b, pET 17b, pET 19b, pET 20b, pET 21a,b,d, pET 22b, pET 23a, pET 23b, pET 24a,b, pET 25b, pET 26b, pET 27b, pET 28a,b, pET 29a, pET 30a, pET 31b, pET 32a, pET 35b, pET 38b, pET 39b, pET 40b, pET 41a,b pET 42a, pET 43.1a,b pET 44a, pET 49b pET302,303 pET His, pET Dsb, pET GST, pET Trx p QE2, pQE9 p QE30,31,32, pQE 40 p QE70 pQE80L p QETirs system pRSET-A pRSET-B p RSET-C p GEX4T-1,-2,-3,5x-1,6 p-1,6 p-2,2tk,3c pBV220,221,222 pTrcHisA,B,C pBAD24,34,43 pBAD HisA,B,C pPinP oi nt-Xa1,Xa2,Xa3 pMALc2x, p2x pBV220 pGEM Ex1, pGEM7ZF (+) , pTrc99A, pTwin1, pEZZ18 pkk232-8,pkk 233-3, PACYC184, pBR322 ,p UC119 p TYB1, pTYB2, pTYB4, pTYB11 p BIueScri pt SK (+) ,pBlueScript SK (-) pLLP ompA, pINIIIompA, pMBP-P ,pMBP-C,大肠杆菌冷激质粒:pColdI pColdII pColdIII pColdTF原核共表达质粒: pACYCduet-1,pETduet-1,pCDFduet-1, pRSFduet-1 Takara公司大肠杆菌分子伴侣:PG-KJE8 PGro7 pKJE7 pGTf2 pTf16 大肠杆菌宿主细胞:DH5a JM101 JM103 JM105 JM107 JM109 JM110 Top10 Top10F BL21( DE3) HB101 ER2529 E2566 C2566 MG1655 XL- 10gold XL blue M15 JF1125 K802 SG1117 BL21 ( AI) BL21

质粒载体介绍(质粒基本特性和种类及标记基因)

质粒载体介绍(质粒基本特性和种类及标记基因)2010-01-25 13:25:29 来源:易生物实验浏览次数:6084 网友评论 0 条 一、质粒的基本特性 二、标记基因 三、质粒载体的种类 关键词:质粒载体质粒载体标记基因 一、质粒的基本特性 1.质粒的复制 通常一个质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区(整个遗传单位定义为复制子)。在不同的质粒中,复制起始区的组成方式是不同的,有的可决定复制的方式,如滚环复制和θ复制。在大肠杆菌中使用的大多数载体都带有一个来源于 pMB1 质粒或 ColE1 质粒的复制起始位点。图 3-1 是其复制其始示意图。 在复制时,首先合成前 RNAⅡ,即前引物,并与 DNA 形成杂交体;而后RNase H 切割前 RNAⅡ,使之成为成熟的 RNAⅡ,并形成三叶草二级结构,该引物引导质粒的复制。形成的 RNAⅠ可控制 RNAⅡ形成二级结构,同时Rop 增强 RNAⅠ的作用,从而控制质粒的拷贝数。削弱 RNAⅠ和 RNAⅡ之间相互作用的突变,将增加带有 pMB1 或(ColE1)复制子的拷贝数。 图 3-1 带 pMB1(或 ColE1)复制起点的质粒在复 制起始阶段所产生的转录的方向及其粗略大小。 2.质粒的拷贝数 质粒拷贝数分为严谨型与松驰型。严谨型质粒每个细胞中拷贝数有限,大约1 ~几个;松驰型质粒拷贝数较多,可达几百。表 5-1 就是不同类的质粒与复

