一元二次方程解决动点问题
- 格式:docx
- 大小:44.65 KB
- 文档页数:2
一元二次方程动点问题的解题技巧
关于二次函数动点问题的解答方法:
1、求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;
2、求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
3、根据图象的位置判断二次函数ax+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
4、二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标。
5、与二次函数有关的还有二次三项式,二次三项式ax+bx+c﹙a≠0﹚本身就是所含字母x的二次函数。
完整版)一元二次方程解决动点问题研究目标】1.回顾几何图形中动点的行走路程;2.理解等量关系;3.掌握列出关于动点的一元二次方程;4.灵活选用适当的方法解一元二次方程;5.合理舍掉其中一个根。
重点难点】重点:用一元二次方程解决动点问题;难点:分析动点的运动,列出一元二次方程。
导学流程】一)了解感知:一般动态问题的解法是“动中求静”,即按题意确定动点的一个基本位置,然后按照这个基本位置作出恰当的图形,再按照题意逐步探索和求解。
完成课本56页C组1题。
二)深入研究:1.在等腰直角△ABC中,AB=BC=8cm,动点P从A点出发,沿AB向B移动,通过点P引平行于BC,AC的直线与AC,BC分别交于R、Q.当AP等于多少厘米时,平行四边形PQCR的面积等于16cm²?2.在△ABC中,∠B=90°,AB=BC=5cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从B开始沿边BC向点C以2cm/s的速度移动,若一动点运动到终点,则另一个也随之停止。
1)如果P、Q分别从A、B两点同时出发,那么几秒后,△PBQ的面积等于4cm²?2)在(1)中,△PBQ的面积能否等于7cm²?说明理由。
三)迁移运用:1.在矩形ABCD中,AB=5cm,BC=7cm,点P从点A开始以1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B同时出发了t秒,直至两动点中某一点到达端点后停止(即0<t<3.5)1)经过几秒后,PQ的长度等于5?DC2)经过几秒后,△BPQ的面积等于4?3)经过几秒后,DP=DQ?XXX学生课堂导学提纲编号:SXTG-025使用时间:2014-9-21编制人:XXX一、知识点梳理本节课我们将研究三角函数的相关概念和性质,包括正弦、余弦、正切等基本概念,以及它们的定义和性质。
二、课堂讲解1.三角函数的定义三角函数是一类最基本的函数,它们的定义涉及到三角形的角度和边长。
24.4 一元二次方程的应用(6)班级___________ 姓名__________ 小组__________ 分数____________ 卷面Ⅰ卷错题重现(20分)1.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?某商场经销的太阳能路标,标价为4000元/个,优惠办法是:一次购买数量不超过80个,按标价收费;一次购买数量超过80个,每多买1个,所购路灯每个可降价8元,但单价最低不能低于3200元/个,若一顾客一次性购买这样的路灯用去516000元,则该顾客实际购买了多少个路灯?Ⅱ卷当堂检测(80分)一、选择题(每题3分,共15分)1.【王沛青】配方法解方程2420x x-+=,下列配方正确的是()A.2(2)2x-=B.2(2)2x+=C.2(2)2x-=-D.2(2)6x-=2.【马雪爱】一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m. 若梯子的底端水平向外滑动1m,梯子的顶端滑动()A 851B 851C 516D 6513.【宋玉珍】直角三角形的面积是30,两直角边长的和是17,则斜边长为()A 17B 26C 30D 134.【杨阳】某种衬衣价格经过两次降价后,由每件150元降至96元,则平均每次降价的百分率是()A 20%B 27%C 28%D 32%5.【王沛青(改编)】方程(3)3x x x=)A123,1x x== B123,1x x==- C123x x==121x x==-二、填空题(每空3分,共15分)6.【宋玉珍】两个相邻偶数的积为168,则这两个偶数是____________。
7.【杨阳】当m 时,关于x的方程5)3(72=-+-xxm m是一元二次方程;8.【马雪爱】某果农2006年的年收入为8万元,由于暴雨,2008年年收入减少到5万元,设平均每年的降低率为x,根据题意列出的方程是.9.【宋玉珍】在一次同学聚会时,大家一见面就相互握手.有人统计了一下,大家一共握了45次手,参这次聚会的同学共有人.10.【宋玉珍】如果21xx、是方程0632=--xx的两个根,那么221)(xx-= __.三、解答题11. 【马雪爱20分】解一元二次方程(1)0152=+-xx(2)052222=--xx;(3)23(5)2(5)x x -=- (4)24120x x +-= (用配方法)12.【孙萌10分】在直角三角形ABC 中,AB=BC=12cm ,点D 从点A 开始以2cm/s 的速度沿AB 边向点B 移动,过点D 做DE 平行于BC,DF 平行于AC,点E.F 分别在AC,BC 上,问:点D 出发几秒后四边形DFCE 的面积为20cm ²?13.【杨阳10分】在△ABC 中, AC=50cm, CB=40cm, ∠C=90°,点P 从点A 开始沿AC 边向点C 以2cm/s 的速度移动, 同时另一点Q 由C 点以3cm/s 的速度沿着CB 边移动,几秒钟后, △PCQ 的面积等于450cm ²?14.【王沛青10分】在直角三角形ABC 中,∠B=90°,AB=6厘米,BC=3厘米,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从B 开始沿边BC 向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒后PQ 距离等于42厘米。
Day5:一元二次方程之动点问题一元二次方程解决问题1.动点问题几何图形应用题,关键是将点的运动关系表示出来,找出未知量与已知量的内在联系,根据面积或体积公式列出方程.常见题型:选择题、解答题,求最值问题.易错点:找准动点的关系.中考回顾:常考,求最值或三角形为直角三角形等等.例1如图,点O 在线段AB 上,AO=1,OB=2,OC 为射线,且∠BOC=120°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 作匀速直线运动.设运动时间为t 秒,当△ABP 为直角三角形时,t 的值为()A.t=1B.t=1或8﹣C.t=8D.t=1或8例2如图,已知△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点停止运动时,另一点也随之停止,其中P、Q不与A、B重合.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm?(3)在(1)中,△PBQ的面积能否等于7cm2?请说明理由.例3如图,在平面直角坐标系中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒,则当t为何值时,△PBQ为直角三角形?参考答案1.【答案】B【考点】本题考查了动点问题,结合三角形,注意画出图形,帮助理解.【解析】如图1,当∠PAB=90°时,∵∠BOC=120°,∴∠AOP=60°,∴∠APO=30°,∴OP=2OA=2,∵OP=2t,∴t=1;如图2,当∠APB=90°,过P 作PD⊥AB,∵∠OPD=120°﹣90°=30°,∴OD=12∴AD=AO﹣OD=1﹣t,在Rt△ABP 中,根据勾股定理得:AP 2+BP 2=AB 2,即(2+t)222+(1﹣t)2=32,解得:t=8﹣(负值舍去);当∠ABP=90°时,此情况不存在;综上,当t=1或t=8﹣时,△ABP 是直角三角形.2.【答案】(1)1秒(2)2秒(3)不能【考点】一元二次方程在三角形中动点问题的应用.【解析】(1)设x 秒后,△PBQ 的面积等于4cm².此时,AP=x cm,PB=(5-x)cm,BQ=2x cm,由S △PBQ =4BQ PB 21=∙得()42-521=∙x x ,整理得0452=+-x x ,解得x 1=1,x 2=4.当x=4时,2x=8>7,不合要求.所以1秒后,△PBQ 的面积等于4cm².(2)设x 秒后,PQ 的长度等于5cm.由PB 2+BQ 2=5²得(5-x)²+(2x)²=5²整理得x²-2x=0,解得x 1=0(舍去),x 2=2.经检验,x=2符合要求,所以2秒后,PQ 的长度等于5cm.(3)不能.理由:设x 秒后,△PBQ 的面积等于7cm²,由题意得()72-521=∙x x ,整理得x²-5x+7=0,03-28-25<==∆,此方程无解,所以△PBQ 的面积不可能等于7cm².3.【答案】t=2或55+=t 或5-5=t 【考点】该题考查的是一元二次方程与直角坐标系结合的动点应用题型.【解析】过点P 作PG⊥OC,垂足为G.在Rt△POG 中,∵∠POG=45°,∴∠OPG=45°,∵OP=t 2,∴OG=PG=t,∴点P(t,t),又∵Q(2t,0),B(6,2),根据勾股定理可得PB²=(6-t)²+(2-t)²,QB²=(6-2t)²+2²,PQ²=(2t-t)²+t²=2t².在P、Q 移动过程中,PQ 始终与OD 垂直,容易得知∠BPQ 不可能等于90°.①若∠PQB=90°,则有PQ²+QB²=PB²,即2t²+[(6-2t)²+2²]=(6-t)²+(2-t)²,整理得4t²-8t=0,解得t 1=0(舍去),t 2=2,∴t=2.②若∠PBQ=90°,则有PB²+QB²=PQ²,∴[(6-t)²+(2-t)²]+[(6-2t)²+2²]=2t²,整理得t²-10t+20=0,解得t=5±5.∴当t=2或55+=t 或5-5=t 时,△PQB 为直角三角形.。
4.动点问题例1:如图:在Rt △ACB 中,∠C=90°,点P 、Q 同时由A 、B 两点 出发分别沿AC 、BC 方向向 点C 匀速移动,它们的速度都是1m/s ,几秒后△PCQ 的面积为 Rt △ACB 面积的一 半?变式练习: 1、 如图:在△ABC 中,∠B=90°,点P 从点A 开始沿AB 边向点B 以1厘米/秒的速度移动,点Q 从点B 开始,沿BC 边向点C 以2厘米/秒的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8平方厘米?AB C P Q 6cm 8cm2、如图,在△ABC 中,AB=6cm ,AC=12cm 动点D 从A 点出发到B 点为止,运动的速度为1cm/秒;同时动点E 从C 点出发到A 点为止,点E 运动的速度为2cm/秒那么当点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是( )3.如图,在矩形ABCD 中,AB=3,BC=4,点P 以每秒2个单位长度的速度从点C 出发,沿CA 向点A 运动;点Q 同时以每秒1个单位长度的速度从点A 出发,沿AB 向点B 运动,设P 、Q 两点移动t 秒(1)求△APQ 与△ABC 相似时t 的值(2)求四边形BCPQ 面积S 与时间t 的关系式(3)求△APQ 为等腰三角形时t 的值B CE D A例2:一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20 海里的圆形区域(包括边界)都属台10风区.当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,请说明理由.变式练习:某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标。
列一元二次方程解应用题的四种类型(利润、增长率、面积、动点问题)一、商品销售问题售价—进价=利润单价×销售量=销售额一件商品的利润×销售量=总利润某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.如果商场每天要盈利1200元,每件衬衫应降价多少元?分析:设每件衬衫应该降价x元,则每件衬衫的盈利元;商场每天可以多销售件,则商场降价后每天售出的数量为件。
根据:利润=单件的利润╳数量,我们可以列出方程:解这个方程得:答:;例1. 某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3圆;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?练习:1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价3、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?4、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且RP与x的关系式分别为R=500+30X,P=170—2X。