制子及拷贝数的大致关系。 表 3-1 :质粒载体及其拷贝数 质粒 复制子 拷贝数 pBR322 及其衍生质粒 pMB1 15~20 pUC 系列质粒及其衍生质 突变的 pMB1 500~700 粒 pACYC 及其衍生质粒 p15A 10~212 pSC101 及其衍生质粒 pSC101 ~5 ColE1 ColE1 15~20 pUC 系列质粒的复制单位来自质粒 pMB1 ,但其拷贝数较高。 pMB1 质粒的复制并不需要质粒编码的功能蛋白,而是完全依靠宿主提供的半衰期较长的酶(DNA 聚合酶Ⅰ,DNA 聚合酶Ⅲ),依赖于 DNA 的 RNA 聚合酶,以及宿主基因dnaB 、 dnaC 、 dnaD 和danZ 的产物。因此,存在抑制蛋白质合成并阻断细菌染色体复制的氯霉素或壮观霉素等抗生素时,带有 pMB1(或ColE1)复制子的质粒将继续复制,最后每个细胞中可积聚2~3 千个质粒。3.质粒的不相容性 两个质粒在同一宿主中不能共存的现象称质粒的不相容性,它是指在第二个质粒导入后,在不涉及 DNA 限制系统时出现的现象。不相容的质粒一般都利用同一复制系统,从而导致不能共存于同一宿主中。两个不相容性质粒在同一个细胞中复制时,在分配到子细胞的过程中会竞争,随机挑选,微小的差异最终被放大,从而导致在子细胞中只含有其中一种质粒。而不相容群指那些具有不相容性的质粒组成的一个群体,一般具有相同的复制子。在大肠杆菌中现已发现 30 多个不相容群,如 ColE1 和 pMB1 , pSC101 和 p15A。 4.转移性 质粒具转移性。它是指在自然条件下,很多质粒可以通过称为细菌接合的作用转移到新宿主内。它需要移动基因mob,转移基因tra ,顺式因子bom 及其内部的转移缺口位点 nic。 二、标记基因

质粒载体介绍

质粒载体介绍(质粒基本特性和种类及标记基因) 一、质粒的基本特性 1.质粒的复制 通常一个质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区(整个遗传单位定义为复制子)。在不同的质粒中,复制起始区的组成方式是不同的,有的可决定复制的方式,如滚环复制和θ 复制。在大肠杆菌中使用的大多数载体都带有一个来源于pMB1 质粒或ColE1 质粒的复制起始位点。图3-1 是其复制其始示意图。 在复制时,首先合成前RNAⅡ,即前引物,并与DNA 形成杂交体;而后RNase H 切割前RNAⅡ,使之成为成熟的RNAⅡ,并形成三叶草二级结构,该引物引导质粒的复制。形成的RNAⅠ可控制RNAⅡ形成二级结构,同时Rop 增强RNAⅠ的作用,从而控制质粒的拷贝数。削弱RNAⅠ和RNAⅡ之间相互作用的突变,将增加带有pMB1 或(ColE1)复制子的拷贝数。 图3-1 带pMB1(或ColE1)复制起点的质粒在复 制起始阶段所产生的转录的方向及其粗略大小。 2.质粒的拷贝数 质粒拷贝数分为严谨型与松驰型。严谨型质粒每个细胞中拷贝数有限,大约 1 ~几个;松驰型质粒拷贝数较多,可达几百。表5-1 就是不同类的质粒与复制子及拷贝数的大致关系。 表3-1:质粒载体及其拷贝数