一元二次方程与动点问题某些动点问题,常可以建立以时间为未知数的一元二次方程模型.通过求解模型,往往会得到两个实数解,这时要根据实际问题作出取舍.既然是动点问题,结果就有多种可能,因此,有时方程模型的两个实数解都是符合题意的,这一点要注意.解决动点问题,我们必须先弄清楚动点是谁?是单动点还是双动点?运动的路径怎样?方向和速度怎样?运动停止的时间怎样?设运动时间为t ,会用t 表示出各个相关的量,找到等量关系并列出关于t 的方程模型.一般情况下,运动路径由几段构成,就需要分几种情况进行讨论,最后做出总结.例1. 如图,在Rt △ABC 中,︒=∠90ACB ,10=AB cm,8=BC cm,点P 从点A 开始沿射线AC 向点C 以2 cm/s 的速度移动,点Q 从点C 开始沿边CB 向点B 以1 cm/s 的速度移动.如果点P 、Q 分别从点A 、C 同时出发,运动的时间为t s,当点Q 运动到点B 时,两点停止运动.(1)当点P 在线段AC 上运动时,P 、C 两点之间的距离为_________cm;(用含t 的代数式表示)(2)在运动的过程中,是否存在某一时刻,使得△PQC 的面积是△ABC 的面积的61若存在,求出t 的值;若不存在,说明理由.分析:(1)由题意可知,t AP 2=cm ,t CQ =cm .由勾股定理求出6=AC cm .所以()t PC 26-=cm ,即P 、C 两点之间的距离为()t 26-cm ;(2)用含t 的代数式表示△PQC 的面积,由ABC PQC S S ∆∆=61建立关于t 的一元二次方程,由方程是否有实数根说明t 的存在性.由于点P 沿射线AC 运动,且运动停止时间为8s,所以需要分两种情况进行讨论:点P 在线段AC 上运动(t <0≤3)和点P 在线段AC 的延长线上运动(t <3≤8).解:(1)()t 26-;(2)由题意可知:t CQ =cm.当t <0≤3时,()t PC 26-=cm.∴()t t t t PC CQ S PQC 32621212+-=-=⋅=∆(cm 2) 由486216161=⨯⨯⨯==∆∆ABC PQC S S 可得: 432=+-t t 即0432=+-t t∵()074432<-=⨯--=∆ ∴该方程无实数根;当t <3≤8时,()t PC 26-=cm.∴()46221=-t t ,即0432=--t t 解之得:1,421-==t t (不符合题意,舍去)综上所述,当4=t 时,△PQC 的面积是△ABC 的面积的61. 例2. 如图,在矩形ABCD 中,5=AB cm,6=BC cm,点P 从点A 开始沿AB 向终点B 以1 cm/s 的速度移动,与此同时,点Q 从点B 开始沿BC 向终点C 以2 cm/s 的速度移动,如果点P 、Q 分别从点A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动的时间为t s.(1)填空:=BQ _________,=PB _________;(用含t 的代数式表示)(2)当t 为何值时,PQ 的长度等于102cm? (3)是否存在t 的值,使得五边形APQCD 的面积等于26 cm 2若存在,请求出此时t 的值;若不存在,请说明理由.解:(1)t 2cm,()t -5cm;(2)在Rt △BPQ 中,由勾股定理得:222PQ PB BQ =+∴()()()22210252=-+t t 解之得:3=t∴当3=t 时,102=PQ cm;(3)3065=⨯=⋅=BC AB S ABCD 矩形 cm 2若五边形APQCD 的面积等于26 cm 2,则4=∆BPQ S cm 2 ∴()45221=-⨯t t ∴4,121==t t (不符合题意,舍去)∴存在1=t ,使得五边形APQCD 的面积等于26 cm 2.例3. 如图,在△ABC 中,︒=∠90B ,6=AB cm,12=BC cm,点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,几秒钟后△PBQ 的面积等于8 cm 2(2)在(1)中,△PBQ 的面积能否等于10 cm 2说明理由. CA BQP解:(1)设x 秒后△PBQ 的面积等于8 cm 2.由题意可知:x AP =cm,x BQ 2=cm∴()x BP -=6cm∵()86221=-⨯=∆x x S PBQ ∴0862=+-x x解之得:4,221==x x∴2s 或4s 后△PBQ 的面积等于8 cm 2;(2)由题意可得:()106221=-⨯x x ∴01062=+-x x∵()0410462<-=⨯--=∆∴该方程无实数根∴△PBQ 的面积不能等于10 cm 2.。
Day5 :一元二次方程之动点问题一元二次方程解决问题1.动点问题几何图形应用题,要点是将点的运动关系表示出来,找出未知量与已知量的内在联系,依照面积或体积公式列出方程.常有题型:选择题、解答题,求最值问题.易错点:找准动点的关系.中考回顾:常考,求最值或三角形为直角三角形等等.例 1如图,点O 在线段 AB 上,AO=1 , OB=2 , OC为射线,且∠BOC=120°,动P点以每秒2个单位长度的速度从点O 出发,沿射线OC 作匀速直线运动.设运动时间为t 秒,当△ABP为直角三角形时,t 的值为()A.t=1B.﹣33 t=1 或1+8C.t=1+ 33D.t=1 或1+338811 / 4例 2如图,已知△ ABC中,∠ B=90 °,AB=5cm ,BC=7cm ,点 P 从点 A 开始沿 AB 边向点 B 以 1cm/s的速度搬动,点Q 从点 B 开始沿 BC 边向点 C 以 2cm/s的速度搬动,当其中一点停止运动时,另一点也随之停止,其中P、Q 不与 A、B 重合.的面PBQ积等于 4cm 2?( 1)若是 P、Q 分别从 A、B 同时出发,那么几秒后,△( 2)若是 P、Q 分别从 A、B 同时出发,那么几秒后,的长度PQ等于 5cm ?( 3)在( 1 )中,△ 的PBQ面积能否等于 7cm 2?请说明原由.例 3如图,在平面直角坐标系中,过原点O 及点 A( 0,2)、C( 6,0)作矩OABC形,∠AOC 的均分线交 AB 于点 D. 点 P 从点 O 出发,以每秒 2 个单位长度的速度沿射线OD 方向搬动;同时点 Q 从点 O 出发,以每秒 2 个单位长度的速度沿 x 轴正方向搬动. 设搬动时间为 t 秒,则当 t 为何值时,△ PBQ 为直角三角形?22 / 4参照答案1.