(一)选择标记 抗生素抗性基因是目前使用最广泛的选择标记。 1.氨苄青霉素抗性基因(Ampicillin resistance gene, amp r) 氨苄青霉素抗性基因是基因操作中使用最广泛的选择标记,绝大多数在大肠杆菌中克隆的质粒载体带有该基因。青霉素可抑制细胞壁肽聚糖的合成,与有关的酶结合并抑制其活性,抑制转肽反应。氨苄青霉素抗性基因编码一个酶,该酶可分泌进入细菌的周质区,抑制转肽反应并催化β-内酰胺环水解,从而解除了氨苄青霉素的毒性。青霉素是一类化合物的总称,其分子结构由侧链R-CO- 和主核6-氨基青霉烷酸(6-APA)两部分组成。在6-APA 中有一个饱和的噻唑环(A)和一个β-内酰胺环,6-APA 为由L- 半脱氨酸和缬氨酸缩合成的二肽。 2.四环素抗性基因(Tetracycline resistance gene,tet r) 四环素可与核糖体30S 亚基的一种蛋白质结合,从而抑制核糖体的转位。四环素抗性基因编码一个由399 个氨基酸组成的膜结合蛋白,可阻止四环素进入细胞。pBR322 质粒除了带有氨苄青霉素抗性基因外,还带有四环素抗性基因。 3.氯霉素抗性基因(chloramphenicol resistance gene, Cm r, cat) 氯霉素可与核糖体50S 亚基结合并抑制蛋白质合成。目前使用的氯霉素抗性基因来源于转导性P1 噬菌体(也携带Tn9)。cat基因编码氯霉素乙酰转移酶,一个四聚体细胞质蛋白(每个亚基23kDa)。在乙酰辅酶 A 存在的条件下,该蛋白催化氯霉素形成氯霉素羟乙酰氧基衍生物,使之不能与核糖体结合。 4.卡那霉素和新霉素抗性基因(kanamycin/neomycin resistance gene, kan r, neo r) 卡那霉素和新霉素是一种脱氧链霉胺氮基糖苷,都可与核糖体结合并抑制蛋白质合成。卡那霉素和新霉素抗性基因实际就是一种编码氨基糖苷磷酸转移酶(APH(3')-Ⅱ, 25kDa)的基因,氨基糖苷磷酸转移酶可使这两种抗生素磷酸化,从而干扰了它们向细胞内的主动转移。在细胞中合成的这种酶可以分泌至外周质腔,保护宿主不受这些抗生素的影响。 5.琥珀突变抑制基因supF 在基因的编码区中,若某个密码子发生突变后变成终止密码子,则称这样的突变为赭石突变(突变为UAA),或琥珀突变(突变为UAG),或乳白突变(突变为UGA)。supF基因编码细菌的抑制性tRNA ,可在UAG 密码子上编译酪氨酸。如果在某一宿主中含具琥珀突变的tetr 基因和ampr 基因,只有当宿主含有supF基因时才会对Amp 和Tet 具有抗性。相应的,supE基因在UAG 密码子上编译谷氨酰氨。由于目前所用的标记基因使用方便,因此用这类标记的载体较少。 6.其它 还有一些正向选择标记,表达一种使某些宿主菌致死的基因产物,而含有外源基因片段插入后,该基因便失活。如蔗糖致死基因SacB,来自淀粉水解芽胞杆菌(Bacillus amyloliquefaciens),编码果聚糖蔗糖酶。在含蔗糖的培养基上sacB基因的表达对大肠杆菌来说是致死的,因此该基因可用于插入失活筛选重组子。 (二)筛选标记 筛选标记主要用来区别重组质粒与非重组质粒,当一个外源DNA 片段插入到一个质粒载体上时,可通过该标记来筛选插入了外源片段的质粒,即重组质粒。 1.α-互补(α-complementation) α-互补是指lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酶(β -galactosidase ,由1024 个氨基酸组成)阴性的突变体之间实现互补。α-互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补而建立的。大肠杆菌的乳 糖lac操纵子中的lacZ基因编码β-半乳糖苷酶,如果lacZ基因发生突变,则不能合成有活性的β-半乳糖苷酶。例如,lacZ△M15 基因是缺失了编码β-半乳糖苷酶中第11-41 个氨基酸的lacZ基因,无酶学活性。对于只编码N-端140 个氨基酸的lacZ基因(称为lacZ'),其产物也没有酶学活性。但这两个无酶学活性的产物混合在一起时,可恢复β-半乳糖苷酶的活性,实现基因内互补。 在lacZ'编码区上游插入一小段DNA 片段(如51 个碱基对的多克隆位点),不影响β-半乳糖苷酶的功能内互补。但是,若在该DNA 小片段中再插入一个片段,将几乎不可避免地导致产生无α-互补能力的β-半乳糖苷酶片段。利用这一互补性质,可用于筛选在载体上插入了外源片段的重组质粒。在相应的载体系统中,lacZ△M15 放在 F 质粒上, 随宿主传代;lacZ' 放在载体上, 作为筛选标记(图3-2)。相应的受体菌有JM 系列、TG1 和XL1-Blue ,前二者均带有 D (lac - proAB)F'[ proAB + lac Iq lacZ D M15] 基因型。其中lac I 为lac阻抑物的编码基因,lac Iq 突变使阻抑物产量增加,防止lacZ基因渗漏表达。 lacZ基因是乳糖lac操纵子中编码β-半乳糖苷酶的基因,乳糖及其衍生物可诱导其表达。乳糖既是lac操纵子的诱导物,也是作用的底物。异丙基-β-D- 硫代半乳糖苷(IPTG)是乳糖的衍生物,可作为lac操纵子的诱导物,但不能作为反应的底物;5-溴-4-氯-3-吲哚-β-D-