【答案】 B【考点】本题观察了动点问题,结合三角形,注意画出图形,帮助理解.【剖析】如图 1 ,当∠PAB=90°时,∵∠BOC=120°,∴∠AOP=60 °,∴∠APO=30 °,∴OP=2OA=2 ,∵ OP=2t ,∴t=1 ;如图 2 ,当∠APB=90 °,过P作 PD⊥ AB ,∵∠ OPD=120°﹣ 90 ° =30 °,1, PD=OP?sin ∠ POD=3 t ,∴ OD= OP=t2∴ AD=AO ﹣ OD=1 ﹣ t ,在 Rt △ ABP中,依照勾股定理得:222,即(2+t2+)(2222,+BPAP=AB 3 t ) + ( 3 t )+ ( 1﹣ t )=3﹣331+解得: t=(负值舍去);8当∠ ABP=90°时,此情况不存在;综上,当 t=1或 t=﹣ABP是直角三角形.1+ 33 时,△82.【答案】( 1)1秒( 2)2秒( 3)不能够【考点】一元二次方程在三角形中动点问题的应用.【剖析】( 1 )设x 秒后,△PBQ的面积等于4cm2.此时,AP=xcm , PB= ( 5-x) cm , BQ=2xcm ,由 S△PBQ= 1PB BQ 4 得15 - x 2 x 4,22整理得 x 240,解得 x12 5x=1 ,x=4.当 x=4 时, 2x=8>7 ,不合要求.所以 1 秒后,△PBQ的面积等于 4cm2.( 2 )设x 秒后,PQ的长度等于5cm.33 / 4由 PB2 +BQ 2=52 得(5-x)2+(2x)2=52整理得 x2-2x=0,解得x1=0(舍去),x2=2.经检验,x=2吻合要求,所以 2 秒后,PQ的长度等于5cm.( 3 )不能够.原由:设x秒后,△PBQ的面积等于7cm2 ,12x 7 ,由题意得5- x2, 25-28-3 0,整理得 x2-5x+7=0此方程无解,所以△的PBQ面积不能能等于 7cm2.3.【答案】 t=2或t5 5 或 t 5 - 5【考点】该题观察的是一元二次方程与直角坐标系结合的动点应用题型.【剖析】过点 P 作 PG⊥ OC,垂足为 G.在 Rt △ POG中,∵∠POG=45 °,∴∠OPG=45 °,∵ OP= 2t,∴OG=PG=t ,∴点P( t , t ),又∵Q( 2t , 0 ),B( 6,2 ),依照勾股定理可得PB2= ( 6-t ) 2+ ( 2-t) 2 , QB2= ( 6-2t) 2+22,PQ2= ( 2t-t) 2+t2=2t2.在 P、Q 搬动过程中,始PQ终与 OD 垂直,简单得知∠不BPQ可能等于 90 °.①若∠ PQB=90°,则有PQ2+QB2=PB2,即2t2+[ ( 6-2t ) 2+22]=( 6-t ) 2+ ( 2-t) 2 ,整理得 4t2-8t=0,解t得1=0 (舍去),t2 =2 ,∴ t=2.②若∠ PBQ=90°,则有PB2+QB2=PQ2,∴ [ ( 6-t) 2+ ( 2-t) 2]+[( 6-2t) 2+22]=2t2,整理得 t2-10t+20=0,解t=5得±5 .∴当 t=2 或t5 5 或 t 5- 5 时,△PQB为直角三角形.44 / 4。
专题1.7 利用一元二次方程解决几何中的三大动点问题【苏科版】考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,可加强学生对利用一元二次方程解决几何中的三大动点问题的理解!【类型1 利用一元二次方程解决三角形中的动点问题】1.(2023春·广东江门·九年级校考期中)如图,在等腰中,,,动点P从点A出发沿向点B移动,作,,当的面积为面积的一半时,点P移动的路程为()A.B.C.D.2.(2023春·浙江·九年级期末)如图,在等腰中,,动点P从点A出发沿折线向点终B以的速度运动,于点Q.设运动时间为,当s时,的面积为.3.(2023春•驻马店期末)如图,已知AG CF,AB⊥CF,垂足为B,AB=BC=3 ,点P是射线AG上的动点(点P不与点A重合),点Q是线段CB上的动点,点D是线段AB的中点,连接PD并延长交BF于点E,连接PQ,设AP=2t,CQ=t,当PQE是以PE为腰的等腰三角形时,t的值为.4.(2023春·广东江门·九年级校考期中)如图,是边长为6cm的等边三角形,动点,同时从,两点出发,分别沿,匀速移动,它们的速度都是2,当点到达点时,,两点都停止运动,设点的运动时间为,解答下列问题:(1)当为何值时,是以为直角的直角三角形?(2)是否存在,使四边形的面积是面积的若存在,求出的值;若不存在,请说明理由.5.(2023春·江苏宿迁·九年级统考期末)如图,在ABC中,∠B=90°,AB=12cm,BC=24cm,动点P 从点A出发沿边AB向点B以2cm/s的速度移动,同时动点Q从点B出发沿边BC向点C以4cm/s的速度移动,当P运动到B点时P、Q两点同时停止运动,设运动时间为ts.(1)BP=cm;BQ=cm;(用t的代数式表示)(2)D是AC的中点,连接PD、QD,t为何值时PDQ的面积为40cm26.(2023·浙江金华·九年级期中)如图,在中,厘米,厘米,于点D,动点P从点A出发以每秒1厘米的速度在线段上向终点D运动.设动点运动时间为t秒.(1)求的长;(2)当的面积为15平方厘米时,求t的值;(3)动点M从点C出发以每秒2厘米的速度在射线上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得?若存在,请求出t的值;若不存在,请说明理由.7.(2023春·九年级单元测试)如图,在Rt ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以cm/s的速度向点D运动,过P点作矩形PDFE(E点在AC上),设ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8).(1)经过几秒钟后,S1=S2?(2)经过几秒钟后,S1+S2最大?并求出这个最大值.8.(2023春·江苏淮安·九年级统考期中)Rt ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒(1)如图1,过点P作PD⊥AC,交AB于D,若PBC与P AD的面积和是ABC的面积的,求t的值;(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与ABC重叠部分的面积为8,求t的值.【类型2 利用一元二次方程解决四边形中的动点问题】1.(2023春·陕西渭南·九年级统考期末)如图,在矩形中,点是上的一个动点,把沿向矩形内部折叠,当点的对应点恰好落在的平分线上时,的长为.2.(2023春·河北邯郸·九年级统考期中)如图所示,A、B、C、D为矩形的四个顶点,,,动点P、Q分别从点A、C同时出发,点P以的速度向B移动,一直到达B为止;点Q以的速度向D移动.当P、Q两点从出发开始秒时,点P和点Q的距离是.(若一点到达终点,另一点也随之停止运动)3.(2023春·山东烟台·九年级统考期中)如图,在矩形中,,,动点P、Q分别以,的速度从点A,C同时出发,沿规定路线移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,问经过多长时间P,Q两点之间的距离是?(2)若点P沿着移动,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间的面积为?4.(2023春·浙江杭州·九年级期中)如图,点,分别在平行四边形的边,上,且,,,动点从点出发沿着线段向终点运动,同时点从点出发沿着折线段向终点运动,且它们同时到达终点,设点运动的路程为,的长度为,且(为常数,).(1)求证:四边形是平行四边形.(2)求的长.(3)当时,①求的值;②连结,,当为直角三角形时,求所有满足条件的的值.5.(2023春·江西吉安·九年级校联考期中)如图,在ABD中,AB=AD,AO平分∠BAD,过点D作AB的平行线交AO的延长线于点C,连接BC(1)求证:四边形ABCD是菱形.(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程的两根,求AB的长以及菱形ABCD的面积.(3)若动点M从A出发,沿AC以2m/s的速度匀速直线运动到点C,动点N从B 出发,沿BD以1m/s的速度匀速直线运动到点D,当M运动到C点时运动停止.若M、N同时出发,问出发几秒钟后,MON 的面积为?6.(2023春·浙江·九年级期中)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形;(2)当t为何值时,以C,D,Q,P为顶点的四边形面积等于60cm2?(3)当0<t<10.5时,是否存在点P,使PQD是等腰三角形?若存在,请直接写出所有满足要求的t的值;若不存在,请说明理由.7.(2023春·浙江杭州·九年级校考期中)如图,平行四边形ABCD中,AB=4cm,AD=2cm,∠C=30°.点P以2cm/s的速度从顶点A出发沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点A出发沿折线A﹣D﹣C向点C运动,当其中一个动点到达末端停止运动时,另一点也停止运动.设运动时间为ts.(1)求平行四边形ABCD的面积;(2)求当t=0.5s时,APQ的面积;(3)当APQ的面积是平行四边形ABCD面积的时,求t的值.8.(2023春·广东惠州·九年级惠州一中校考开学考试)如图,AC是正方形ABCD的对角线,AD=8,E是AC的中点,动点P从点A出发,沿AB方向以每秒1个单位的速度向终点B运动,同时动点Q从点B出发,以每秒2个单位的速度先沿BC方向运动到点C,再沿CD方向向终点D运动,以EP、EQ为邻边作平行四边形PEQF,设点P运动的时间为t秒(0<t<8)(1)当t=1时,试求PE的长;(2)当点F恰好落在线段AB上时,求BF的长;(3)在整个运动过程中,当▱PEQF为菱形时,求t的值.9.(2023春·九年级单元测试)如图,正方形的边长为,动点从点出发,以的速度沿方向向点运动,动点从点出发,以的速度沿方向向点运动,若,两点同时出发,运动时间为.(1)连接,,,当为何值时,面积为(2)当点在上运动时,是否存在这样的的值,使得是以为腰的等腰三角形?若存在,请求出符合条件的的值;若不存在,请说明理由.10.(2023·江苏·九年级假期作业)如图,在矩形中,,,动点P、Q分别从点A、C同时出发,点P以的速度向点B移动,一直到点B为止,点Q以的速度向点D移动(点P停止移动时,点Q也停止移动).设移动时间为t(s).连接,.(1)用含t的式子表示线段的长:__________;__________.(2)当t为何值时,P、Q两点间的距离为?(3)当t为何值时,四边形的形状可能为矩形吗?若可能,求出t的值;若不可能,请说明理由.【类型3 利用一元二次方程解决坐标系中的动点问题】1.(2023春·陕西渭南·九年级统考期末)如图①,在矩形中,,对角线、相交于点,动点由点出发,沿运动,设点的运动路程为,的面积为,与的函数关系图像如图②所示,则边的长为()A.3 B.4 C.5 D.62.(2023·河南驻马店·统考三模)如图,在平面直角坐标系中,矩形的边在y轴上,边在x轴上,点B的坐标是,D为边上一个动点,把沿折叠,若点A的对应点恰好落在矩形的对角线上,则点的坐标为()A.B.C.D.3.(2023春·四川德阳·九年级统考期末)如图①,在中,于D,,,,点E 是上一动点(不与点A,D重合),在内作矩形,点F在上,点G、H在上,设,连接.(1)设矩形的面积为,的面积为,令,求y关于x的函数解析式;(要求写出自变量的取值范围)(2)如图②,点M是(1)中得到的函数图象上的任意一点,N的坐标为,,当为等腰三角形时,求点M的坐标.4.(2023春·广东佛山·九年级佛山市华英学校校考期中)如图,平面直角坐标系中,已知点,点,过点作轴的平行线,点是在直线上位于第一象限内的一个动点,连接,.(1)求出__________;(2)若平分,求点的坐标;(3)已知点是直线上一点,若是以为直角边的等腰直角三角形,求点的坐标.5.(2023春·广东江门·九年级江门市福泉奥林匹克学校校考期中)已知,如图:在直角坐标系中,正方形AOBC的边长为4,点D,E分别是线段AO,BO上的动点,D点由A点向O点运动,速度为每秒1个单位,E点由B点向O点运动,速度为每秒2个单位,当一个点停上运动时,另一个点也随之停止,设运动时间为t(秒)(1)如图1,当t为何值时,DOE的面积为6;(2)如图2,连接CD,与AE交于一点,当t为何值时,CD⊥AE;(3)如图3,过点D作DG OB,交BC于点G,连接EG,当D,E在运动过程中,使得点D,E,G三点构成等腰三角形,求出此时t的值6.(2023春·浙江·九年级期中)如图直角坐标系中直线与轴正半轴、轴正半轴交于,两点,已知,,,分别是线段,上的两个动点,从出发以每秒个单位长度的速度向终点运动,从出发以每秒个单位长度的速度向终点运动,两点同时出发,当其中一点到达终点时整个运动结束,设运动时间为(秒).(1)求线段的长,及点的坐标;(2)为何值时,的面积为;(3)若为的中点,连接,,以,为邻边作平行四边形.是否存在时间,使轴恰好将平行四边形的面积分成两部分,若存在,求出的值.7.