所有质粒载体汇总

酿酒酵母表达载体 pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6, pYCplac22-GFP, 酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,pY14TEF,pY15TEF,pY16TEF, 酵母基因重组表达载体pUG6, pSH47, 酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424, 酵母双杂交系统:酿酒酵母Y187, 酿酒酵母AH109;质粒pGADT7,pGBKT7;对照质粒pGBKT7-53,pGBKT7-lam,pGADT7-T,PCL1, 酿酒酵母菌株INVSc1,YM4271, AH109,Y187,Y190, 毕赤酵母表达载体 pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pPICZA,B,C,pGAPZα A,pAO815,pPIC9k-His,pHIL-S1,pPink hc, 配套毕赤酵母Pichiapink, 毕赤酵母宿主X33,KM71,KM71H,GS115, 原核表达载体pQE30,31,32,40,60,61,62,等原核表达载体,包括pET系列, pET-GST,pGEX系列(含GST标签),pMAL系列 pMAL-c2x,-c4x,-c4e,-c5x,-p5x,pBAD,pBADHis,pBADmycHis系列,pQE系 列,pTrc99a,pTrcHis系列,pBV220,221,222,pTXB系列,pLLP-ompA,pIN-III-ompA (分泌型表达系列),pQBI63(原核表达带荧光)pET3a, pET 3d, pET 11a, pET 12a, pET 14b, pET 15b, pET 16b, pET 17b, pET 19b, pET 20b, pET 21a,b,d, pET 22b, pET 23a, pET 23b, pET 24a,b, pET 25b, pET 26b, pET 27b, pET 28a,b, pET 29a, pET 30a, pET 31b, pET 32a, pET 35b, pET 38b, pET 39b, pET 40b, pET 41a,b pET 42a, pET 43.1a,b pET 44a, pET 49b pET302,303 pET His,pET Dsb,pET GST,pET Trx pQE2, pQE9 pQE30,31,32, pQE 40 pQE70 pQE80L pQETirs system pRSET-A pRSET-B pRSET-C pGEX4T-1,-2,-3,5x-1,6p-1,6p-2,2tk,3c pBV220,221,222 pTrcHisA,B,C pBAD24,34,43 pBAD HisA,B,C pPinPoint-Xa1,Xa2,Xa3 pMALc2x, p2x pBV220 pGEM Ex1, pGEM7ZF(+), pTrc99A, pTwin1, pEZZ18 pkk232-8,pkk 233-3,pACYC184,pBR322,pUC119 pTYB1,pTYB2,pTYB4,pTYB11 pBlueScript SK (+),pBlueScript SK(-)pLLP ompA, pINIIIompA, pMBP-P ,pMBP-C, 大肠杆菌冷激质粒: pColdI pColdII pColdIII pColdTF 原核共表达质粒: pACYCduet-1,pETduet-1,pCDFduet-1,pRSFduet-1 Takara公司大肠杆菌分子伴侣: pG-KJE8 pGro7 pKJE7 pGTf2 pTf16 大肠杆菌宿主细胞: DH5a JM101 JM103

相关主题
文本预览
相关文档 最新文档