(2023春·浙江宁波·九年级校考期中)在平面直角坐标系中,A,B点的坐标分别为(0,4),(-4,0),点坐标为,点是射线BO上的动点,满足BE=1.5OP,以,为邻边作.(1)当m=2时,求出PE的长度;(2)当m﹥0时,是否存在m的值,使得的面积等于ABO面积的,若存在求出m的值,若不存在,请说明理由;(3)当点Q在第四象限时,点Q关于E点的对称点为Q′,点Q′刚好落在AB上时,求m的值(直接写出答案).8.(2023春·浙江·九年级期中)如图1,在平面直角坐标系中,已知四边形的顶点,分别在轴和轴上.直线经过点,与轴交于点已知,,平分,交于点,动点从点出发沿着线段向终点运动,动点从点出发沿着线段向终点运动,,两动点同时出发,且速度相同,当点到达终点时点也停止运动,设.(1)求和的长;(2)如图,连接,,求证:四边形为平行四边形;(3)如图,连接,,当为直角三角形时,求所有满足条件的值.9.(2023春·浙江·九年级期中)如图1,已知,点O为坐标原点,点C在x轴的正半轴上.在中,边的角平分线交于点D.(1)求两点的坐标;(2)若点M是直线上的一个动点,点是坐标平面上的点,以点为顶点的四边形是菱形时,请直接写出点的坐标;(3)如图2,点P从点O出发,以每秒个单位长度的速度沿射线方向移动:同时点Q从点O出发,以每秒2个单位长度的速度沿射线方向移动,连结,设移动时间t秒.当t为何值时,是直角三角形.10.(2023春·重庆·九年级重庆市育才中学校联考期中)在平面直角坐标系中,直线l经过点和点.点C的横坐标为,点D为线段的中点.(1)求直线l的解析式.(2)如图1,若点P为线段上的一个动点,当的值最小时,求出点P坐标.(3)在(2)的条件下,点Q在线段上,若是等腰三角形,请直接写出满足条件的点Q的横坐标,并写出其中一个点Q的横坐标的求解过程.11.(2023春·河南南阳·九年级南阳市第三中学校考期末)如图,平行四边形位于直角坐标系中,为坐标原点,点,点交轴于点动点从点出发,沿方向以每秒1个单位长度的速度终点运动,同时动点从点出发,沿射线的方向以每秒2个单位长度的速度运动,当点运动到点时,点随之停止运动,运动时间为t(秒).(1)用t的代数式表示:________,________(2)若以A,B,E,F为顶点的四边形是平行四边形时,求t的值.(3)当恰好是等腰三角形时,求t的值.12.(2023·辽宁沈阳·统考一模)已知:如图,在平面直角坐标系中,矩形AOBC的顶点C的坐标是(6,4),动点P从点A出发,以每秒1个单位的速度沿线段AC运动,同时动点Q从点B出发,以每秒2个单位的速度沿线段BO运动,当Q到达O点时,P,Q同时停止运动,运动时间是t秒(t>0).(1)如图1,当时间t=秒时,四边形APQO是矩形;(2)如图2,在P,Q运动过程中,当PQ=5时,时间t等于秒;(3)如图3,当P,Q运动到图中位置时,将矩形沿PQ折叠,点A,O的对应点分别是D,E,连接OP,OE,此时∠POE=45°,连接PE,求直线OE的函数表达式.专题1.7 利用一元二次方程解决几何中的三大动点问题【苏科版】考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,可加强学生对利用一元二次方程解决几何中的三大动点问题的理解!【类型1 利用一元二次方程解决三角形中的动点问题】1.(2023春·广东江门·九年级校考期中)如图,在等腰中,,,动点P从点A出发沿向点B移动,作,,当的面积为面积的一半时,点P移动的路程为()A.B.C.D.【答案】B【分析】设AP=x cm,则PB=(8−x)cm,求出∠A=45°,∠APR=90°,得到PR=P A=x cm,然后根据▱PQCR 的面积为ABC面积的一半列方程求解即可.【详解】解:设AP=x cm,则PB=(8−x)cm,∵∠B=90°,AB=BC=8cm,∴∠A=45°,∵PR BC,∴∠APR=90°,∴PR=P A=x cm,∵▱PQCR的面积为ABC面积的一半,∴,解得:,∴点P移动的路程为4cm.故选:B.【点睛】本题主要考查了平行四边形的性质,一元二次方程的应用,根据几何图形的性质得出方程是解题的关键.2.(2023春·浙江·九年级期末)如图,在等腰中,,动点P从点A出发沿折线向点终B以的速度运动,于点Q.设运动时间为,当s时,的面积为.【答案】或【分析】利用等腰直角三角形的性质求出AB,设时间为秒,分和两种情况结合三角形面积分别计算.【详解】解:∵在等腰中,,,∴,,.∵于点.∴设当时间为秒时,的面积为.当时,,,,即,解得:或(舍去).当时,,,,即,解得:或(舍去).综上所述:当或秒时,的面积为.故答案为:或.【点睛】本题考查了等腰直角三角形的性质,勾股定理,三角形面积公式,解一元二次方程,解题的关键是理解点的运动情况,注意分类讨论.3.(2023春•驻马店期末)如图,已知AG CF,AB⊥CF,垂足为B,AB=BC=3 ,点P是射线AG上的动点(点P不与点A重合),点Q是线段CB上的动点,点D是线段AB的中点,连接PD并延长交BF于点E,连接PQ,设AP=2t,CQ=t,当PQE是以PE为腰的等腰三角形时,t的值为.【答案】或【分析】以B为原点、直线CF为x轴,直线AB为y轴,建立直角坐标系,先证明AP=BE,即可得E点坐标为(2t,0),CQ=t,BQ=3-t,P点坐标为(-2t,3),C点坐标为(-3,0),A点坐标为(0,3),Q点坐标为(t-2,0),根据Q点在线段BC上,P点不与A点重合,可得0<t<3,进而有BE=2t,BQ=3-t,QE=BQ+EB=3+t,利用勾股定理有:,,,根据PQE是以PE为腰的等腰三角形,分类讨论:当PQ=PE时,当QE=PE时两种情况,即可求解.【详解】以B为原点、直线CF为x轴,直线AB为y轴,建立直角坐标系,如图,∵,AB⊥CF,∴AB⊥AG,∴∠GAB=∠ABF=90°,∵D点为AB中点,∴AD=BD,∴结合∠ADP=∠BDE可得APD≌△BED,∴AP=BE,∵AP=2t,∴BE=2t,∴E点坐标为(2t,0),∵AB=BC=3,∴CQ=t,即BQ=3-t,P点坐标为(-2t,3),C点坐标为(-3,0),A点坐标为(0,3),∴Q点坐标为(t-3,0),∵Q点在线段BC上,P点不与A点重合,∴0<t<3,∵BE=2t,BQ=3-t,∴QE=BQ+EB=3+t,∴利用勾股定理有:,,,根据PQE是以为腰的等腰三角形,分类讨论:当PQ=PE时,有,整理:,解得(负值舍去),当QE=PE时,有,整理:,解得(0舍去),综上所述:t的值可以为,.故答案为:,.【点睛】本题考查了等腰三角形的性质、构建直角坐标系、勾股定理、全等三角形的判定与性质、一元二次方程的应用等知识,构建直角坐标系是快速解答此题的关键.解答时,需注意分类讨论的思想.4.(2023春·广东江门·九年级校考期中)如图,是边长为6cm的等边三角形,动点,同时从,两点出发,分别沿,匀速移动,它们的速度都是2,当点到达点时,,两点都停止运动,设点的运动时间为,解答下列问题:(1)当为何值时,是以为直角的直角三角形?(2)是否存在,使四边形的面积是面积的若存在,求出的值;若不存在,请说明理由.【答案】(1)1(2)不存在,理由见解析【分析】(1)当时,利用直角三角形的性质建立方程,解方程即可得;(2)假设存在某一时刻,使四边形的面积是面积的,从而可得,过点作于点,利用直角三角形的性质和勾股定理可得,再利用三角形的面积公式建立方程,然后利用一元二次方程根的判别式进行分析即可得出答案.【详解】(1)由题意得:,,为等边三角形,,当点到达点时,,则,∵,,,即,解得,符合题意;(2)不存在,使四边形的面积是面积的,理由如下:假设存在某一时刻,使四边形的面积是面积的,由(1)得:,,如图,过点作于点,,,,整理得:,此方程根的判别式为,方程无解,所以假设不成立,即不存在,使四边形的面积是面积的.【点睛】本题考查了等边三角形的性质、含角的直角三角形的性质、勾股定理、一元二次方程的应用等知识点,正确建立关于时间的方程是解题关键.5.(2023春·江苏宿迁·九年级统考期末)如图,在ABC中,∠B=90°,AB=12cm,BC=24cm,动点P 从点A出发沿边AB向点B以2cm/s的速度移动,同时动点Q从点B出发沿边BC向点C以4cm/s的速度移动,当P运动到B点时P、Q两点同时停止运动,设运动时间为ts.(1)BP=cm;BQ=cm;(用t的代数式表示)(2)D是AC的中点,连接PD、QD,t为何值时PDQ的面积为40cm2【答案】(1)(12﹣2t);4t(2)t=2或4【分析】(1)根据速度×时间=路程,列出代数式即可;(2)如图,过点D作DH⊥BC于H,利用三角形中位线定理求得DH的长度;然后根据题意和三角形的面积列出方程,求出方程的解即可.【详解】(1)根据题意得:AP=2tcm,BQ=4tcm,所以BP=(12﹣2t)cm.故答案是:(12﹣2t);4t.(2)如图,过点D作DH⊥BC于H,∵∠B=90°,即AB⊥BC,∴AB∥DH,又∵D是AC的中点,∴BH=BC=12cm,DH是ABC的中位线,∴DH AB=6cm,根据题意,得-(12﹣2t)-(24﹣4t)×6-2t×12=40,整理,得t2﹣6t+8=0,解得:t1=2,t2=4,即当t=2或4时,PBQ的面积是40cm2.【点睛】本题主要考查了一元二次方程的应用,解题的关键是读懂题意,找到关键描述语,列出等量关系.6.(2023·浙江金华·九年级期中)如图,在中,厘米,厘米,于点D,动点P从点A出发以每秒1厘米的速度在线段上向终点D运动.设动点运动时间为t秒.(1)求的长;(2)当的面积为15平方厘米时,求t的值;(3)动点M从点C出发以每秒2厘米的速度在射线上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得?若存在,请求出t的值;若不存在,请说明理由.【答案】(1)12厘米;(2)6秒;(3)存在t的值为2或或,使得S PMD=S ABC.【分析】①根据等腰三角形性质和勾股定理解答即可;②根据直角三角形面积求出PD×DC×=15即可求出t;③根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.【详解】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,PD=12-t,又∵由PDM面积为PD×DC=15,解得PD=6,∴t=6.(3)假设存在t,使得S PMD=S ABC.①若点M在线段CD上,即0≤t≤时,PD=12-t,DM=5-2t,由S PMD=S ABC,即×(12−t)(5−2t)=5,2t2-29t+50=0解得t1=12.5(舍去),t2=2.②若点M在射线DB上,即≤t≤12.由S PMD=S ABC得(12−t)(2t−5)=5,2t2-29t+70=0解得t 1=,t 2=.综上,存在t的值为2或或,使得S PMD=S ABC.【点睛】此题关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.7.(2023春·九年级单元测试)如图,在Rt ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以cm/s的速度向点D运动,过P点作矩形PDFE(E点在AC 上),设ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8).(1)经过几秒钟后,S1=S2?(2)经过几秒钟后,S1+S2最大?并求出这个最大值.【答案】(1) t=4 (2) t=6【分析】分别根据运动方式列出面积S1,S2关于t的函数关系,第一问令面积相等,第二问配方求最值. 【详解】解:S1=×8×t=8t,S2=t(8-t)=-2t2+16t,(1)由8t=-2t2+16t,解得t1=4,t2=0(舍去),∴当t=4秒时,S1=S2(2)∵S1+S2=8t+(-2t2+16t)=-2(t-6)2+72,∴当t=6时,S1+S2最大,最大为72【点睛】关于x的两次三项式,可以配方化为只含一个变量的式子,再利用平方的非负性求最值,必要是需要引入二次函数的内容求最值.8.(2023春·江苏淮安·九年级统考期中)Rt ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒(1)如图1,过点P作PD⊥AC,交AB于D,若PBC与P AD的面积和是ABC的面积的,求t的值;(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与ABC重叠部分的面积为8,求t的值.【答案】(1)t1=2,t2=4;(2)t的值为或2时,重叠面积为8.【分析】(1)先求出ABC的面积,然后根据题意可得AP=t,CP=6﹣t,然后再PBC与P AD的面积和是ABC的面积的,列出方程、解方程即可解答;(2)根据不同时间段分三种情况进行解答即可.【详解】(1)∵Rt ABC中,∠ACB=90°,AC=BC=6,∴S ABC=×6×6=18,∵AP=t,CP=6﹣t,∴△PBC与P AD的面积和=t2+×6×(6﹣t),∵△PBC与P AD的面积和是ABC的面积的,∴t2+×6×(6﹣t)=18×,解之,得t1=2,t2=4;(2)∵AP=t,PQ=2AP,∴PQ=2t,①如图1,当0≤t≤2时,S=(2t)2﹣t2=t2=8,解得:t1=,t2=﹣(不合题意,舍去),②如图2,当2≤t≤3时,S=×6×6﹣t2﹣(6﹣2t)2=12t﹣t2=8,解得:t1=4(不合题意,舍去),t2=(不合题意,舍去),③如图3,当3≤t≤6时,S=6×6﹣t2=8,解得:t1=2,t2=﹣2(不合题意,舍去),综上,t的值为或2时,重叠面积为8.【点睛】本题考查了三角形和矩形上的动点问题,根据题意列出方程和分情况讨论是解答本题的关键.【类型2 利用一元二次方程解决四边形中的动点问题】1.(2023春·陕西渭南·九年级统考期末)如图,在矩形中,点是上的一个动点,把沿向矩形内部折叠,当点的对应点恰好落在的平分线上时,的长为.【答案】或【分析】过点A1作A1F⊥BC于F,根据等腰直角三角形的判定可得为等腰直角三角形,设CF==x,从而得出BF= 7-x,CA1=,然后根据折叠的性质可得AB==5,再利用勾股定理求出x,即可求出结论.【详解】解:过点A1作A1F⊥BC于F∵四边形ABCD为矩形,平分∴∴△为等腰直角三角形,设CF==x则BF=BC-CF=7-x,CA1==由折叠的性质可得AB==5在Rt中,即解得:x1=3,x2=4∴CA1=或故答案为:或.【点睛】此题考查的是矩形与折叠问题,掌握矩形的性质、折叠的性质、勾股定理、等腰直角三角形的判定及性质和解一元二次方程是解决此题的关键.2.(2023春·河北邯郸·九年级统考期中)如图所示,A、B、C、D为矩形的四个顶点,,,动点P、Q分别从点A、C同时出发,点P以的速度向B移动,一直到达B为止;点Q以的速度向D移动.当P、Q两点从出发开始秒时,点P和点Q的距离是.(若一点到达终点,另一点也随之停止运动)【答案】2或【分析】设当P、Q两点从出发开始x秒时,点P和点Q的距离是10cm,此时,,利用勾股定理即可得出关于x的一元二次方程,解之即可得出结论.【详解】解:设当P、Q两点从出发开始x秒时,点P和点Q的距离是,此时,,如图,过作于,∵四边形是矩形,∴四边形,是矩形,∴,,∴,则,根据题意得:,解得:,.答:当P、Q两点从出发开始到2秒或秒时,点P和点Q的距离是10cm.故答案为:2或.【点睛】本题考查了矩形的性质与判定,一元二次方程的应用以及勾股定理,利用勾股定理找出关于x的一元二次方程是解题的关键.3.(2023春·山东烟台·九年级统考期中)如图,在矩形中,,,动点P、Q分别以,的速度从点A,C同时出发,沿规定路线移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,问经过多长时间P,Q两点之间的距离是?(2)若点P沿着移动,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间的面积为?【答案】(1)或;(2)4秒或6秒.【分析】(1)过点P作于E,构造直角三角形,利用勾股定理即可求得;(2)根据点P的三个位置进行分类讨论,表示出的底和高,代入面积公式即可求得;【详解】(1)解:过点P作于E,设x秒后,点P和点Q的距离是.,∴,;∴经过或,P、Q两点之间的距离是;(2)解:连接.设经过后PBQ的面积为.①当时,,∴,即,解得;②当时,,,则,解得,(舍去);③时,,则,解得(舍去).综上所述,经过4秒或6秒,的面积为.【点睛】本题考查了动点问题,相关知识点有:勾股定理求长度,解一元二次方程等知识点,分类讨论是本题的解题关键.4.(2023春·浙江杭州·九年级期中)如图,点,分别在平行四边形的边,上,且,,,动点从点出发沿着线段向终点运动,同时点从点出发沿着折线段向终点运动,且它们同时到达终点,设点运动的路程为,的长度为,且(为常数,).(1)求证:四边形是平行四边形.(2)求的长.(3)当时,①求的值;②连结,,当为直角三角形时,求所有满足条件的的值.【答案】(1)见解析;(2)8;(3)①2;②,,【分析】(1)根据已知证明即可得证;(2)根据题,当时,,令时,即可求得;(3)①当到达点时,点到达点,此时,则,令求得,可得,结合已知条件可得;②由①可得,是等边三角形,分情况讨论,当在上,时,根据含30度角的直角三角形的性质,可得;当时,过点分别作,垂足为,可得四边形是矩形,分别求得,根据勾股定理列出方程,解一元二次方程即可,当时,如图,过点作于点,同理通过勾股定理求得,当点在上时,观察图形可知不存在直角三角形.【详解】四边形是平行四边形;即四边形是平行四边形;(2)依题意,设点运动的路程为,的长度为,。
(三)迁移运用: 用一元二次方程的相关知识解决下列问题:
【导学流程】
(一)了解感知:
认真阅读下面一段话,然后完成练习
24.4 —元二次方程的应用(6) 班级: 姓名: 小组:
【学习目标】
1. 通过回忆旧知,学生能准确说出几何图形中动点的行走路程;
2. 通过认真审题,学生能准确找出其中的等量关系;
3•借助等量关系,学生能准确列出关于动点的一元二次方程;
4. 根据一元二次方程的特点,学生能灵活选用适当的方法解一元二次方程;
5. 根据具体题意,学生能合理舍掉其中一个根
【重点难点】
重点:用一元二次方程解决动点问题;
难点:分析动点的运动,列出一元二次方程
2.如图所示,已知在厶 ABC 中,/ B=90° AB=BC=5cm 点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从B 开始沿边BC 向点C 以2cm/s 的速度移动,若一动点运动 到终点,则另一个也随之停止。
(1)如果P 、Q 分别从A 、B 两点同时出发,那么几秒后,△ (2)在(1)中,△ PBQ 的面积能否等于 7cm2?说明理由。
PBQ 的面积等于4cm2?
1. 一般动态问题的解法是“动中求静”,即按题意确定动点的一个基本位置,然后按照这个这个基本位置作出恰当的图形,再按照题意逐步探索和求解。
2. 完成课本56页C组1题(写在书上)
(二)深入学习:分析下列题目的等量关系,列一元二次方程求解
1.等腰直角厶ABC中,AB=BC=8cm动点P从A点出发,沿AB向
B移动,通过点P引平行于BC,AC的直线与AC,BC分别交于R、
Q.当AP等于多少厘米时,平行四边形PQCR勺面积等于16cm2?
1.在矩形ABCD中,AB=5cm,BC=7cm点P从点A开始以1cm/s的速度沿AB 边向点B移动,
点Q从点B开始以2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B同时出发了t秒,直至两动点中某一点到达端点后停止(即0<t<3.5 )
(1)经过几秒后,PQ的长度等于5?
(2)经过几秒后,△ BPQ的面积等于4?
⑶经过几秒后,DP=DQ
C Q。